Blastocyst metabolism
David K. Gardner A B and Alexandra J. Harvey AA School of Biosciences, University of Melbourne, Parkville, Vic. 3010, Australia.
B Corresponding author. Email: david.gardner@unimelb.edu.au
Reproduction, Fertility and Development 27(4) 638-654 https://doi.org/10.1071/RD14421
Submitted: 3 November 2014 Accepted: 10 January 2015 Published: 10 March 2015
Abstract
The mammalian blastocyst exhibits an idiosyncratic metabolism, reflecting its unique physiology and its ability to undergo implantation. Glucose is the primary nutrient of the blastocyst, and is metabolised both oxidatively and through aerobic glycolysis. The production of significant quantities of lactate by the blastocyst reflects specific metabolic requirements and mitochondrial regulation; it is further proposed that lactate production serves to facilitate several key functions during implantation, including biosynthesis, endometrial tissue breakdown, the promotion of new blood vessel formation and induction of local immune-modulation of the uterine environment. Nutrient availability, oxygen concentration and the redox state of the blastocyst tightly regulate the relative activities of specific metabolic pathways. Notably, a loss of metabolic normality is associated with a reduction in implantation potential and subsequent fetal development. Even a transient metabolic stress at the blastocyst stage culminates in low fetal weights after transfer. Further, it is evident that there are differences between male and female embryos, with female embryos being characterised by higher glucose consumption and differences in their amino acid turnover, reflecting the presence of two active X-chromosomes before implantation, which results in differences in the proteomes between the sexes. In addition to the role of Hypoxia-Inducible Factors, the signalling pathways involved in regulating blastocyst metabolism are currently under intense analysis, with the roles of sirtuins, mTOR, AMP-activated protein kinase and specific amino acids being scrutinised. It is evident that blastocyst metabolism regulates more than the production of ATP; rather, it is apparent that metabolites and cofactors are important regulators of the epigenome, putting metabolism at centre stage when considering the interactions of the blastocyst with its environment.
Additional keywords: amino acids, embryo, energy, glucose, viability.
References
Abu Dawud, R., Schreiber, K., Schomburg, D., and Adjaye, J. (2012). Human embryonic stem cells and embryonal carcinoma cells have overlapping and distinct metabolic signatures. PLoS ONE 7, e39896.| Human embryonic stem cells and embryonal carcinoma cells have overlapping and distinct metabolic signatures.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XpvVCguro%3D&md5=b07a08de52a571a80799c73e8c1795d0CAS | 22768158PubMed |
Andrae, U., Singh, J., and Ziegler-Skylakakis, K. (1985). Pyruvate and related alpha-ketoacids protect mammalian cells in culture against hydrogen peroxide-induced cytotoxicity. Toxicol. Lett. 28, 93–98.
| Pyruvate and related alpha-ketoacids protect mammalian cells in culture against hydrogen peroxide-induced cytotoxicity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XjtVShsQ%3D%3D&md5=68b2014794618d73e9baeeb0071be206CAS | 4071565PubMed |
Auerbach, S., and Brinster, R. L. (1967). Lactate dehydrogenase isozymes in the early mouse embryo. Exp. Cell Res. 46, 89–92.
| Lactate dehydrogenase isozymes in the early mouse embryo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2sXktF2guro%3D&md5=f34031c8aeb470d8b86ed37dba123ce5CAS | 6025288PubMed |
Barbehenn, E. K., Wales, R. G., and Lowry, O. H. (1974). The explanation for the blockade of glycolysis in early mouse embryos. Proc. Natl Acad. Sci. USA 71, 1056–1060.
| The explanation for the blockade of glycolysis in early mouse embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2cXksVOqu7w%3D&md5=9fe84930afff5b115381c824ce57e1aaCAS | 4275392PubMed |
Barcroft, L. C., Offenberg, H., Thomsen, P., and Watson, A. J. (2003). Aquaporin proteins in murine trophectoderm mediate transepithelial water movements during cavitation. Dev. Biol. 256, 342–354.
| Aquaporin proteins in murine trophectoderm mediate transepithelial water movements during cavitation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXisFWmsbw%3D&md5=c6a7b8bfbc20d3f949707f6050598bfeCAS | 12679107PubMed |
Batt, P. A., Gardner, D. K., and Cameron, A. W. (1991). Oxygen concentration and protein source affect the development of preimplantation goat embryos in vitro. Reprod. Fertil. Dev. 3, 601–607.
| Oxygen concentration and protein source affect the development of preimplantation goat embryos in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XlsVKls7s%3D&md5=972ffaa3d9f2d04209f1548efb6a8a57CAS | 1788401PubMed |
Baumann, C. G., Morris, D. G., Sreenan, J. M., and Leese, H. J. (2007). The quiet embryo hypothesis: molecular characteristics favoring viability. Mol. Reprod. Dev. 74, 1345–1353.
| The quiet embryo hypothesis: molecular characteristics favoring viability.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVCmtr7O&md5=7021dbe438f7797093f5b06e679184cfCAS | 17342740PubMed |
Biggers, J. D., Whittingham, D. G., and Donahue, R. P. (1967). The pattern of energy metabolism in the mouse oocyte and zygote. Proc. Natl Acad. Sci. USA 58, 560–567.
| The pattern of energy metabolism in the mouse oocyte and zygote.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1cXitVaitw%3D%3D&md5=105f0132de02f2e6e3e05a34afdf2c94CAS | 5233459PubMed |
Biggers, J. D., McGinnis, L. K., and Lawitts, J. A. (2004). Enhanced effect of glycyl-l-glutamine on mouse preimplantation embryos in vitro. Reprod. Biomed. Online 9, 59–69.
| Enhanced effect of glycyl-l-glutamine on mouse preimplantation embryos in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmtFGhsb4%3D&md5=8075a0552d316819ad34692d7f432637CAS | 15257821PubMed |
Bontekoe, S., Mantikou, E., van Wely, M., Seshadri, S., Repping, S., and Mastenbroek, S. (2012). Low oxygen concentrations for embryo culture in assisted reproductive technologies. Cochrane Database Syst. Rev. 7, CD008950.
| 22786519PubMed |
Brinster, R. L. (1965). Lactate dehydrogenase activity in the preimplanted mouse embryo. Biochim. Biophys. Acta 110, 439–441.
| Lactate dehydrogenase activity in the preimplanted mouse embryo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF28XivFOisw%3D%3D&md5=b328da238a0359546bd7c3dd01e8c548CAS | 4286293PubMed |
Brison, D. R., Hewitson, L. C., and Leese, H. J. (1993). Glucose, pyruvate, and lactate concentrations in the blastocoel cavity of rat and mouse embryos. Mol. Reprod. Dev. 35, 227–232.
| Glucose, pyruvate, and lactate concentrations in the blastocoel cavity of rat and mouse embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXmsVKnu70%3D&md5=386f289e262c39dbb29250149661a3afCAS | 8352926PubMed |
Brocato, J., Chervona, Y., and Costa, M. (2014). Molecular responses to hypoxia-inducible factor 1alpha and beyond. Mol. Pharmacol. 85, 651–657.
| Molecular responses to hypoxia-inducible factor 1alpha and beyond.Crossref | GoogleScholarGoogle Scholar | 24569087PubMed |
Calder, M. D., Khandekar, R., and Watson, A. J. (2011). Stimulation or inhibition of AMPK causes arrest of mouse embryo development. Biol. Reprod. 85, 244.
