Ambient ionisation mass spectrometry for lipid profiling and structural analysis of mammalian oocytes, preimplantation embryos and stem cells
Christina R. Ferreira A F , Alan K. Jarmusch A , Valentina Pirro A , Clint M. Alfaro A , Andres F. González-Serrano B E , Heiner Niemann B , Matthew B. Wheeler C , Rathnaweera A. C. Rabel C , Judy E. Hallett D , Rebecca Houser D , Annemarie Kaufman D and R. Graham Cooks AA Department of Chemistry and Center for Analytical Instrumentation Development, Purdue University, 207 South Martin Jischke Drive, West Lafayette, IN 47907, USA.
B Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut (FLI), Höltystr. 10, 31535 Neustadt, Germany.
C Laboratory of Stem Cell Biology and Engineering, Department of Animal Sciences and Institute for Genomic Biology University, University of Illinois at Urbana-Champaign, 1207 W. Gregory, Urbana, IL 61801, USA.
D Purdue Center for Cancer Research Transgenic Mouse Core Facility, Purdue University, 201 S. University Street, West Lafayette, IN 47907, USA.
E Present address: Research and Development Department, IMV Technologies, ZI N° 1 Est, 61300 L’Aigle, France.
F Corresponding author. Email: cferrei@purdue.edu
Reproduction, Fertility and Development 27(4) 621-637 https://doi.org/10.1071/RD14310
Submitted: 25 August 2014 Accepted: 13 January 2015 Published: 13 March 2015
Abstract
Lipids play fundamental roles in mammalian embryo preimplantation development and cell fate. Triacylglycerol accumulates in oocytes and blastomeres as lipid droplets, phospholipids influence membrane functional properties, and essential fatty acid metabolism is important for maintaining the stemness of cells cultured in vitro. The growing impact that lipids have in the field of developmental biology makes analytical approaches to analyse structural information of great interest. This paper describes the concept and presents the results of lipid profiling by mass spectrometry (MS) of oocytes and preimplantation embryos, with special focus on ambient ionisation. Based on our previous experience with oocytes and embryos, we aim to convey that ambient MS is also valuable for stem cell differentiation analysis. Ambient ionisation MS allows the detection of a wide range of lipid classes (e.g. free fatty acids, cholesterol esters, phospholipids) in single oocytes, embryos and cell pellets, which are informative of in vitro culture impact, developmental and differentiation stages. Background on MS principles, the importance of underused MS scan modes for structural analysis of lipids, and statistical approaches used for data analysis are covered. We envisage that MS alone or in combination with other techniques will have a profound impact on the understanding of lipid metabolism, particularly in early embryo development and cell differentiation research.
Additional keywords: desorption electrospray ionization, multivariate statistics.
References
Aardema, H., Vos, P. L. A. M., Lolicato, F., Roelen, B. A. J., Knijn, H. M., Vaandrager, A. B., Helms, J. B., and Gadella, B. M. (2011). Oleic acid prevents detrimental effects of saturated fatty acids on bovine oocyte developmental competence. Biol. Reprod. 85, 62–69.| Oleic acid prevents detrimental effects of saturated fatty acids on bovine oocyte developmental competence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXotFOls74%3D&md5=91c35c1502e6480acc58b76f6a2faff4CAS | 21311036PubMed |
Abe, H., Yamashita, S., Satoh, T., and Hoshi, H. (2002). Accumulation of cytoplasmic lipid droplets in bovine embryos and cryotolerance of embryos developed in different culture systems using serum-free or serum-containing media. Mol. Reprod. Dev. 61, 57–66.
| Accumulation of cytoplasmic lipid droplets in bovine embryos and cryotolerance of embryos developed in different culture systems using serum-free or serum-containing media.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXptVejur4%3D&md5=9f309a13a31a61fae851812e002e6e0eCAS | 11774376PubMed |
Apparicio, M., Ferreira, C. R., Tata, A., Santos, V. G., Alves, A. E., Mostachio, G. Q., Pires-Butler, E. A., Motheo, T. F., Padilha, L. C., Pilau, E. J., Gozzo, F. C., Eberlin, M. N., Lo Turco, E. G., Luvoni, G. C., and Vicente, W. R. R. (2012). Chemical composition of lipids present in cat and dog oocyte by matrix-assisted desorption ionization mass spectrometry (MALDI-MS). Reprod. Domest. Anim. 47, 113–117.
| Chemical composition of lipids present in cat and dog oocyte by matrix-assisted desorption ionization mass spectrometry (MALDI-MS).Crossref | GoogleScholarGoogle Scholar | 23279478PubMed |
Badu-Tawiah, A. K., Eberlin, L. S., Ouyang, Z., and Cooks, R. G. (2013). Chemical aspects of the extractive methods of ambient ionization mass spectrometry. Annu. Rev. Phys. Chem. 64, 481–505.
| Chemical aspects of the extractive methods of ambient ionization mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXntVCrs70%3D&md5=ee40a1210842028ed4b54c5c6ed599dbCAS | 23331308PubMed |
Barcelo-Fimbres, M., and Seidel, G. E. (2009). Effects of lipolytic agents forskolin, epinephrine and caffeine on embryonic development and lipid content of bovine embryos produced in vitro. Reprod. Fertil. Dev. 21, 154–155.
| Effects of lipolytic agents forskolin, epinephrine and caffeine on embryonic development and lipid content of bovine embryos produced in vitro.Crossref | GoogleScholarGoogle Scholar |
Barceló-Fimbres, M., and Seidel, G. E. (2011). Cross-validation of techniques for measuring lipid content of bovine oocytes and blastocysts. Theriogenology 75, 434–444.
| Cross-validation of techniques for measuring lipid content of bovine oocytes and blastocysts.Crossref | GoogleScholarGoogle Scholar | 21111465PubMed |
Barceló-Fimbres, M., Anchondo-Garay, A., López-Franco, E., García-Quiñonez, S., Antillón-Ruiz, J., Rodríguez-Almeida, F. A., and Seidel, G. E. (2010). Effects of delipidation with forskolin during in vitro culture of bovine embryos and recipient synchronization on pregnancy rates. Biol. Reprod. 83, 677.