Campbell, J. M., Nottle, M. B., Vassiliev, I., Mitchell, M., and Lane, M. (2012). Insulin increases epiblast cell number of in vitro cultured mouse embryos via the PI3K/GSK3/p53 pathway. Stem Cells Dev. 21, 2430–2441.
| Insulin increases epiblast cell number of in vitro cultured mouse embryos via the PI3K/GSK3/p53 pathway.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1yntr%2FO&md5=7e15c57c599a636c45d034d7f69b0b4eCAS | 22339667PubMed |
Cantó, C., Gerhart-Hines, Z., Feige, J. N., Lagouge, M., Noriega, L., Milne, J. C., Elliott, P. J., Puigserver, P., and Auwerx, J. (2009). AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 458, 1056–1060.
| AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity.Crossref | GoogleScholarGoogle Scholar | 19262508PubMed |
Cheng, H. L., Mostoslavsky, R., Saito, S., Manis, J. P., Gu, Y., Patel, P., Bronson, R., Appella, E., Alt, F. W., and Chua, K. F. (2003). Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice. Proc. Natl Acad. Sci. USA 100, 10 794–10 799.
| Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnslyntrc%3D&md5=1ff148be38bd86a4dec6551fb5587eafCAS |
Christofk, H. R., Vander Heiden, M. G., Harris, M. H., Ramanathan, A., Gerszten, R. E., Wei, R., Fleming, M. D., Schreiber, S. L., and Cantley, L. C. (2008). The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature 452, 230–233.
| The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjt1Gnu74%3D&md5=6024205cc1b3b503f1327213db17a872CAS | 18337823PubMed |
Compernolle, V., Brusselmans, K., Acker, T., Hoet, P., Tjwa, M., Beck, H., Plaisance, S., Dor, Y., Keshet, E., Lupu, F., Nemery, B., Dewerchin, M., Van Veldhoven, P., Plate, K., Moons, L., Collen, D., and Carmeliet, P. (2002). Loss of HIF-2alpha and inhibition of VEGF impair fetal lung maturation, whereas treatment with VEGF prevents fatal respiratory distress in premature mice. Nat. Med. 8, 702–710.
| 1:CAS:528:DC%2BD38XkvFehsbo%3D&md5=c61dddb04a51c33ee6ea0d1fd37f6725CAS | 12053176PubMed |
Dennis, P. B., Jaeschke, A., Saitoh, M., Fowler, B., Kozma, S. C., and Thomas, G. (2001). Mammalian TOR: a homeostatic ATP sensor. Science 294, 1102–1105.
| Mammalian TOR: a homeostatic ATP sensor.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXot1Krtrc%3D&md5=82be61728645ea3cb77496a8e5c16941CAS | 11691993PubMed |
Déry, M. A., Michaud, M. D., and Richard, D. E. (2005). Hypoxia-inducible factor 1: regulation by hypoxic and non-hypoxic activators. Int. J. Biochem. Cell Biol. 37, 535–540.
| Hypoxia-inducible factor 1: regulation by hypoxic and non-hypoxic activators.Crossref | GoogleScholarGoogle Scholar | 15618010PubMed |
Donohoe, D. R., and Bultman, S. J. (2012). Metaboloepigenetics: interrelationships between energy metabolism and epigenetic control of gene expression. J. Cell. Physiol. 227, 3169–3177.
| Metaboloepigenetics: interrelationships between energy metabolism and epigenetic control of gene expression.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xnt1Knt7c%3D&md5=8ae54ce99b212915d0dd36ea5cf22b94CAS | 22261928PubMed |
Eckert, J. J., Porter, R., Watkins, A. J., Burt, E., Brooks, S., Leese, H. J., Humpherson, P. G., Cameron, I. T., and Fleming, T. P. (2012). Metabolic induction and early responses of mouse blastocyst developmental programming following maternal low protein diet affecting life-long health. PLoS ONE 7, e52791.
| Metabolic induction and early responses of mouse blastocyst developmental programming following maternal low protein diet affecting life-long health.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXnsVKmtg%3D%3D&md5=646873f5cb17b61f90fc321f8cf61fbdCAS | 23300778PubMed |
Edwards, L. J., Williams, D. A., and Gardner, D. K. (1998). Intracellular pH of the mouse preimplantation embryo: amino acids act as buffers of intracellular pH. Hum. Reprod. 13, 3441–3448.
| Intracellular pH of the mouse preimplantation embryo: amino acids act as buffers of intracellular pH.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXltFOksA%3D%3D&md5=6efa9ff730afae7e27d84ad51cc7f89aCAS | 9886531PubMed |
Eng, G. S., Sheridan, R. A., Wyman, A., Chi, M. M., Bibee, K. P., Jungheim, E. S., and Moley, K. H. (2007). AMP kinase activation increases glucose uptake, decreases apoptosis, and improves pregnancy outcome in embryos exposed to high IGF-I concentrations. Diabetes 56, 2228–2234.
| AMP kinase activation increases glucose uptake, decreases apoptosis, and improves pregnancy outcome in embryos exposed to high IGF-I concentrations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtV2gs7bI&md5=9e05effe509146dfcf40b762ccfb3c65CAS | 17575082PubMed |
Epstein, C. J., Smith, S., Travis, B., and Tucker, G. (1978). Both X chromosomes function before visible X-chromosome inactivation in female mouse embryos. Nature 274, 500–503.
| Both X chromosomes function before visible X-chromosome inactivation in female mouse embryos.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE1c3itlKisA%3D%3D&md5=bb1b5cc7c9747eaee7a655196867c934CAS | 672979PubMed |
Feil, D., Lane, M., Roberts, C. T., Kelley, R. L., Edwards, L. J., Thompson, J. G., and Kind, K. L. (2006). Effect of culturing mouse embryos under different oxygen concentrations on subsequent fetal and placental development. J. Physiol. 572, 87–96.
| Effect of culturing mouse embryos under different oxygen concentrations on subsequent fetal and placental development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xkt1Ghtb4%3D&md5=adc602f0d398149986d945d3511e5677CAS | 16484304PubMed |
Fischer, B., and Bavister, B. D. (1993). Oxygen tension in the oviduct and uterus of rhesus monkeys, hamsters and rabbits. J. Reprod. Fertil. 99, 673–679.
| Oxygen tension in the oviduct and uterus of rhesus monkeys, hamsters and rabbits.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2c7kvFKmtQ%3D%3D&md5=1eb3a761d03164ee97a4b793fce13665CAS | 8107053PubMed |
Fischer-Brown, A., Crooks, A., Leonard, S., Monson, R., Northey, D., and Rutledge, J. J. (2005). Parturition following transfer of embryos produced in two media under two oxygen concentrations. Anim. Reprod. Sci. 87, 215–228.
| Parturition following transfer of embryos produced in two media under two oxygen concentrations.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2M3mvVWitg%3D%3D&md5=d51e3d014676606e8e47637864cbaee0CAS | 15911172PubMed |
Forristal, C. E., Christensen, D. R., Chinnery, F. E., Petruzzelli, R., Parry, K. L., Sanchez-Elsner, T., and Houghton, F. D. (2013). Environmental oxygen tension regulates the energy metabolism and self-renewal of human embryonic stem cells. PLoS ONE 8, e62507.
| Environmental oxygen tension regulates the energy metabolism and self-renewal of human embryonic stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXns1OrsL0%3D&md5=a12f1bd6e3c39a06c5ecae9ced5ae643CAS | 23671606PubMed |
Gangloff, Y. G., Mueller, M., Dann, S. G., Svoboda, P., Sticker, M., Spetz, J. F., Um, S. H., Brown, E. J., Cereghini, S., Thomas, G., and Kozma, S. C. (2004). Disruption of the mouse mTOR gene leads to early postimplantation lethality and prohibits embryonic stem cell development. Mol. Cell. Biol. 24, 9508–9516.
| Disruption of the mouse mTOR gene leads to early postimplantation lethality and prohibits embryonic stem cell development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXltl2itA%3D%3D&md5=7b3f091061139fbe0a609a04c687ef0fCAS | 15485918PubMed |
Gardner, D. K. (1998a). Changes in requirements and utilization of nutrients during mammalian preimplantation embryo development and their significance in embryo culture. Theriogenology 49, 83–102.
| Changes in requirements and utilization of nutrients during mammalian preimplantation embryo development and their significance in embryo culture.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXnsFCrtA%3D%3D&md5=c9923c7345acd3f60bfc8080c388e71dCAS | 10732123PubMed |
Gardner, D. K. (1998b) Embryo development and culture techniques. In ‘Animal Breeding: Technology for the 21st Century’. (Ed. J. Clark.) pp. 13–46. (Harwood Academic: London.)
Gardner, D. K. (2015). Lactate production by the mammalian blastocyst: manipulating the microenvironment for uterine implantation and invasion? Bioessays , .
| Lactate production by the mammalian blastocyst: manipulating the microenvironment for uterine implantation and invasion?Crossref | GoogleScholarGoogle Scholar | 25619853PubMed |
Gardner, D. K., and Lane, M. (2005). Ex vivo early embryo development and effects on gene expression and imprinting. Reprod. Fertil. Dev. 17, 361–370.
| Ex vivo early embryo development and effects on gene expression and imprinting.Crossref | GoogleScholarGoogle Scholar | 15745644PubMed |
Gardner, D. K., and Leese, H. J. (1987). Assessment of embryo viability prior to transfer by the noninvasive measurement of glucose uptake. J. Exp. Zool. 242, 103–105.
| Assessment of embryo viability prior to transfer by the noninvasive measurement of glucose uptake.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL2s3ltlShtQ%3D%3D&md5=fe940426b039863df787b8972f533fffCAS | 3598508PubMed |
Gardner, D. K., and Leese, H. J. (1988). The role of glucose and pyruvate transport in regulating nutrient utilization by preimplantation mouse embryos. Development 104, 423–429.
| 1:CAS:528:DyaL1MXlsV2mtQ%3D%3D&md5=5a8af4e6326bd1c18ac137599d230ebcCAS | 3076862PubMed |
Gardner, D. K., and Leese, H. J. (1990). Concentrations of nutrients in mouse oviduct fluid and their effects on embryo development and metabolism in vitro. J. Reprod. Fertil. 88, 361–368.
| Concentrations of nutrients in mouse oviduct fluid and their effects on embryo development and metabolism in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXhsFCks7Y%3D&md5=71c0e6ebcfa94610ebd08b926e848595CAS | 2313649PubMed |
Gardner, D. K., and Sakkas, D. (1993). Mouse embryo cleavage, metabolism and viability: role of medium composition. Hum. Reprod. 8, 288–295.
| 1:CAS:528:DyaK3sXitlSqs78%3D&md5=89871c75301b766b8bcc59c6cfc8e162CAS | 8473436PubMed |
Gardner, D. K., and Wale, P. L. (2013). Analysis of metabolism to select viable human embryos. Fertil. Steril. 99, 1062–1072.
| 1:CAS:528:DC%2BC3sXnslyksQ%3D%3D&md5=1fad36cd6f1d9bc41df900dff6e1c849CAS | 23312219PubMed |
Gardner, D. K., Clarke, R. N., Lechene, C. P., and Biggers, J. D. (1989). Development of a noninvasive ultramicrofluorometric method for measuring net uptake of glutamine by single preimplantation mouse embryos. Gamete Res. 24, 427–438.
| Development of a noninvasive ultramicrofluorometric method for measuring net uptake of glutamine by single preimplantation mouse embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXpsVOlsA%3D%3D&md5=1981ba4510ad61ad8083fac699bd3c15CAS | 2591860PubMed |
Gardner, D. K., Lane, M., Calderon, I., and Leeton, J. (1996). Environment of the preimplantation human embryo in vivo: metabolite analysis of oviduct and uterine fluids and metabolism of cumulus cells. Fertil. Steril. 65, 349–353.
| 1:STN:280:DyaK287lsVSitA%3D%3D&md5=31b3bc16b76b68d1a98ad401b22e1d1eCAS | 8566260PubMed |
Gardner, D. K., Lane, M., Stevens, J., and Schoolcraft, W. B. (2001). Noninvasive assessment of human embryo nutrient consumption as a measure of developmental potential. Fertil. Steril. 76, 1175–1180.
| Noninvasive assessment of human embryo nutrient consumption as a measure of developmental potential.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3MnosVymtg%3D%3D&md5=c89ede8c58198b7d6898234c2687632fCAS | 11730746PubMed |
Gardner, D. K., Larman, M. G., and Thouas, G. A. (2010). Sex-related physiology of the preimplantation embryo. Mol. Hum. Reprod. 16, 539–547.
| Sex-related physiology of the preimplantation embryo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXptlegt7s%3D&md5=c2e96f6602137462cbd0ad2105612b58CAS | 20501630PubMed |
Gardner, D. K., Wale, P. L., Collins, R., and Lane, M. (2011). Glucose consumption of single post-compaction human embryos is predictive of embryo sex and live birth outcome. Hum. Reprod. 26, 1981–1986.
| Glucose consumption of single post-compaction human embryos is predictive of embryo sex and live birth outcome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXptFCnsbw%3D&md5=a296d48ffa89da35a0f6ef4f0e9c752aCAS | 21572086PubMed |
Ghosh, H. S., McBurney, M., and Robbins, P. D. (2010). SIRT1 negatively regulates the mammalian target of rapamycin. PLoS ONE 5, e9199.
| SIRT1 negatively regulates the mammalian target of rapamycin.Crossref | GoogleScholarGoogle Scholar | 20169165PubMed |
Gibbons, J., Hewitt, E., and Gardner, D. K. (2006). Effects of oxygen tension on the establishment and lactate dehydrogenase activity of murine embryonic stem cells. Cloning Stem Cells 8, 117–122.
| Effects of oxygen tension on the establishment and lactate dehydrogenase activity of murine embryonic stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XlvVGmu70%3D&md5=07ee6fc8e75089c9a48e3eba811e492fCAS | 16776603PubMed |
Greenhouse, W. V., and Lehninger, A. L. (1976). Occurrence of the malate–aspartate shuttle in various tumor types. Cancer Res. 36, 1392–1396.
| 1:CAS:528:DyaE28Xhs1aksrc%3D&md5=9daf8010de198ca1afca126e4ab76affCAS | 177206PubMed |
Greenhouse, W. V., and Lehninger, A. L. (1977). Magnitude of malate–aspartate reduced nicotinamide adenine dinucleotide shuttle activity in intact respiring tumor cells. Cancer Res. 37, 4173–4181.
| 1:CAS:528:DyaE2sXlvFyrs7c%3D&md5=3a13156b02eaecc9d94a4cfdcf0bb7a0CAS | 198130PubMed |
Hardie, D. G., Carling, D., and Carlson, M. (1998). The AMP-activated/SNF1 protein kinase subfamily: metabolic sensors of the eukaryotic cell? Annu. Rev. Biochem. 67, 821–855.
| The AMP-activated/SNF1 protein kinase subfamily: metabolic sensors of the eukaryotic cell?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXlsFOmtr4%3D&md5=7a0c87124519635363b785e24b60a628CAS | 9759505PubMed |
Hardy, K., and Spanos, S. (2002). Growth factor expression and function in the human and mouse preimplantation embryo. J. Endocrinol. 172, 221–236.
| Growth factor expression and function in the human and mouse preimplantation embryo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhvVejt78%3D&md5=844a5282882c0dd1d11874619e96f8e3CAS | 11834440PubMed |
Harvey, A. J. (2007). The role of oxygen in ruminant preimplantation embryo development and metabolism. Anim. Reprod. Sci. 98, 113–128.
| The role of oxygen in ruminant preimplantation embryo development and metabolism.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhs1Slu7s%3D&md5=9e03680937c8859774ab1d10fca77360CAS | 17158002PubMed |
Harvey, A. J., Kind, K. L., and Thompson, J. G. (2002). REDOX regulation of early embryo development. Reproduction 123, 479–486.
| REDOX regulation of early embryo development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XivFGhtLk%3D&md5=c2d308268e1c58238eede61818421703CAS | 11914110PubMed |
Harvey, A. J., Kind, K. L., Pantaleon, M., Armstrong, D. T., and Thompson, J. G. (2004a). Oxygen-regulated gene expression in bovine blastocysts. Biol. Reprod. 71, 1108–1119.
| Oxygen-regulated gene expression in bovine blastocysts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnvVGqt7o%3D&md5=755ce7906ae06403e4a55978626fa488CAS | 15163614PubMed |
Harvey, A. J., Kind, K. L., and Thompson, J. G. (2004b). Effect of the oxidative phosphorylation uncoupler 2,4-dinitrophenol on hypoxia-inducible factor-regulated gene expression in bovine blastocysts. Reprod. Fertil. Dev. 16, 665–673.
| Effect of the oxidative phosphorylation uncoupler 2,4-dinitrophenol on hypoxia-inducible factor-regulated gene expression in bovine blastocysts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVGkurfP&md5=25b50f06908a24214bb1361237a83da0CAS | 15740689PubMed |
Harvey, A. J., Kind, K. L., and Thompson, J. G. (2007). Regulation of gene expression in bovine blastocysts in response to oxygen and the iron chelator desferrioxamine. Biol. Reprod. 77, 93–101.
| Regulation of gene expression in bovine blastocysts in response to oxygen and the iron chelator desferrioxamine.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXntV2gtrw%3D&md5=7cd8a8ecf66ae4a39326c5bf3961ee72CAS | 17329595PubMed |
Harvey, A. J., Binder, N. K., and Gardner, D. K. (2013). Activation of AMPK regulates mouse embryo development and glucose metabolism. In: ‘The Annual Scientific Meeting of the Endocrine Society of Australia and the Society for Reproductive Biology 2013, 25–28 August 2013, Sydney, New South Wales’.