Beynon, J. H. B.A. (1982). ‘An Introduction to Mass Spectrometry.’ (University of Wales Press: Cardiff, UK.)
Bieberich, E. (2011). Ceramide in stem cell differentiation and embryo development: novel functions of a topological cell-signaling lipid and the concept of ceramide compartments. J. Lipids 2011, 610306.
| Ceramide in stem cell differentiation and embryo development: novel functions of a topological cell-signaling lipid and the concept of ceramide compartments.Crossref | GoogleScholarGoogle Scholar | 21490805PubMed |
Bionaz, M., Ferreira, C. R., Monaco, E., Cooks, R. G., and Wheeler, M. B. (2013). The use of the dynamic impact approach and desorption electrospray ionization–mass spectroscopy to analyze adipogenesis in porcine adipose-derived stem cells. Reprod. Fertil. Dev. 25, 293.
| The use of the dynamic impact approach and desorption electrospray ionization–mass spectroscopy to analyze adipogenesis in porcine adipose-derived stem cells.Crossref | GoogleScholarGoogle Scholar |
Bodzon-Kulakowska, A., Cichon, T., Golec, A., Drabik, A., Ner, J., and Suder, P. (2014a). DESI-MS as a tool for direct lipid analysis in cultured cells. Cytotechnology , .
| DESI-MS as a tool for direct lipid analysis in cultured cells.Crossref | GoogleScholarGoogle Scholar | 24801580PubMed |
Bodzon-Kulakowska, A., Drabik, A., Marszalek, M., Kotlinska, J. H., and Suder, P. (2014b). DESI analysis of mammalian cell cultures: sample preparation and method optimisation. J. Mass Spectrom. 49, 613–621.
| DESI analysis of mammalian cell cultures: sample preparation and method optimisation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFCgur3L&md5=feb80e3b8c35dcfa5960fb7137043c84CAS | 25044846PubMed |
Burnum, K. E., Cornett, D. S., Puolitaival, S. M., Milne, S. B., Myers, D. S., Tranguch, S., Brown, H. A., Dey, S. K., and Caprioli, R. M. (2009). Spatial and temporal alterations of phospholipids determined by mass spectrometry during mouse embryo implantation. J. Lipid Res. 50, 2290–2298.
| Spatial and temporal alterations of phospholipids determined by mass spectrometry during mouse embryo implantation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlShurzM&md5=128ea7849fdcf04cc5e464a3b7ceae5eCAS | 19429885PubMed |
Busch, K., Glish, G. L., and Mcluckey, S. (1989). ‘Mass Spectrometry: Techniques and Applications of Tandem Mass Spectrometry.’ (Wiley-VCH Verlag: Berlin.)
Calligaris, D., Caragacianu, D., Liu, X., Norton, I., Thompson, C. J., Richardson, A. L., Golshan, M., Easterling, M. L., Santagata, S., Dillon, D. A., Jolesz, F. A., and Agar, N. Y. (2014). Application of desorption electrospray ionization mass spectrometry imaging in breast cancer margin analysis. Proc. Natl Acad. Sci. USA 111, 15 184–15 189.
| Application of desorption electrospray ionization mass spectrometry imaging in breast cancer margin analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsFyhtbvF&md5=65500a5bf97121b5debc0d89a89a6c2dCAS |
Campbell, D. I., Ferreira, C. R., Eberlin, L. S., and Cooks, R. G. (2012). Improved spatial resolution in the imaging of biological tissue using desorption electrospray ionization. Anal. Bioanal. Chem. 404, 389–398.
| Improved spatial resolution in the imaging of biological tissue using desorption electrospray ionization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XoslSrsLg%3D&md5=54fb33ce61848f92a3e59d9c94d1e85dCAS | 22706326PubMed |
Cataldi, T., Cordeiro, F. B., Costa Ldo, V., Pilau, E. J., Ferreira, C. R., Gozzo, F. C., Eberlin, M. N., Bertolla, R. P., Cedenho, A. P., and Turco, E. G. (2013). Lipid profiling of follicular fluid from women undergoing IVF: young poor ovarian responders versus normal responders. Hum. Fertil. (Camb.) 16, 269–277.
| Lipid profiling of follicular fluid from women undergoing IVF: young poor ovarian responders versus normal responders.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVOgu7jO&md5=41bfc190308d284306dff16f8d65158cCAS | 24295230PubMed |
Cole, R. B. (2010). ‘Electrospray and MALDI Mass Spectrometry: Fundamentals, Instrumentation, Practicalities, and Biological Applications.’ 2nd edn. (John Wiley & Sons: Hoboken, NJ.)
Cooks, R. G., Ouyang, Z., Takats, Z., and Wiseman, J. M. (2006). Ambient mass spectrometry. Science 311, 1566–1570.
| Ambient mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XitlSnsb0%3D&md5=f7ee8bf010d47a4a736a43cab6db092bCAS | 16543450PubMed |
Cooks, R. G., Jarmusch, A. K., and Wleklinski, M. (2014). Direct analysis of complex mixtures by mass spectrometry. Int. J. Mass Spectrom. , .
| Direct analysis of complex mixtures by mass spectrometry.Crossref | GoogleScholarGoogle Scholar |
Cortezzi, S. S., Cabral, E. C., Trevisan, M. G., Ferreira, C. R., Setti, A. S., Braga, D. P., Figueira Rde, C., Iaconelli, A., Eberlin, M. N., and Borges, E. (2013). Prediction of embryo implantation potential by mass spectrometry fingerprinting of the culture medium. Reproduction 145, 453–462.
| Prediction of embryo implantation potential by mass spectrometry fingerprinting of the culture medium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXpsVejsLg%3D&md5=0ad6e70186edbcb6100c2a5c78c6c4ddCAS | 23404850PubMed |
Coull, G. D., Speake, B. K., Staines, M. E., Broadbent, P. J., and McEvoy, T. G. (1998). Lipid and fatty acid composition of zona-intact sheep oocytes. Theriogenology 49, 179.
| Lipid and fatty acid composition of zona-intact sheep oocytes.Crossref | GoogleScholarGoogle Scholar |
Dill, A. L., Eberlin, L. S., Zheng, C., Costa, A. B., Ifa, D. R., Cheng, L., Masterson, T. A., Koch, M. O., Vitek, O., and Cooks, R. G. (2010). Multivariate statistical differentiation of renal cell carcinomas based on lipidomic analysis by ambient ionization imaging mass spectrometry. Anal. Bioanal. Chem. 398, 2969–2978.
| Multivariate statistical differentiation of renal cell carcinomas based on lipidomic analysis by ambient ionization imaging mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlSjtbrN&md5=f1ea66f7475276178ad95739f5702607CAS | 20953777PubMed |
Duplus, E., Glorian, M., and Forest, C. (2000). Fatty acid regulation of gene transcription. J. Biol. Chem. 275, 30 749–30 752.
| Fatty acid regulation of gene transcription.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXntlCjtLo%3D&md5=8c241a55ed8027f463646102675356eeCAS |
Eberlin, L. S., Dill, A. L., Golby, A. J., Ligon, K. L., Wiseman, J. M., Cooks, R. G., and Agar, N. Y. R. (2010). Discrimination of human astrocytoma subtypes by lipid analysis using desorption electrospray ionization imaging mass spectrometry. Angew. Chem. Int. Ed. Engl. 122, 6089–6092.
| Discrimination of human astrocytoma subtypes by lipid analysis using desorption electrospray ionization imaging mass spectrometry.Crossref | GoogleScholarGoogle Scholar |
Eberlin, L. S., Ferreira, C. R., Dill, A. L., Ifa, D. R., Cheng, L., and Cooks, R. G. (2011a). Nondestructive, histologically compatible tissue imaging by desorption electrospray ionization mass spectrometry. ChemBioChem 12, 2129–2132.
| Nondestructive, histologically compatible tissue imaging by desorption electrospray ionization mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpt1ygtL0%3D&md5=473c153e28878dec96a596a1e2ced1feCAS | 21793152PubMed |
Eberlin, L. S., Ferreira, C. R., Dill, A. L., Ifa, D. R., and Cooks, R. G. (2011b). Desorption electrospray ionization mass spectrometry for lipid characterization and biological tissue imaging. Biochim. Biophys. Acta 1811, 946–960.
| Desorption electrospray ionization mass spectrometry for lipid characterization and biological tissue imaging.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtl2qsrvN&md5=2e3731833bd7bbf694f6cd15f5f3902aCAS | 21645635PubMed |
Eberlin, L. S., Ferreira, C. R., and Cooks, R. G. (2012). Three-dimensional chemical imaging of a whole pig fetus by desorption electrospray ionization mass spectrometry. Reprod. Fertil. Dev. 24, 144–145.
| Three-dimensional chemical imaging of a whole pig fetus by desorption electrospray ionization mass spectrometry.Crossref | GoogleScholarGoogle Scholar |
Espy, R. D., Wleklinski, M., Yan, X., and Cooks, R. G. (2014). Beyond the flask: reactions on the fly in ambient mass spectrometry. Trends Analyt. Chem. 57, 135–146.
| Beyond the flask: reactions on the fly in ambient mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXntlOgsbc%3D&md5=ac7e93835f5f3c05f6cff87a0f230b6eCAS |
Eyler, J. R. (2009). Infrared multiple photon dissociation spectroscopy of ions in penning traps. Mass Spectrom. Rev. 28, 448–467.
| Infrared multiple photon dissociation spectroscopy of ions in penning traps.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmtVSksr4%3D&md5=eb3119c3ae3fc05b6d1ab7a4d775802aCAS | 19219931PubMed |
Fenn, J. B., Mann, M., Meng, C. K., Wong, S. F., and Whitehouse, C. M. (1989). Electrospray ionization for mass spectrometry of large biomolecules. Science 246, 64–71.
| Electrospray ionization for mass spectrometry of large biomolecules.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXmtFWhs7w%3D&md5=077d600a76c6d03a99f68bf1f8e0b7b7CAS | 2675315PubMed |
Ferguson, E. M., and Leese, H. J. (1999). Triglyceride content of bovine oocytes and early embryos. J. Reprod. Fertil. 116, 373–378.
| Triglyceride content of bovine oocytes and early embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXkslOltbc%3D&md5=7dcf1ca4e4190921db5a3506b5f051d8CAS | 10615263PubMed |
Ferguson, C. N., Benchaar, S. A., Miao, Z., Loo, J. A., and Chen, H. (2011). Direct ionization of large proteins and protein complexes by desorption electrospray ionization–mass spectrometry. Anal. Chem. 83, 6468–6473.
| Direct ionization of large proteins and protein complexes by desorption electrospray ionization–mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpsVOnsb8%3D&md5=93bd34597f58857fd7b0a1609f51ad37CAS | 21774530PubMed |
Ferreira, C. R., Souza, G. H., Riccio, M. F., Catharino, R. R., Pontes, J. H., Basso, A. C., Junior, J. C., Perecin, F., and Eberlin, M. N. (2009). Mass spectrometry fingerprinting of media used for in vitro production of bovine embryos. Rapid Commun. Mass Spectrom. 23, 1313–1320.
| Mass spectrometry fingerprinting of media used for in vitro production of bovine embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlsVWqtbg%3D&md5=e520f50db874c5dd36985a3099c42cb7CAS | 19338029PubMed |
Ferreira, C. R., Saraiva, S. A., Catharino, R. R., Garcia, J. S., Gozzo, F. C., Sanvido, G. B., Santos, L. F. A., Lo Turco, E. G., Pontes, J. H. F., Basso, A. C., Bertolla, R. P., Sartori, R., Guardieiro, M. M., Perecin, F., Meirelles, F. V., Sangalli, J. R., and Eberlin, M. N. (2010). Single embryo and oocyte lipid fingerprinting by mass spectrometry. J. Lipid Res. 51, 1218–1227.