Harvey, A. J., Rathjen, J., Yu, L. J., and Gardner, D. K. (2014). Oxygen modulates human embryonic stem cell metabolism in the absence of changes in self-renewal. Reprod. Fertil. Dev. , .
| Oxygen modulates human embryonic stem cell metabolism in the absence of changes in self-renewal.Crossref | GoogleScholarGoogle Scholar | 25145274PubMed |
Hewitson, L. C., and Leese, H. J. (1993). Energy metabolism of the trophectoderm and inner cell mass of the mouse blastocyst. J. Exp. Zool. 267, 337–343.
| Energy metabolism of the trophectoderm and inner cell mass of the mouse blastocyst.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXlsFel&md5=d772fc58bdaa8d1f81b8a9bdaf0be22bCAS | 8228868PubMed |
Houghton, F. D., Thompson, J. G., Kennedy, C. J., and Leese, H. J. (1996). Oxygen consumption and energy metabolism of the early mouse embryo. Mol. Reprod. Dev. 44, 476–485.
| Oxygen consumption and energy metabolism of the early mouse embryo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XkvFGrtLY%3D&md5=692830e4582a9981bcf0e4804c72c6f5CAS | 8844690PubMed |
Houghton, F. D., Hawkhead, J. A., Humpherson, P. G., Hogg, J. E., Balen, A. H., Rutherford, A. J., and Leese, H. J. (2002). Non-invasive amino acid turnover predicts human embryo developmental capacity. Hum. Reprod. 17, 999–1005.
| Non-invasive amino acid turnover predicts human embryo developmental capacity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xjs12isLg%3D&md5=adfd3bb337f670f6d799e1d8fe73da21CAS | 11925397PubMed |
Houtkooper, R. H., Pirinen, E., and Auwerx, J. (2012). Sirtuins as regulators of metabolism and healthspan. Nat. Rev. Mol. Cell Biol. 13, 225–238.
| 1:CAS:528:DC%2BC38XjtlOktbw%3D&md5=641f8cff9bc411f98a57f1911418f0d7CAS | 22395773PubMed |
Hume, D. A., and Weidemann, M. J. (1979). Role and regulation of glucose metabolism in proliferating cells. J. Natl Cancer Inst. 62, 3–8.
| 1:CAS:528:DyaE1MXosVSluw%3D%3D&md5=2441bd0f761d5c5c3f171ee1f23d8957CAS | 364152PubMed |
Inoki, K., Kim, J., and Guan, K. L. (2012). AMPK and mTOR in cellular energy homeostasis and drug targets. Annu. Rev. Pharmacol. Toxicol. 52, 381–400.
| AMPK and mTOR in cellular energy homeostasis and drug targets.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjsV2nt7c%3D&md5=b5cab3eabcc7b8de7800fd31836e9221CAS | 22017684PubMed |
Iyer, N. V., Kotch, L. E., Agani, F., Leung, S. W., Laughner, E., Wenger, R. H., Gassmann, M., Gearhart, J. D., Lawler, A. M., Yu, A. Y., and Semenza, G. L. (1998). Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1 alpha. Genes Dev. 12, 149–162.
| Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1 alpha.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXnsVOqsQ%3D%3D&md5=e61ff40fd188cc43eb665ea513d9e81fCAS | 9436976PubMed |
Jiang, B. H., Semenza, G. L., Bauer, C., and Marti, H. H. (1996). Hypoxia-inducible factor 1 levels vary exponentially over a physiologically relevant range of O2 tension. Am. J. Physiol. 271, C1172–C1180.
| 1:CAS:528:DyaK28XmsF2nurw%3D&md5=922fd6eebac6f7137d82feab7a7d97c7CAS | 8897823PubMed |
Karagenc, L., Sertkaya, Z., Ciray, N., Ulug, U., and Bahceci, M. (2004). Impact of oxygen concentration on embryonic development of mouse zygotes. Reprod. Biomed. Online 9, 409–417.
| 1:STN:280:DC%2BD2crkt1OksQ%3D%3D&md5=59d93afc080e69ea380f47ddd3c41efeCAS | 15511341PubMed |
Katz-Jaffe, M. G., Linck, D. W., Schoolcraft, W. B., and Gardner, D. K. (2005). A proteomic analysis of mammalian preimplantation embryonic development. Reproduction 130, 899–905.
| A proteomic analysis of mammalian preimplantation embryonic development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xkt12msg%3D%3D&md5=604b5ef8536e63a84694cf10c12569a2CAS | 16322549PubMed |
Kawamura, Y., Uchijima, Y., Horike, N., Tonami, K., Nishiyama, K., Amano, T., Asano, T., Kurihara, Y., and Kurihara, H. (2010). Sirt3 protects in vitro-fertilized mouse preimplantation embryos against oxidative stress-induced p53-mediated developmental arrest. J. Clin. Invest. 120, 2817–2828.
| Sirt3 protects in vitro-fertilized mouse preimplantation embryos against oxidative stress-induced p53-mediated developmental arrest.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVaiur7E&md5=caa3db3fc690c65326b72f0441266d03CAS | 20644252PubMed |
Kemp, B. E., Mitchelhill, K. I., Stapleton, D., Michell, B. J., Chen, Z. P., and Witters, L. A. (1999). Dealing with energy demand: the AMP-activated protein kinase. Trends Biochem. Sci. 24, 22–25.
| Dealing with energy demand: the AMP-activated protein kinase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXks12qtLs%3D&md5=ec95b458a71cb890e74117a5af67963eCAS | 10087918PubMed |
Khurana, N. K., and Wales, R. G. (1989). Effects of oxygen concentration on the metabolism of [U-14C]glucose by mouse morulae and early blastocysts in vitro. Reprod. Fertil. Dev. 1, 99–106.
| Effects of oxygen concentration on the metabolism of [U-14C]glucose by mouse morulae and early blastocysts in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38Xlt1yks78%3D&md5=065c92757f0cc68eff8f6eee9c3c4535CAS | 2798946PubMed |
Kind, K. L., Collett, R. A., Harvey, A. J., and Thompson, J. G. (2004). Oxygen-regulated expression of GLUT-1, GLUT-3, and VEGF in the mouse blastocyst. Mol. Reprod. Dev. 70, 37–44.
| Oxygen-regulated expression of GLUT-1, GLUT-3, and VEGF in the mouse blastocyst.Crossref | GoogleScholarGoogle Scholar |
Kirkegaard, K., Hindkjaer, J. J., and Ingerslev, H. J. (2013). Effect of oxygen concentration on human embryo development evaluated by time-lapse monitoring. Fertil. Steril. 99, 738–744e4.
| Effect of oxygen concentration on human embryo development evaluated by time-lapse monitoring.Crossref | GoogleScholarGoogle Scholar | 23245683PubMed |
Kotch, L. E., Iyer, N. V., Laughner, E., and Semenza, G. L. (1999). Defective vascularization of HIF-1alpha-null embryos is not associated with VEGF deficiency but with mesenchymal cell death. Dev. Biol. 209, 254–267.
| Defective vascularization of HIF-1alpha-null embryos is not associated with VEGF deficiency but with mesenchymal cell death.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXislOhs7s%3D&md5=b9ee9789d7f5d41037fe0bb37adef49eCAS | 10328919PubMed |
Kouridakis, K., and Gardner, D. K. (1995). Pyruvate in embryo culture embryo media acts as an antioxidant. In: ‘Proceedings of the Fertility Society of Australia.’ p. 29 [Abstract].