| Single embryo and oocyte lipid fingerprinting by mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXltlWktb0%3D&md5=7bb1b5e88870c6631e0be3c2eca37682CAS | 19965589PubMed |
Ferreira, C. R., Eberlin, L. S., Hallett, J. E., and Cooks, R. G. (2012a). Single oocyte and single embryo lipid analysis by desorption electrospray ionization mass spectrometry. J. Mass Spectrom. 47, 29–33.
| Single oocyte and single embryo lipid analysis by desorption electrospray ionization mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1yms7Y%3D&md5=beab83a6543a046a93a20e4cb8665636CAS | 22282086PubMed |
Ferreira, C. R., Pirro, V., Eberlin, L. S., Hallett, J. E., and Cooks, R. G. (2012b). Developmental phases of individual mouse preimplantation embryos characterized by lipid signatures using desorption electrospray ionization mass spectrometry. Anal. Bioanal. Chem. 404, 2915–2926.
| Developmental phases of individual mouse preimplantation embryos characterized by lipid signatures using desorption electrospray ionization mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVCnsLjJ&md5=9db3cdfb2574499c3f75b9da984cbe89CAS | 23052870PubMed |
Ferreira, M. S., de Oliveira, D. N., Goncalves, R. F., and Catharino, R. R. (2014). Lipid characterization of embryo zones by silica plate laser desorption ionization mass spectrometry imaging (SP-LDI-MSI). Anal. Chim. Acta 807, 96–102.
| Lipid characterization of embryo zones by silica plate laser desorption ionization mass spectrometry imaging (SP-LDI-MSI).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFyltb3F&md5=b3c72a6d39d08f1aa13664f102402c5bCAS | 24356225PubMed |
Folmes, C. D. L., Park, S., and Terzic, A. (2013). Lipid metabolism greases the stem cell engine. Cell Metab. 17, 153–155.
| Lipid metabolism greases the stem cell engine.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXitFCiurY%3D&md5=650deaf2080ee895ad8fb22f701731cfCAS |
Glish, G. L., and Vachet, R. W. (2003). The basics of mass spectrometry in the twenty-first century. Nat. Rev. Drug Discov. 2, 140–150.
| The basics of mass spectrometry in the twenty-first century.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXot12lsQ%3D%3D&md5=8d1beae65f939a8f4e1c4dbff6d1d1c1CAS | 12563305PubMed |
González-Serrano, A. F., Ferreira, C. R., Pirro, V., Eberlin, L. S., Heinzmann, J., Lucas-Hahn, A., Niemann, H., and Cooks, R. G. (2013a). Rapid, untargeted lipid determination in individual bovine oocytes and pre-implantation embryos by high-resolution desorption electrospray ionization mass spectrometry. Reprod. Fertil. Dev. 25, 262.
| Rapid, untargeted lipid determination in individual bovine oocytes and pre-implantation embryos by high-resolution desorption electrospray ionization mass spectrometry.Crossref | GoogleScholarGoogle Scholar |
González-Serrano, A. F., Pirro, V., Ferreira, C. R., Oliveri, P., Eberlin, L. S., Heinzmann, J., Lucas-Hahn, A., Niemann, H., and Cooks, R. G. (2013b). Desorption electrospray ionization mass spectrometry reveals lipid metabolism of individual oocytes and embryos. PLoS ONE 8, e74981.
| Desorption electrospray ionization mass spectrometry reveals lipid metabolism of individual oocytes and embryos.Crossref | GoogleScholarGoogle Scholar | 24073231PubMed |
Grill, V., Shen, J., Evans, C., and Cooks, R. G. (2001). Collisions of ions with surfaces at chemically relevant energies: instrumentation and phenomena. Rev. Sci. Instrum. 72, 3149–3179.
| Collisions of ions with surfaces at chemically relevant energies: instrumentation and phenomena.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlsFSlt7Y%3D&md5=60c66d41bd5ef948dff0b12624b40845CAS |
Gurr, M. I., Harwood, J. L., and Frayn, K. N. (2002). ‘Lipid Biochemistry.’ 5th edn. (Blackwell Science: Malden.)
Hayasaka, T., Goto-Inoue, N., Zaima, N., Kimura, Y., and Setou, M. (2009). Organ-specific distributions of lysophosphatidylcholine and triacylglycerol in mouse embryo. Lipids 44, 837–848.
| Organ-specific distributions of lysophosphatidylcholine and triacylglycerol in mouse embryo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFaqt77L&md5=5318682de7b86a2920951f46bef20288CAS | 19685253PubMed |
Homa, S. T., Racowsky, C., and McGaughey, R. W. (1986). Lipid analysis of immature pig oocytes. J. Reprod. Fertil. 77, 425–434.
| Lipid analysis of immature pig oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XltFamtrs%3D&md5=89e41c05a601d855773e43e7b0cabc16CAS | 3735242PubMed |
Ifa, D. R., Manicke, N. E., Rusine, A. L., and Cooks, R. G. (2008). Quantitative analysis of small molecules by desorption electrospray ionization mass spectrometry from polytetrafluoroethylene surfaces. Rapid Commun. Mass Spectrom. 22, 503–510.
| Quantitative analysis of small molecules by desorption electrospray ionization mass spectrometry from polytetrafluoroethylene surfaces.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjt1arsrk%3D&md5=04fa28b3bf10109eb2f1a9d3c1cc4c5cCAS | 18215006PubMed |
Ivosev, G., Burton, L., and Bonner, R. (2008). Dimensionality reduction and visualization in principal component analysis. Anal. Chem. 80, 4933–4944.
| Dimensionality reduction and visualization in principal component analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmvVGrtr0%3D&md5=d9af00bf7013b2b554139a5825756849CAS | 18537272PubMed |
Jackson, A. U., Shum, T., Sokol, E., Dill, A., and Cooks, R. G. (2011). Enhanced detection of olefins using ambient ionization mass spectrometry: Ag+ adducts of biologically relevant alkenes. Anal. Bioanal. Chem. 399, 367–376.
| Enhanced detection of olefins using ambient ionization mass spectrometry: Ag+ adducts of biologically relevant alkenes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVWjsb3K&md5=2483fdd6a22fa22e12b01c229fe771aeCAS | 21069301PubMed |
Jarmusch, A. K., and Cooks, R. G. (2014). Emerging capabilities of mass spectrometry for natural products. Nat. Prod. Rep. 31, 730–738.
| Emerging capabilities of mass spectrometry for natural products.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXotFekurs%3D&md5=7523aac546f2a25cc7019580a864dc75CAS | 24700087PubMed |
Jump, D. B., Clarke, S. D., Thelen, A., Liimatta, M., Ren, B., and Badin, M. (1996). Dietary polyunsaturated fatty acid regulation of gene transcription. Prog. Lipid Res. 35, 227–241.
| Dietary polyunsaturated fatty acid regulation of gene transcription.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhvFCmtbg%3D&md5=69e1b8ffcaf7f19bf44085c3fe4a175eCAS | 9082451PubMed |
Karas, M., and Hillenkamp, F. (1988). Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal. Chem. 60, 2299–2301.
| Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXlsVGmu7g%3D&md5=64dec3cb005870822361e054dc98d713CAS | 3239801PubMed |
Kerian, K.S., Jarmusch, A.K., and Cooks, R.G. (2014a). Touch spray mass spectrometry for in situ analysis of complex samples. Analyst 139, 2714–2720.
| Touch spray mass spectrometry for in situ analysis of complex samples.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXnsFWksbY%3D&md5=bf8a6398d8f9c31fed5d7aafe6bcbe56CAS | 24756256PubMed |
Kerian, K. S., Jarmusch, A. K., Pirro, V., Koch, M. O., Masterson, T. A., Cheng, L., and Cooks, R. G. (2014b). Differentiation of prostate cancer from normal tissue in radical prostatectomy specimens by desorption electrospray ionization and touch spray ionization mass spectrometry. Analyst (Lond.) , .
| Differentiation of prostate cancer from normal tissue in radical prostatectomy specimens by desorption electrospray ionization and touch spray ionization mass spectrometry.Crossref | GoogleScholarGoogle Scholar |
Kim, J. Y., Kinoshita, M., Ohnishi, M., and Fukui, Y. (2001). Lipid and fatty acid analysis of fresh and frozen–thawed immature and in vitro matured bovine oocytes. Reproduction 122, 131–138.
| Lipid and fatty acid analysis of fresh and frozen–thawed immature and in vitro matured bovine oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlsVGis70%3D&md5=2b5049110598d7946e58d5859cdefa02CAS | 11425337PubMed |
Knobloch, M., Braun, S. M. G., Zurkirchen, L., von Schoultz, C., Zamboni, N., Arauzo-Bravo, M. J., Kovacs, W. J., Karalay, O., Suter, U., Machado, R. A. C., Roccio, M., Lutolf, M. P., Semenkovich, C. F., and Jessberger, S. (2013). Metabolic control of adult neural stem cell activity by Fasn-dependent lipogenesis. Nature 493, 226–230.
| Metabolic control of adult neural stem cell activity by Fasn-dependent lipogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslymtLjP&md5=0b426bcffbf78d100c675cc8518937ccCAS | 23201681PubMed |
Kondrat, R. W., and Cooks, R. G. (1978). Direct analysis of mixtures by mass spectrometry. Anal. Chem. 50, 81A–92A.
| Direct analysis of mixtures by mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXlvV2ktQ%3D%3D&md5=4224c0ca0da90a8a2ccf4320fc37cad8CAS |
Krisher, R. L., and Prather, R. S. (2012). A role for the Warburg effect in preimplantation embryo development: metabolic modification to support rapid cell proliferation. Mol. Reprod. Dev. 79, 311–320.
| A role for the Warburg effect in preimplantation embryo development: metabolic modification to support rapid cell proliferation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlsFygs7Y%3D&md5=c0eff42a155facc9c59aef5762dc984fCAS | 22431437PubMed |
Loewenstein, J. E., and Cohen, A. I. (1964). Dry Mass, lipid content and protein content of the intact and zona-free mouse ovum. J. Embryol. Exp. Morphol. 12, 113–121.
| 1:CAS:528:DyaF2cXkt1ShtL4%3D&md5=b40a6bfffc0ba8420a36076db323c8f8CAS | 14155399PubMed |
Lu, C., and Thompson, C. B. (2012). Metabolic regulation of epigenetics. Cell Metab. 16, 9–17.
| Metabolic regulation of epigenetics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XpvFGmtLs%3D&md5=58c312decf72ce0134d5a3d3a35f7edfCAS | 22768835PubMed |
Manicke, N. E., Wiseman, J. M., Ifa, D. R., and Cooks, R. G. (2008). Desorption electrospray ionization (DESI) mass spectrometry and tandem mass spectrometry (MS/MS) of phospholipids and sphingolipids: ionization, adduct formation, and fragmentation. J. Am. Soc. Mass Spectrom. 19, 531–543.
| Desorption electrospray ionization (DESI) mass spectrometry and tandem mass spectrometry (MS/MS) of phospholipids and sphingolipids: ionization, adduct formation, and fragmentation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXktVSisLY%3D&md5=037aa6ba3c3f9e73f1d0e9751a476505CAS | 18258448PubMed |
Marei, W. F., Wathes, D. C., and Fouladi-Nashta, A. A. (2010). Impact of linoleic acid on bovine oocyte maturation and embryo development. Reproduction 139, 979–988.
| Impact of linoleic acid on bovine oocyte maturation and embryo development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXns12qsLY%3D&md5=f1453b3876f400dafb2548712582ab31CAS | 20215338PubMed |
Marini, F. (Ed.) (2013). ‘Data Handling in Science and Technology.’ (Elsevier: Oxford, UK.)