Kozak, K. R., Abbott, B., and Hankinson, O. (1997). ARNT-deficient mice and placental differentiation. Dev. Biol. 191, 297–305.
| ARNT-deficient mice and placental differentiation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXnslWktbo%3D&md5=6ccecf8df5eb0e50ce9d9c0f6d7402c5CAS | 9398442PubMed |
Krisher, R. L., and Prather, R. S. (2012). A role for the Warburg effect in preimplnatation embryo development: metabolic modification to support rapid cell proliferation. Mol. Reprod. Dev. 79, 311–320.
| A role for the Warburg effect in preimplnatation embryo development: metabolic modification to support rapid cell proliferation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlsFygs7Y%3D&md5=c0eff42a155facc9c59aef5762dc984fCAS | 22431437PubMed |
Kwak, S. S., Cheong, S. A., Jeon, Y., Lee, E., Choi, K. C., Jeung, E. B., and Hyun, S. H. (2012a). The effects of resveratrol on porcine oocyte in vitro maturation and subsequent embryonic development after parthenogenetic activation and in vitro fertilization. Theriogenology 78, 86–101.
| The effects of resveratrol on porcine oocyte in vitro maturation and subsequent embryonic development after parthenogenetic activation and in vitro fertilization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xks12hsL4%3D&md5=343328f5ee77010df4a6d259b0c3c19dCAS | 22445189PubMed |
Kwak, S. S., Cheong, S. A., Yoon, J. D., Jeon, Y., and Hyun, S. H. (2012b). Expression patterns of sirtuin genes in porcine preimplantation embryos and effects of sirtuin inhibitors on in vitro embryonic development after parthenogenetic activation and in vitro fertilization. Theriogenology 78, 1597–1610.
| Expression patterns of sirtuin genes in porcine preimplantation embryos and effects of sirtuin inhibitors on in vitro embryonic development after parthenogenetic activation and in vitro fertilization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlGnsbvF&md5=c483d5a5cc45f992996ee30497fe08f8CAS | 22980088PubMed |
Lager, S., Samulesson, A. M., Taylor, P. D., Poston, L., Powell, T. L., and Jansson, T. (2014). Diet-induced obesity in mice reduces placental efficiency and inhibits placental mTOR signaling. Physiol. Rep. 2, e00242.
| Diet-induced obesity in mice reduces placental efficiency and inhibits placental mTOR signaling.Crossref | GoogleScholarGoogle Scholar | 24744907PubMed |
Lamb, V. K., and Leese, H. J. (1994). Uptake of a mixture of amino acids by mouse blastocysts. J. Reprod. Fertil. 102, 169–175.
| Uptake of a mixture of amino acids by mouse blastocysts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXit12rtLc%3D&md5=5e22c360a1385304b421f653defc2c71CAS | 7799310PubMed |
Lane, M., and Gardner, D. K. (1994). Increase in postimplantation development of cultured mouse embryos by amino acids and induction of fetal retardation and exencephaly by ammonium ions. J. Reprod. Fertil. 102, 305–312.
| Increase in postimplantation development of cultured mouse embryos by amino acids and induction of fetal retardation and exencephaly by ammonium ions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXjtFynsrs%3D&md5=29946f654a69b4f3ce0c9ae6def9a9ceCAS | 7861382PubMed |
Lane, M., and Gardner, D. K. (1996). Selection of viable mouse blastocysts prior to transfer using a metabolic criterion. Hum. Reprod. 11, 1975–1978.
| Selection of viable mouse blastocysts prior to transfer using a metabolic criterion.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2s%2FnvFensA%3D%3D&md5=aff3eff615ed169467ada73592fd9303CAS | 8921074PubMed |
Lane, M., and Gardner, D. K. (1997). Differential regulation of mouse embryo development and viability by amino acids. J. Reprod. Fertil. 109, 153–164.
| Differential regulation of mouse embryo development and viability by amino acids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhs1Gls78%3D&md5=713b097cab2f61406a4b92590ddf66d7CAS | 9068427PubMed |
Lane, M., and Gardner, D. K. (1998). Amino acids and vitamins prevent culture-induced metabolic perturbations and associated loss of viability of mouse blastocysts. Hum. Reprod. 13, 991–997.
| Amino acids and vitamins prevent culture-induced metabolic perturbations and associated loss of viability of mouse blastocysts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjs12guro%3D&md5=0c4a71a225bc6ac5f0bb294af32ede91CAS | 9619560PubMed |
Lane, M., and Gardner, D. K. (2000). Lactate regulates pyruvate uptake and metabolism in the preimplantation mouse embryo. Biol. Reprod. 62, 16–22.
| Lactate regulates pyruvate uptake and metabolism in the preimplantation mouse embryo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhslKmtA%3D%3D&md5=6ad705d43c504e468e3f327983806e1bCAS | 10611062PubMed |
Lane, M., and Gardner, D. K. (2005). Mitochondrial malate–aspartate shuttle regulates mouse embryo nutrient consumption. J. Biol. Chem. 280, 18 361–18 367.
| Mitochondrial malate–aspartate shuttle regulates mouse embryo nutrient consumption.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjsl2ht7c%3D&md5=4657c275977539bd22363fa31fde5396CAS |
Lee, M. N., Ha, S. H., Kim, J., Koh, A., Lee, C. S., Kim, J. H., Jeon, H., Kim, D. H., Suh, P. G., and Ryu, S. H. (2009). Glycolytic flux signals to mTOR through glyceraldehyde-3-phosphate dehydrogenase-mediated regulation of Rheb. Mol. Cell. Biol. 29, 3991–4001.
| Glycolytic flux signals to mTOR through glyceraldehyde-3-phosphate dehydrogenase-mediated regulation of Rheb.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXos1GnsL0%3D&md5=747f558c6a6e6d7ca06b399d5cbaac58CAS | 19451232PubMed |
Lee, Y. S. L., Thouas, G. A., and Gardner, D. K. (2015). Developmental kinetics of cleavage stage mouse embryos are related to their subsequent carbohydrate and amino acid utilisation at the blastocyst stage. Hum. Reprod. , .
| Developmental kinetics of cleavage stage mouse embryos are related to their subsequent carbohydrate and amino acid utilisation at the blastocyst stage.Crossref | GoogleScholarGoogle Scholar |
Leese, H. J., and Barton, A. M. (1985). Production of pyruvate by isolated mouse cumulus cells. J. Exp. Zool. 234, 231–236.
| Production of pyruvate by isolated mouse cumulus cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXitFyrtbw%3D&md5=b4dd92e446dc402086bfe169a152760dCAS | 3998681PubMed |
Leese, H. J., Biggers, J. D., Mroz, E. A., and Lechene, C. (1984). Nucleotides in a single mammalian ovum or preimplantation embryo. Anal. Biochem. 140, 443–448.
| Nucleotides in a single mammalian ovum or preimplantation embryo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXkvVKlu7k%3D&md5=94f5fb3c5ea777a6ba4b7a86fabd8b38CAS | 6486431PubMed |
Leese, H. J., Baumann, C. G., Brison, D. R., McEvoy, T. G., and Sturmey, R. G. (2008). Metabolism of the viable mammalian embryo: quietness revisited. Mol. Hum. Reprod. 14, 667–672.
| Metabolism of the viable mammalian embryo: quietness revisited.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXltV2gsA%3D%3D&md5=9034204c84df6b71f9e2d5645a866619CAS | 19019836PubMed |
Lindenbaum, A. (1973). A survey of naturally occurring chelating ligands. Adv. Exp. Med. Biol. 40, 67–77.
| A survey of naturally occurring chelating ligands.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2MXlt1Ogtw%3D%3D&md5=93bd9479b69f1a691612f7e98c3735ebCAS | 4203570PubMed |
Liu, Z., and Foote, R. H. (1995). Development of bovine embryos in KSOM with added superoxide dismutase and taurine and with five and twenty percent O2. Biol. Reprod. 53, 786–790.
| Development of bovine embryos in KSOM with added superoxide dismutase and taurine and with five and twenty percent O2.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXotFyjurg%3D&md5=b6fef46d8da9e2e415bb152611829b17CAS | 8547471PubMed |
Louden, E., Chi, M. M., and Moley, K. H. (2008). Crosstalk between the AMP-activated kinase and insulin signaling pathways rescues murine blastocyst cells from insulin resistance. Reproduction 136, 335–344.
| Crosstalk between the AMP-activated kinase and insulin signaling pathways rescues murine blastocyst cells from insulin resistance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1GmtL3N&md5=8e08d49178614715fd0a92fbd0d796bdCAS | 18577554PubMed |
Mandel, L. J. (1986). Energy metabolism of cellular activation, growth, and transformation. Curr. Top. Memb. Trans. 27, 261–291.
| Energy metabolism of cellular activation, growth, and transformation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28Xmt1eht74%3D&md5=7941cd0639bccbdf377f770342ff19b6CAS |
Martin, P. M., and Sutherland, A. E. (2001). Exogenous amino acids regulate trophectoderm differentiation in the mouse blastocyst through an mTOR-dependent pathway. Dev. Biol. 240, 182–193.