Marshall, A. G., and Hendrickson, C. L. (2008). High-resolution mass spectrometers. Annu. Rev. Anal. Chem. (Palo Alto Calif.) 1, 579–599.
| High-resolution mass spectrometers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFygsLzI&md5=0fb74f351eaa727315729b881d82ecc9CAS |
Matorras, R., Ruiz, J. I., Mendoza, R., Ruiz, N., Sanjurjo, P., and Rodriguez-Escudero, F. J. (1998). Fatty acid composition of fertilization-failed human oocytes. Hum. Reprod. 13, 2227–2230.
| Fatty acid composition of fertilization-failed human oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmt1Wjsb4%3D&md5=17985be599ba6465a0daebf4b50a1ba2CAS | 9756301PubMed |
McEvoy, T. G., Coull, G. D., Broadbent, P. J., Hutchinson, J. S. M., and Speake, B. K. (2000). Fatty acid composition of lipids in immature cattle, pig and sheep oocytes with intact zona pellucida. J. Reprod. Fertil. 118, 163–170.
| 1:CAS:528:DC%2BD3cXpsl2msA%3D%3D&md5=69d15be9addb3c72b6286e9f90ee7c96CAS | 10793638PubMed |
McKeegan, P. J., and Sturmey, R. G. (2012). The role of fatty acids in oocyte and early embryo development. Reprod. Fertil. Dev. 24, 59–67.
| The role of fatty acids in oocyte and early embryo development.Crossref | GoogleScholarGoogle Scholar |
McLafferty, F. W., and Turecek, F. (1993). ‘Interpretation of Mass Spectra.’ 4th edn. (University Science Books: Sausalito, CA.)
Monaco, E., Bionaz, M., Rodriguez-Zas, S., Hurley, W. L., and Wheeler, M. B. (2012). Transcriptomics comparison between porcine adipose and bone marrow mesenchymal stem cells during in vitro osteogenic and adipogenic differentiation. PLoS ONE 7, e32481.
| Transcriptomics comparison between porcine adipose and bone marrow mesenchymal stem cells during in vitro osteogenic and adipogenic differentiation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XktF2isb0%3D&md5=2d062bf2afdfeb253fac3d7a6c923f8fCAS | 22412878PubMed |
Montani, D. A., Cordeiro, F. B., Regiani, T., Victorino, A. B., Pilau, E. J., Gozzo, F. C., Ferreira, C. R., Fraietta, R., and Lo Turco, E. G. (2012). The follicular microenviroment as a predictor of pregnancy: MALDI-TOF MS lipid profile in cumulus cells. J. Assist. Reprod. Genet. 29, 1289–1297.
| The follicular microenviroment as a predictor of pregnancy: MALDI-TOF MS lipid profile in cumulus cells.Crossref | GoogleScholarGoogle Scholar | 22968515PubMed |
Nagashima, H., Kashiwazaki, N., Ashman, R. J., Grupen, C. G., and Nettle, M. B. (1995). Cryopreservation of porcine embryos. Nature 374, 416.
| Cryopreservation of porcine embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXkslSls7Y%3D&md5=92cf79467fc0d33219902bd657e81d85CAS | 7700349PubMed |
Nemes, P., and Vertes, A. (2012). Ambient mass spectrometry for in vivo local analysis and in situ molecular tissue imaging. Trends Analyt. Chem. 34, 22–34.
| Ambient mass spectrometry for in vivo local analysis and in situ molecular tissue imaging.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XktFKiu7c%3D&md5=54d801e27308851bdb4e52d3008a11daCAS |
Nikolova-Damyanova, B. (2009). Retention of lipids in silver ion high-performance liquid chromatography: facts and assumptions. J. Chromatogr. A 1216, 1815–1824.
| Retention of lipids in silver ion high-performance liquid chromatography: facts and assumptions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXitFSltb0%3D&md5=88b78d57849a3755bd265b48664685d1CAS | 19027119PubMed |
Oliveri, P., Casolino, M. C., and Forina, M. (2010). Chemometric brains for artificial tongues. Adv. Food Nutr. Res. 61, 57–117.
| Chemometric brains for artificial tongues.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpsV2qtA%3D%3D&md5=f8026d90fde43462dbb65596ba5163c7CAS | 21092902PubMed |
Pacini, N., and Borziani, F. (2014). Cancer stem cell theory and the Warburg effect, two sides of the same coin? Int. J. Mol. Sci. 15, 8893–8930.
| Cancer stem cell theory and the Warburg effect, two sides of the same coin?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXjtFymtrc%3D&md5=6e762fb26a71488eeee4195b6415c791CAS | 24857919PubMed |
Perry, R. H., Bellovin, D. I., Shroff, E. H., Ismail, A. I., Zabuawala, T., Felsher, D. W., and Zare, R. N. (2013). Characterization of MYC-induced tumorigenesis by in situ lipid profiling. Anal. Chem. 85, 4259–4262.
| Characterization of MYC-induced tumorigenesis by in situ lipid profiling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXltl2ms70%3D&md5=aa285e88e0a45a8274892304fe560974CAS | 23560736PubMed |
Pirro, V., Eberlin, L. S., Oliveri, P., and Cooks, R. G. (2012). Interactive hyperspectral approach for exploring and interpreting DESI-MS images of cancerous and normal tissue sections. Analyst 137, 2374–2380.
| Interactive hyperspectral approach for exploring and interpreting DESI-MS images of cancerous and normal tissue sections.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlvFSqs74%3D&md5=88a1fcef7508fecb12e9b9b29539e41fCAS | 22493773PubMed |
Pirro, V., Oliveri, P., Ferreira, C. R., González-Serrano, A. F., Machaty, Z., and Cooks, R. G. (2014). Lipid characterization of individual porcine oocytes by dual mode DESI-MS and data fusion. Anal. Chim. Acta 848, 51–60.