| Exogenous amino acids regulate trophectoderm differentiation in the mouse blastocyst through an mTOR-dependent pathway.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXptFegt7s%3D&md5=1da7c1b643887577cc52595f9c73d4b1CAS | 11784055PubMed |
Martin, P. M., Sutherland, A. E., and Van Winkle, L. J. (2003). Amino acid transport regulates blastocyst implantation. Biol. Reprod. 69, 1101–1108.
| Amino acid transport regulates blastocyst implantation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnsV2nsr4%3D&md5=064733603506acda9043a54575becf9bCAS | 12801981PubMed |
Mazurek, S. (2011). Pyruvate kinase type M2: a key regulator of the metabolic budget system in tumor cells. Int. J. Biochem. Cell Biol. 43, 969–980.
| Pyruvate kinase type M2: a key regulator of the metabolic budget system in tumor cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXntV2msbY%3D&md5=9ebd07979146a38394081d5dae832ceeCAS | 20156581PubMed |
McBurney, M. W., Yang, X., Jardine, K., Hixon, M., Boekelheide, K., Webb, J. R., Lansdorp, P. M., and Lemieux, M. (2003). The mammalian SIR2alpha protein has a role in embryogenesis and gametogenesis. Mol. Cell. Biol. 23, 38–54.
| The mammalian SIR2alpha protein has a role in embryogenesis and gametogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhtVOlsg%3D%3D&md5=2bec7d3f3469ffd80a99446a65c30b4cCAS | 12482959PubMed |
Meintjes, M., Chantilis, S. J., Douglas, J. D., Rodriguez, A. J., Guerami, A. R., Bookout, D. M., Barnett, B. D., and Madden, J. D. (2009). A controlled randomized trial evaluating the effect of lowered incubator oxygen tension on live births in a predominantly blastocyst transfer program. Hum. Reprod. 24, 300–307.
| A controlled randomized trial evaluating the effect of lowered incubator oxygen tension on live births in a predominantly blastocyst transfer program.Crossref | GoogleScholarGoogle Scholar | 18927130PubMed |
Mills, R. M., and Brinster, R. L. (1967). Oxygen consumption of preimplanation mouse embryos. Exp. Cell Res. 47, 337–344.
| Oxygen consumption of preimplanation mouse embryos.Crossref | GoogleScholarGoogle Scholar |
Mitchell, J. A., and Yochim, J. M. (1968). Intrauterine oxygen tension during the estrous cycle in the rat: its relation to uterine respiration and vascular activity. Endocrinology 83, 701–705.
| Intrauterine oxygen tension during the estrous cycle in the rat: its relation to uterine respiration and vascular activity.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaF1M%2Fhsleguw%3D%3D&md5=01245dac79833aff65fe3d648c95ffffCAS | 5693655PubMed |
Mitchell, M., Cashman, K. S., Gardner, D. K., Thompson, J. G., and Lane, M. (2009). Disruption of mitochondrial malate–aspartate shuttle activity in mouse blastocysts impairs viability and fetal growth. Biol. Reprod. 80, 295–301.
| Disruption of mitochondrial malate–aspartate shuttle activity in mouse blastocysts impairs viability and fetal growth.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFOitb4%3D&md5=daedcafce549fc5436558bca4935ed8eCAS | 18971426PubMed |
Morgan, M. J., and Faik, P. (1981). Carbohydrate metabolism in cultured animal cells. Biosci. Rep. 1, 669–686.
| Carbohydrate metabolism in cultured animal cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38Xit1Si&md5=0001974f3d45ab1d25b31757829ea5a2CAS | 6213274PubMed |
Murakami, M., Ichisaka, T., Maeda, M., Oshiro, N., Hara, K., Edenhofer, F., Kiyama, H., Yonezawa, K., and Yamanaka, S. (2004). mTOR is essential for growth and proliferation in early mouse embryos and embryonic stem cells. Mol. Cell. Biol. 24, 6710–6718.
| mTOR is essential for growth and proliferation in early mouse embryos and embryonic stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmtlKltbY%3D&md5=e4100c5b62fa9e35ce7a124ff8193d3bCAS | 15254238PubMed |
Newsholme, E. A. (1990). Application of metabolic-control logic to the requirements for cell division. Biochem. Soc. Trans. 18, 78–80.
| 1:CAS:528:DyaK3cXhtFKmsb4%3D&md5=42fb3d1d6dbd6ecac64cbe203ce031f4CAS | 2185096PubMed |
Newsholme, E. A., Crabtree, B., and Ardawi, M. S. (1985). The role of high rates of glycolysis and glutamine utilization in rapidly dividing cells. Biosci. Rep. 5, 393–400.
| 1:CAS:528:DyaL2MXltVans7c%3D&md5=caf95f04839327650a070e6e6450764dCAS | 3896338PubMed |
O’Fallon, J. V., and Wright, R. W. (1995). Pyruvate revisited: a non-metabolic role for pyruvate in preimplantation embryo development. Theriogenology 43, 288.
| Pyruvate revisited: a non-metabolic role for pyruvate in preimplantation embryo development.Crossref | GoogleScholarGoogle Scholar |
Orsi, N. M., and Leese, H. J. (2004). Amino acid metabolism of preimplantation bovine embryos cultured with bovine serum albumin or polyvinyl alcohol. Theriogenology 61, 561–572.
| Amino acid metabolism of preimplantation bovine embryos cultured with bovine serum albumin or polyvinyl alcohol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXps1OksLc%3D&md5=a1a51c381092c9c3b987d06ce2bb053cCAS | 14662152PubMed |
Park, C. H., Jeong, Y. H., Jeong, Y. I., Kwon, J. W., Shin, T., Hyun, S. H., Jeung, E. B., Kim, N. H., Seo, S. K., Lee, C. K., and Hwang, W. S. (2014). Amino acid supplementation affects imprinted gene transcription patterns in parthenogenetic porcine blastocysts. PLoS ONE 9, e106549.
| Amino acid supplementation affects imprinted gene transcription patterns in parthenogenetic porcine blastocysts.Crossref | GoogleScholarGoogle Scholar | 25180972PubMed |
Peng, J., Zhang, L., Drysdale, L., and Fong, G. H. (2000). The transcription factor EPAS-1/hypoxia-inducible factor 2alpha plays an important role in vascular remodeling. Proc. Natl Acad. Sci. USA 97, 8386–8391.
| The transcription factor EPAS-1/hypoxia-inducible factor 2alpha plays an important role in vascular remodeling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlt1GgtbY%3D&md5=4239f871175b228fda649b17abd81823CAS | 10880563PubMed |
Phang, J. M., Liu, W., and Zabirnyk, O. (2010). Proline metabolism and microenvironmental stress. Annu. Rev. Nutr. 30, 441–463.
| Proline metabolism and microenvironmental stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVWgsbvP&md5=c7652a5f813f61029356db24800a5a4bCAS | 20415579PubMed |
Phang, J. M., Liu, W., Hancock, C., and Christian, K. J. (2012). The proline regulatory axis and cancer. Front. Oncol. 2, 60.
| The proline regulatory axis and cancer.Crossref | GoogleScholarGoogle Scholar | 22737668PubMed |
Phang, J. M., Liu, W., and Hancock, C. (2013). Bridging epigenetics and metabolism. Role of non-essential amino acics. Epigenetics 8, 231–236.
| Bridging epigenetics and metabolism. Role of non-essential amino acics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXntVant7o%3D&md5=1002af14446c9e0e48a8dcdc698341c1CAS | 23422013PubMed |
Picton, H. M., Elder, K., Houghton, F. D., Hawkhead, J. A., Rutherford, A. J., Hogg, J. E., Leese, H. J., and Harris, S. E. (2010). Association between amino acid turnover and chromosome aneuploidy during human preimplantation embryo development in vitro. Mol. Hum. Reprod. 16, 557–569.
| Association between amino acid turnover and chromosome aneuploidy during human preimplantation embryo development in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXptlegt7o%3D&md5=21f32cb976dfe948af69b99046cf8743CAS | 20571076PubMed |
Redel, B. K., Brown, A. N., Spate, L. D., Whitworth, K. M., Green, J. A., and Prather, R. S. (2012). Glycolysis in preimplantation development is partially controlled by the Warburg effect. Mol. Reprod. Dev. 79, 262–271.