| Lipid characterization of individual porcine oocytes by dual mode DESI-MS and data fusion.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtlCjtLjN&md5=788fc44aaa5106f890d4c79126eed239CAS | 25263116PubMed |
Sanches, B. V., Filho, B. D. O., Pontes, J. H. F., Basso, A. C., Meirinhos, M. L. G., Ferreira, C. R., Chiaratti, M. R., Viu, M. A. O., and Seneda, M. M. (2010). Evaluation of different cryoprotectant and forskolin in the culture medium for improving the efficacy of vitrification of Bos indicus in vitro-derived embryos. Reprod. Fertil. Dev. 22, 215.
| Evaluation of different cryoprotectant and forskolin in the culture medium for improving the efficacy of vitrification of Bos indicus in vitro-derived embryos.Crossref | GoogleScholarGoogle Scholar |
Sanches, B. V., Marinho, L. S., Filho, B. D., Pontes, J. H., Basso, A. C., Meirinhos, M. L., Silva-Santos, K. C., Ferreira, C. R., and Seneda, M. M. (2013). Cryosurvival and pregnancy rates after exposure of IVF-derived Bos indicus embryos to forskolin before vitrification. Theriogenology 80, 372–377.
| Cryosurvival and pregnancy rates after exposure of IVF-derived Bos indicus embryos to forskolin before vitrification.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXptFCqsbk%3D&md5=facc8d029e6c10f60d69662c7c53dab1CAS | 23746692PubMed |
Santagata, S., Eberlin, L. S., Norton, I., Calligaris, D., Feldman, D. R., Ide, J. L., Cooks, R. G., and Agar, N. Y. R. (2014). Intraoperative mass spectrometry mapping of an onco-metabolite to guide brain tumor surgery. Proc. Natl Acad. Sci. USA 111, 11 121–11 126.
| Intraoperative mass spectrometry mapping of an onco-metabolite to guide brain tumor surgery.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtVOitL7M&md5=b7ba4976b94f0b114fa76b8ec135c2eeCAS |
Schwartz, J. C., Wade, A. P., Enke, C. G., and Cooks, R. G. (1990). Systematic delineation of scan modes in multidimensional mass-spectrometry. Anal. Chem. 62, 1809–1818.
| Systematic delineation of scan modes in multidimensional mass-spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXkvVOmtbY%3D&md5=d563c4a82089c28420482441d0334969CAS | 2240570PubMed |
Shehab-El-Deen, M. A., Leroy, J. L. M. R., Maes, D., and Van Soom, A. (2009). Cryotolerance of bovine blastocysts is affected by oocyte maturation in media containing palmitic or stearic acid. Reprod. Domest. Anim. 44, 140–142.
| Cryotolerance of bovine blastocysts is affected by oocyte maturation in media containing palmitic or stearic acid.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1M%2Fnslyqtg%3D%3D&md5=5e88e37028395b22a67b42cbeee94bf3CAS | 18992093PubMed |
Shin, Y. S., Drolet, B., Mayer, R., Dolence, K., and Basile, F. (2007). Desorption electrospray ionization–mass spectrometry (DESI-MS) of proteins. Anal. Chem. 79, 3514–3518.
| Desorption electrospray ionization–mass spectrometry (DESI-MS) of proteins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjsFylsrk%3D&md5=d60976b37239bbb8b69cd9cddcd2a2e6CAS | 17394289PubMed |
Silva-Santos, K. C., Ferreira, C. R., Santos, G. M. G., Eberlin, M. N., Siloto, L. S., Rosa, C. O., Marcantonio, T. N., and Seneda, M. M. (2014). MALDI-MS lipid profiles of oocytes recovered by ovum pickup from Bos indicus and 1/2 indicus × taurus with high vs low oocyte yields. Reprod. Domest. Anim. 49, 711–718.
| MALDI-MS lipid profiles of oocytes recovered by ovum pickup from Bos indicus and 1/2 indicus × taurus with high vs low oocyte yields.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsFCjtLjF&md5=2cfcf3ff4c8c89286d3c26a41bf00647CAS | 25110198PubMed |
Siuzdak, G. (1996). ‘Mass Spectrometry for Biotechnology.’ 1st edn. (Academic Press: San Diego, CA.)
Snijder, J., and Heck, A. J. R. (2014). Analytical approaches for size and mass analysis of large protein assemblies. Annu. Rev. Anal. Chem. (Palo Alto Calif.) 7, 43–64.
| Analytical approaches for size and mass analysis of large protein assemblies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhs1ajtg%3D%3D&md5=7264a6b8afd5259a51ba0b166c6e25b8CAS |
Sturmey, R. G., Reis, A., Leese, H. J., and McEvoy, T. G. (2009). Role of fatty acids in energy provision during oocyte maturation and early embryo development. Reprod. Domest. Anim. 44, 50–58.
| Role of fatty acids in energy provision during oocyte maturation and early embryo development.Crossref | GoogleScholarGoogle Scholar | 19660080PubMed |
Sudano, M. J., Santos, V. G., Tata, A., Ferreira, C. R., Paschoal, D. M., Machado, R., Buratini, J., Eberlin, M. N., and Landim-Alvarenga, F. D. C. (2012). Phosphatidylcholine and sphingomyelin profiles vary in Bos taurus indicus and Bos taurus taurus in vitro- and in vivo-produced blastocysts. Biol. Reprod. 87, 130.
| Phosphatidylcholine and sphingomyelin profiles vary in Bos taurus indicus and Bos taurus taurus in vitro- and in vivo-produced blastocysts.Crossref | GoogleScholarGoogle Scholar | 23053436PubMed |
Takáts, Z., Wiseman, J. M., Gologan, B., and Cooks, R. G. (2004). Mass spectrometry sampling under ambient conditions with desorption electrospray ionization. Science 306, 471–473.
| Mass spectrometry sampling under ambient conditions with desorption electrospray ionization.Crossref | GoogleScholarGoogle Scholar | 15486296PubMed |
Tata, A., Sudano, M. J., Santos, V. G., Landim-Alvarenga, F. D., Ferreira, C. R., and Eberlin, M. N. (2013). Optimal single-embryo mass spectrometry fingerprinting. J. Mass Spectrom. 48, 844–849.