| Glycolysis in preimplantation development is partially controlled by the Warburg effect.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs12mtbfE&md5=4dec75f68c5037e3bf58f44f296fcc66CAS | 22213464PubMed |
Reitzer, L. J., Wice, B. M., and Kennell, D. (1980). The pentose cycle. Control and essential function in HeLa cell nucleic acid synthesis. J. Biol. Chem. 255, 5616–5626.
| 1:CAS:528:DyaL3cXks1Oiur8%3D&md5=b6a9e135bb2a57b2f36b529020d079c3CAS | 6445904PubMed |
Renard, J. P., Philippon, A., and Menezo, Y. (1980). In-vitro uptake of glucose by bovine blastocysts. J. Reprod. Fertil. 58, 161–164.
| In-vitro uptake of glucose by bovine blastocysts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXptFKrsg%3D%3D&md5=2e4ac35fc64271d05e4193de374aca9eCAS | 7359473PubMed |
Rieger, D., and Guay, P. (1988). Measurement of the metabolism of energy substrates in individual bovine blastocysts. J. Reprod. Fertil. 83, 585–591.
| 1:CAS:528:DyaL1cXltVyisrc%3D&md5=ad9821d4619ac61f4c751c399811a28aCAS | 3411552PubMed |
Rieger, D., Loskutoff, N. M., and Betteridge, K. J. (1992). Developmentally related changes in the uptake and metabolism of glucose, glutamine and pyruvate by cattle embryos produced in vitro. Reprod. Fertil. Dev. 4, 547–557.
| Developmentally related changes in the uptake and metabolism of glucose, glutamine and pyruvate by cattle embryos produced in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXhsVCitrc%3D&md5=24728e038cbe19d853f29313e4f3e1d8CAS | 1299829PubMed |
Rinaudo, P. F., Giritharan, G., Talbi, S., Dobson, A. T., and Schultz, R. M. (2006). Effects of oxygen tension on gene expression in preimplantation mouse embryos. Fertil. Steril. 86, 1252–1265.
| 1:CAS:528:DC%2BD28Xht1eht7vO&md5=7dc809bd55049dbd260f242c233e05e8CAS | 17008149PubMed |
Roos, S., Jansson, N., Palmberg, I., Saljo, K., Powell, T. L., and Jansson, T. (2007). Mammalian target of rapamycin in the human placenta regulates leucine transport and is down-regulated in restricted fetal growth. J. Physiol. 582, 449–459.
| Mammalian target of rapamycin in the human placenta regulates leucine transport and is down-regulated in restricted fetal growth.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXotFalsLg%3D&md5=1fa6e97027486ce05049a6e3427c50e7CAS | 17463046PubMed |
Rosario, F. J., Kanai, Y., Powell, T. L., and Jansson, T. (2013). Mammalian target of rapamycin signalling modulates amino acid uptake by regulating transporter cell surface abundance in primary human trophoblast cells. J. Physiol. 591, 609–625.
| Mammalian target of rapamycin signalling modulates amino acid uptake by regulating transporter cell surface abundance in primary human trophoblast cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjsFalsrk%3D&md5=b64667d57981ef47e61d09502e5c9af8CAS | 23165769PubMed |
Ryan, H. E., Lo, J., and Johnson, R. S. (1998). HIF-1 alpha is required for solid tumor formation and embryonic vascularization. EMBO J. 17, 3005–3015.
| HIF-1 alpha is required for solid tumor formation and embryonic vascularization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjvFejur0%3D&md5=3365ebd607b98202015541c5a8fe922dCAS | 9606183PubMed |
Sancak, Y., Peterson, T. R., Shaul, Y. D., Lindquist, R. A., Thoreen, C. C., Bar-Peled, L., and Sabatini, D. M. (2008). The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 320, 1496–1501.
| The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXntVWqsr4%3D&md5=02172f8899e210af0a4346e7516f75e2CAS | 18497260PubMed |
Semenza, G. L. (2000). Expression of hypoxia-inducible factor 1: mechanisms and consequences. Biochem. Pharmacol. 59, 47–53.
| Expression of hypoxia-inducible factor 1: mechanisms and consequences.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhtV2htw%3D%3D&md5=fc99b2f7977e02f459e6ac016dd7293fCAS | 10605934PubMed |
Sengupta, S., Peterson, T. R., and Sabatini, D. M. (2010). Regulation of the mTOR complex 1 pathway by nutrients, growth factors, and stress. Mol. Cell 40, 310–322.
| Regulation of the mTOR complex 1 pathway by nutrients, growth factors, and stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlCjtr%2FO&md5=ec3a7fc856da39ee8f477b5b0e73d0a5CAS | 20965424PubMed |
Shafik, M. (2012). ‘The Role of Lkb1 in Preimplantation Mouse Embryos.’ (McGill University: Montreal.)
Smith, D. G., and Sturmey, R. G. (2013). Parallels between embryo and cancer cell metabolism. Biochem. Soc. Trans. 41, 664–669.
| Parallels between embryo and cancer cell metabolism.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXksFWjtrs%3D&md5=cb86ce7b037b96f1932806b6fbab497bCAS | 23514173PubMed |
Steeves, T. E., and Gardner, D. K. (1999). Temporal and differential effects of amino acids on bovine embryo development in culture. Biol. Reprod. 61, 731–740.
| Temporal and differential effects of amino acids on bovine embryo development in culture.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXlsFCqtr4%3D&md5=fd27b1a63fae5078c50b2b09d4ceb664CAS | 10456851PubMed |
Tan, B. S., Lonic, A., Morris, M. B., Rathjen, P. D., and Rathjen, J. (2011). The amino acid transporter SNAT2 mediates l-proline-induced differentiation of ES cells. Am. J. Physiol. Cell Physiol. 300, C1270–C1279.
| The amino acid transporter SNAT2 mediates l-proline-induced differentiation of ES cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXot1Cgtb4%3D&md5=cfe86aa68a51b521b20333bc9ea5cc6dCAS | 21346154PubMed |
Tan, B. S., Rathjen, P. D., Gardner, D. K., and Rathjen, J. (2014). Understanding the role of system A amino acid transporters in preimplantation embryo development. In: ‘Proceedings of the Annual Scientific Meeting of the Endocrine Society of Australia and the Society for Reproductive Biology’. [Abstract]
Tejera, A., Herrero, J., Viloria, T., Romero, J.L., Gamiz, P., and Meseguer, M. (2012). Time-dependent O(2) consumption patterns determined optimal time ranges for selecting viable human embryos. Fertil. Steril. 98, 849–857e3.
| Time-dependent O(2) consumption patterns determined optimal time ranges for selecting viable human embryos.Crossref | GoogleScholarGoogle Scholar | 22835446PubMed |
Tervit, H. R., Whittingham, D. G., and Rowson, L. E. (1972). Successful culture in vitro of sheep and cattle ova. J. Reprod. Fertil. 30, 493–497.
| Successful culture in vitro of sheep and cattle ova.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE3s%2FgvFamug%3D%3D&md5=e4afd0254b5264c8e991d8413a92f57aCAS | 4672493PubMed |
Thompson, J. G., Partridge, R. J., Houghton, F. D., Cox, C. I., and Leese, H. J. (1996). Oxygen uptake and carbohydrate metabolism by in vitro derived bovine embryos. J. Reprod. Fertil. 106, 299–306.
| Oxygen uptake and carbohydrate metabolism by in vitro derived bovine embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XitFKntrc%3D&md5=bc62e85b525f03af3440a40c544dd3c3CAS | 8699414PubMed |
Tian, H., Hammer, R. E., Matsumoto, A. M., Russell, D. W., and McKnight, S. L. (1998). The hypoxia-responsive transcription factor EPAS1 is essential for catecholamine homeostasis and protection against heart failure during embryonic development. Genes Dev. 12, 3320–3324.
| The hypoxia-responsive transcription factor EPAS1 is essential for catecholamine homeostasis and protection against heart failure during embryonic development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXns1Sqsbk%3D&md5=9dd159609dcc3387d2cdd52266258a3cCAS | 9808618PubMed |
Trimarchi, J. R., Liu, L., Porterfield, D. M., Smith, P. J., and Keefe, D. L. (2000). Oxidative phosphorylation-dependent and -independent oxygen consumption by individual preimplantation mouse embryos. Biol. Reprod. 62, 1866–1874.
| Oxidative phosphorylation-dependent and -independent oxygen consumption by individual preimplantation mouse embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjsF2ht78%3D&md5=35b86ef0d83cbc5389ce5ed505672864CAS | 10819794PubMed |
Van Winkle, L. J., Haghighat, N., and Campione, A. L. (1990a). Glycine protects preimplantation mouse conceptuses from a detrimental effect on development of the inorganic ions in oviductal fluid. J. Exp. Zool. 253, 215–219.
| Glycine protects preimplantation mouse conceptuses from a detrimental effect on development of the inorganic ions in oviductal fluid.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXhsFGkurs%3D&md5=5816979f4a1efcd737711021da8157fdCAS | 2313249PubMed |
Van Winkle, L. J., Campione, A. L., Gorman, J. M., and Weimer, B. D. (1990b). Changes in the activities of amino acid transport systems b0,+ and L during development of preimplantation mouse conceptuses. Biochim. Biophys. Acta 1021, 77–84.
| Changes in the activities of amino acid transport systems b0,+ and L during development of preimplantation mouse conceptuses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXhslKjt7c%3D&md5=48cf881b348b657050a952da6152c305CAS | 2104753PubMed |
Vander Heiden, M. G., Lunt, S. Y., Dayton, T. L., Fiske, B. P., Israelsen, W. J., Mattaini, K. R., Vokes, N. I., Stephanopoulos, G., Cantley, L. C., Metallo, C. M., and Locasale, J. W. (2011). Metabolic pathway alterations that support cell proliferation. Cold Spring Harb. Symp. Quant. Biol. 76, 325–334.
| Metabolic pathway alterations that support cell proliferation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1ChsbfM&md5=6d719277087e83f7552a7be146237242CAS | 22262476PubMed |
Wakefield, S. L., Lane, M., and Mitchell, M. (2011). Impaired mitochondrial function in the preimplantation embryo perturbs fetal and placental development in the mouse. Biol. Reprod. 84, 572–580.
| Impaired mitochondrial function in the preimplantation embryo perturbs fetal and placental development in the mouse.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXis1OmtL4%3D&md5=fb753a4c8cdf01e8f2e05832760e38b4CAS | 21076083PubMed |
Waldenström, U., Engström, A. B., Hellberg, D., and Nilsson, S. (2009). Low-oxygen compared with high-oxygen atmosphere in blastocyst culture, a prospective randomized study. Fertil. Steril. 91, 2461–2465.
| Low-oxygen compared with high-oxygen atmosphere in blastocyst culture, a prospective randomized study.Crossref | GoogleScholarGoogle Scholar | 18554591PubMed |
Wale, P. L., and Gardner, D. K. (2010). Time-lapse analysis of mouse embryo development in oxygen gradients. Reprod. Biomed. Online 21, 402–410.
| Time-lapse analysis of mouse embryo development in oxygen gradients.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3cfgtVGnsQ%3D%3D&md5=dc46d6cf8b3da6563dcf6bc7387e7be7CAS | 20691637PubMed |
Wale, P. L., and Gardner, D. K. (2012). Oxygen regulates amino acid turnover and carbohydrate uptake during the preimplantation period of mouse embryo development. Biol. Reprod. 87, 24.
| Oxygen regulates amino acid turnover and carbohydrate uptake during the preimplantation period of mouse embryo development.Crossref | GoogleScholarGoogle Scholar | 22553221PubMed |
Wale, P. L., and Gardner, D. K. (2013). Oxygen affects the ability of mouse blastocysts to regulate ammonium. Biol. Reprod. 89, 75.
| Oxygen affects the ability of mouse blastocysts to regulate ammonium.Crossref | GoogleScholarGoogle Scholar | 23803557PubMed |
Wang, T., Marquardt, C., and Foker, J. (1976). Aerobic glycolysis during lymphocyte proliferation. Nature 261, 702–705.
| Aerobic glycolysis during lymphocyte proliferation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28Xlt1Sgtrs%3D&md5=baee311d5d93e2e9cbee61e6cff259e2CAS | 934318PubMed |
Wang, R. H., Sengupta, K., Li, C., Kim, H. S., Cao, L., Xiao, C., Kim, S., Xu, X., Zheng, Y., Chilton, B., Jia, R., Zheng, Z. M., Appella, E., Wang, X. W., Ried, T., and Deng, C. X. (2008). Impaired DNA damage response, genome instability, and tumorigenesis in SIRT1 mutant mice. Cancer Cell 14, 312–323.
| Impaired DNA damage response, genome instability, and tumorigenesis in SIRT1 mutant mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1GlsL3F&md5=6d89af26c46f3ba9c3f31719ced43fadCAS | 18835033PubMed |
Wang, F., Tian, X., Zhang, L., He, C., Ji, P., Li, Y., Tan, D., and Liu, G. (2014). Beneficial effect of resveratrol on bovine oocyte maturation and subsequent embryonic development after in vitro fertilization. Fertil. Steril. 101, 577–586.
| Beneficial effect of resveratrol on bovine oocyte maturation and subsequent embryonic development after in vitro fertilization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXitVWjtbjN&md5=c18e6f0827e10dbd6cbb314c5636b095CAS | 24314921PubMed |
Warburg, O. (1956). On respiratory impairment in cancer cells. Science 124, 269–270.
| 1:STN:280:DyaG287gsVeksA%3D%3D&md5=f2e464c7f2a4ee19515c939085e9c630CAS | 13351639PubMed |
Washington, J. M., Rathjen, J., Felquer, F., Lonic, A., Bettess, M. D., Hamra, N., Semendric, L., Tan, B. S., Lake, J. A., Keough, R. A., Morris, M. B., and Rathjen, P. D. (2010). l-Proline induces differentiation of ES cells: a novel role for an amino acid in the regulation of pluripotent cells in culture. Am. J. Physiol. Cell Physiol. 298, C982–C992.
| l-Proline induces differentiation of ES cells: a novel role for an amino acid in the regulation of pluripotent cells in culture.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmtlWjsrk%3D&md5=a4f7d37cabb06cd16554b966a7e134c1CAS | 20164384PubMed |
Watson, A. J., and Kidder, G. M. (1988). Immunofluorescence assessment of the timing of appearance and cellular distribution of Na/K-ATPase during mouse embryogenesis. Dev. Biol. 126, 80–90.
| Immunofluorescence assessment of the timing of appearance and cellular distribution of Na/K-ATPase during mouse embryogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXhtV2qtLc%3D&md5=b8306a3c32ede6b34cde8e33d16bbf59CAS | 2830159PubMed |
Whitten, W. K. (1957). Culture of tubal ova. Nature 179, 1081–1082.
| Culture of tubal ova.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaG2s%2FnslChtQ%3D%3D&md5=d7ecc3e99716c40b5eb3e49260bcd04aCAS | 13430797PubMed |
Wu, G., and Morris, S. M. (1998). Arginine metabolism: nitric oxide and beyond. Biochem. J. 336, 1–17.
| 1:CAS:528:DyaK1cXotVGltrs%3D&md5=bad9277b9b6f57e7f29b87c3822bec20CAS | 9806879PubMed |
Xu, G., Marshall, C. A., Lin, T. A., Kwon, G., Munivenkatappa, R. B., Hill, J. R., Lawrence, J. C., and McDaniel, M. L. (1998). Insulin mediates glucose-stimulated phosphorylation of PHAS-I by pancreatic beta cells. An insulin-receptor mechanism for autoregulation of protein synthesis by translation. J. Biol. Chem. 273, 4485–4491.
| Insulin mediates glucose-stimulated phosphorylation of PHAS-I by pancreatic beta cells. An insulin-receptor mechanism for autoregulation of protein synthesis by translation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhtlSrtbc%3D&md5=cfbb2caf770808c83ec2edbcbd4e78afCAS | 9468502PubMed |
Yoshida, S., Hong, S., Suzuki, T., Nada, S., Mannan, A. M., Wang, J., Okada, M., Guan, K. L., and Inoki, K. (2011). Redox regulates mammalian target of rapamycin complex 1 (mTORC1) activity by modulating the TSC1/TSC2-Rheb GTPase pathway. J. Biol. Chem. 286, 32 651–32 660.
| Redox regulates mammalian target of rapamycin complex 1 (mTORC1) activity by modulating the TSC1/TSC2-Rheb GTPase pathway.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFCju7bP&md5=4f6dfed63a4f6237fce00adddbbd6727CAS |