| Optimal single-embryo mass spectrometry fingerprinting.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVOjtbvL&md5=78cd553736cbda3d22b518969e204796CAS | 23832940PubMed |
Tian, H., Fletcher, J. S., Thuret, R., Henderson, A., Papalopulu, N., Vickerman, J. C., and Lockyer, N. P. (2014). Spatiotemporal lipid profiling during early embryo development of Xenopus laevis using dynamic time-of-flight secondary ion mass spectrometry (ToF-SIMS) imaging. J. Lipid Res. 55, 1970–1980.
| Spatiotemporal lipid profiling during early embryo development of Xenopus laevis using dynamic time-of-flight secondary ion mass spectrometry (ToF-SIMS) imaging.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsVGjurbP&md5=1ff80411cf28af7f49e46f123c3d5e12CAS | 24852167PubMed |
Urban, P. L., Chang, C. H., Wu, J. T., and Chen, Y. C. (2011). Microscale MALDI imaging of outer-layer lipids in intact egg chambers from Drosophila melanogaster. Anal. Chem. 83, 3918–3925.
| Microscale MALDI imaging of outer-layer lipids in intact egg chambers from Drosophila melanogaster.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXltFGgurc%3D&md5=1db72e51405f91fa91cc19b4ae128e2fCAS | 21520886PubMed |
Venter, A., Sojka, P. E., and Cooks, R. G. (2006). Droplet dynamics and ionization mechanisms in desorption electrospray ionization mass spectrometry. Anal. Chem. 78, 8549–8555.
| Droplet dynamics and ionization mechanisms in desorption electrospray ionization mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtF2ntb%2FN&md5=5f190744cb8bcece27e2cf9e7557014cCAS | 17165852PubMed |
Venter, A., Nefliu, M., and Cooks, R. G. (2008). Ambient desorption ionization mass spectrometry. Trends Analyt. Chem. 27, 284–290.
| Ambient desorption ionization mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlvVWgtb0%3D&md5=8f1b64268a95fd8fd2d61e05f7c6066dCAS |
Venter, A. R., Douglass, K. A., Shelley, J. T., Hasman, G., and Honarvar, E. (2014). Mechanisms of real-time, proximal sample processing during ambient ionization mass spectrometry. Anal. Chem. 86, 233–249.
| Mechanisms of real-time, proximal sample processing during ambient ionization mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvV2rsb3M&md5=253829125bc003be72ead011aa7d221aCAS | 24308499PubMed |
Wang, H., Manicke, N. E., Yang, Q., Zheng, L., Shi, R., Cooks, R. G., and Ouyang, Z. (2011). Direct analysis of biological tissue by paper spray mass spectrometry. Anal. Chem. 83, 1197–1201.
| Direct analysis of biological tissue by paper spray mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXosVyqsg%3D%3D&md5=e10e5276a5bea3332ef7670d095dcaf6CAS | 21247069PubMed |
Warburg, O. (1956a). Origin of cancer cells. Science 123, 309–314.
| Origin of cancer cells.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaG28%2FltV2ktQ%3D%3D&md5=99c65290123b80ef515efea60da85e4dCAS | 13298683PubMed |
Warburg, O. (1956b). Respiratory impairment in cancer cells. Science 124, 269–270.
| 1:STN:280:DyaG287gsVeksA%3D%3D&md5=f2e464c7f2a4ee19515c939085e9c630CAS | 13351639PubMed |
Wu, Z., Rodgers, R. P., and Marshall, A. G. (2004). Two- and three-dimensional van Krevelen diagrams: a graphical analysis complementary to the Kendrick mass plot for sorting elemental compositions of complex organic mixtures based on ultrahigh-resolution broadband Fourier transform ion cyclotron resonance mass measurements. Anal. Chem. 76, 2511–2516.
| Two- and three-dimensional van Krevelen diagrams: a graphical analysis complementary to the Kendrick mass plot for sorting elemental compositions of complex organic mixtures based on ultrahigh-resolution broadband Fourier transform ion cyclotron resonance mass measurements.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXisVyisr0%3D&md5=9ca12d82f3e11ff1bd52aac93b168b1bCAS | 15117191PubMed |
Wu, C., Ifa, D. R., Manicke, N. E., and Cooks, R. G. (2009). Rapid, direct analysis of cholesterol by charge labeling in reactive desorption electrospray ionization. Anal. Chem. 81, 7618–7624.
| Rapid, direct analysis of cholesterol by charge labeling in reactive desorption electrospray ionization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVWktbnE&md5=6ff56e021a43ff04123645a60f3e0b58CAS | 19746995PubMed |
Yost, R. A., and Enke, C. G. (1978). Selected ion fragmentation with a tandem quadrupole mass spectrometer. J. Am. Chem. Soc. 100, 2274–2275.
| Selected ion fragmentation with a tandem quadrupole mass spectrometer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXhs1antLs%3D&md5=a4cb6f7c3db36e30771556b886f6cfd5CAS |
Yusuf, R. Z., and Scadden, D. T. (2012). Fate through fat: lipid metabolism determines stem cell division outcome. Cell Metab. 16, 411–413.
| Fate through fat: lipid metabolism determines stem cell division outcome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVCnsrvE&md5=7a24d559cafd74df7ec2e2a4afadd2faCAS | 23040066PubMed |
Zhang, H., Cui, W., and Gross, M. L. (2013a). Native electrospray ionization and electron-capture dissociation for comparison of protein structure in solution and the gas phase. Int. J. Mass Spectrom. 354–355, 288–291.
| Native electrospray ionization and electron-capture dissociation for comparison of protein structure in solution and the gas phase.Crossref | GoogleScholarGoogle Scholar |
Zhang, H., Cui, W., Gross, M. L., and Blankenship, R. E. (2013b). Native mass spectrometry of photosynthetic pigment–protein complexes. FEBS Lett. 587, 1012–1020.
| Native mass spectrometry of photosynthetic pigment–protein complexes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXitVGns7g%3D&md5=b95db3debf36227423ae847d805cf207CAS | 23337874PubMed |