Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH FRONT

Molecular participants in regulation of the meiotic cell cycle in mammalian oocytes

Yael Pomerantz A and Nava Dekel A B
+ Author Affiliations
- Author Affiliations

A Department of Biological Regulation, The Weizmann Institute of Science, 234 Herzl St, Rehovot 76100, Israel.

B Corresponding author. Email: nava.dekel@weizmann.ac.il

Reproduction, Fertility and Development 25(3) 484-494 https://doi.org/10.1071/RD12242
Submitted: 25 July 2012  Accepted: 30 October 2012   Published: 4 December 2012

Abstract

Meiosis in oocytes consists of two consecutive asymmetric cell divisions, each completed by the extrusion of one set of chromosomes into a small polar body. First polar body (PBI) extrusion is triggered by the inactivation of cyclin-dependent kinase 1 (CDK1), following the degradation of its regulatory subunit cyclin B1 by the ubiquitin proteasome pathway. The present review covers the sequence of events leading to PBI extrusion, and compares them to the corresponding events in mitotic cell division. The latest findings regarding the contribution of ubiquitin chain topology, separase, securin, cyclin B1, CDK1, Polo-like kinase 1 and mitogen-activated protein kinase kinase 1/2 to the regulation of meiosis are discussed.

Additional keywords: CDK1, cyclin b1, MAPK, PLK1, polar body, proteasome, securin, separase.


References

Abrieu, A., Brassac, T., Galas, S., Fisher, D., Labbe, J. C., and Doree, M. (1998). The Polo-like kinase Plx1 is a component of the MPF amplification loop at the G2/M-phase transition of the cell cycle in Xenopus eggs. J. Cell Sci. 111, 1751–1757.
| 1:CAS:528:DyaK1cXksFantL8%3D&md5=d023dcc13e35faded37447384c789d36CAS | 9601104PubMed |

Alexandru, G., Uhlmann, F., Mechtler, K., Poupart, M. A., and Nasmyth, K. (2001). Phosphorylation of the cohesin subunit Scc1 by Polo/Cdc5 kinase regulates sister chromatid separation in yeast. Cell 105, 459–472.
Phosphorylation of the cohesin subunit Scc1 by Polo/Cdc5 kinase regulates sister chromatid separation in yeast.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnvVKlsLw%3D&md5=1e18fd1b7d4784e01216b2616108bba2CAS | 11371343PubMed |

Araki, K., Naito, K., Haraguchi, S., Suzuki, R., Yokoyama, M., Inoue, M., Aizawa, S., Toyoda, Y., and Sato, E. (1996). Meiotic abnormalities of c-mos knockout mouse oocytes: activation after first meiosis or entrance into third meiotic metaphase. Biol. Reprod. 55, 1315–1324.
Meiotic abnormalities of c-mos knockout mouse oocytes: activation after first meiosis or entrance into third meiotic metaphase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXkvFSntA%3D%3D&md5=fce92ca632996980f0ee8909705b806fCAS | 8949889PubMed |

Azoury, J., Lee, K. W., Georget, V., Rassinier, P., Leader, B., and Verlhac, M. H. (2008). Spindle positioning in mouse oocytes relies on a dynamic meshwork of actin filaments. Curr. Biol. 18, 1514–1519.
Spindle positioning in mouse oocytes relies on a dynamic meshwork of actin filaments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1entL7P&md5=bb67086fb4d00f3f555a3c46f4eb67b5CAS | 18848445PubMed |

Azoury, J., Verlhac, M. H., and Dumont, J. (2009). Actin filaments: key players in the control of asymmetric divisions in mouse oocytes. Biol. Cell 101, 69–76.
Actin filaments: key players in the control of asymmetric divisions in mouse oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjtFKitL0%3D&md5=a2508bb4b073db59b4808a08acb31365CAS | 19076067PubMed |

Baldin, V., Cans, C., Knibiehler, M., and Ducommun, B. (1997). Phosphorylation of human CDC25B phosphatase by CDK1–cyclin A triggers its proteasome-dependent degradation. J. Biol. Chem. 272, 32 731–32 734.
Phosphorylation of human CDC25B phosphatase by CDK1–cyclin A triggers its proteasome-dependent degradation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXpt1Kn&md5=6589e2917b19eb98537ab1867f272628CAS |

Bassermann, F., Frescas, D., Guardavaccaro, D., Busino, L., Peschiaroli, A., and Pagano, M. (2008). The Cdc14B–Cdh1–Plk1 axis controls the G2 DNA-damage–response checkpoint. Cell 134, 256–267.
The Cdc14B–Cdh1–Plk1 axis controls the G2 DNA-damage–response checkpoint.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXptlalur4%3D&md5=dacde18e906387ae676d3c5d6058c67eCAS | 18662541PubMed |

Bastos, R. N., and Barr, F. A. (2010). Plk1 negatively regulates Cep55 recruitment to the midbody to ensure orderly abscission. J. Cell Biol. 191, 751–760.
Plk1 negatively regulates Cep55 recruitment to the midbody to ensure orderly abscission.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVKrt7fL&md5=f6cd13eb4199e7c605f5fab0c49186a1CAS | 21079244PubMed |

Brar, G. A., and Amon, A. (2008). Emerging roles for centromeres in meiosis I chromosome segregation. Nat. Rev. Genet. 9, 899–910.
Emerging roles for centromeres in meiosis I chromosome segregation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlyhtbnN&md5=3eb9ad37b5e616efcbfb8fb1e298d717CAS | 18981989PubMed |

Brennan, I. M., Peters, U., Kapoor, T. M., and Straight, A. F. (2007). Polo-like kinase controls vertebrate spindle elongation and cytokinesis. PLoS One 2, e409.
Polo-like kinase controls vertebrate spindle elongation and cytokinesis.Crossref | GoogleScholarGoogle Scholar | 17476331PubMed |

Brunet, S., and Verlhac, M. H. (2011). Positioning to get out of meiosis: the asymmetry of division. Hum. Reprod. Update 17, 68–75.
Positioning to get out of meiosis: the asymmetry of division.Crossref | GoogleScholarGoogle Scholar | 20833637PubMed |

Brunet, S., Maria, A. S., Guillaud, P., Dujardin, D., Kubiak, J. Z., and Maro, B. (1999). Kinetochore fibers are not involved in the formation of the first meiotic spindle in mouse oocytes, but control the exit from the first meiotic M phase. J. Cell Biol. 146, 1–12.
Kinetochore fibers are not involved in the formation of the first meiotic spindle in mouse oocytes, but control the exit from the first meiotic M phase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXksFCjsrw%3D&md5=bcc951b20550a8fb10019ecc2f9c8c13CAS | 10402455PubMed |

Burkard, M. E., Maciejowski, J., Rodriguez-Bravo, V., Repka, M., Lowery, D. M., Clauser, K. R., Zhang, C., Shokat, K. M., Carr, S. A., Yaffe, M. B., and Jallepalli, P. V. (2009). Plk1 self-organization and priming phosphorylation of HsCYK-4 at the spindle midzone regulate the onset of division in human cells. PLoS Biol. 7, e1000111.
Plk1 self-organization and priming phosphorylation of HsCYK-4 at the spindle midzone regulate the onset of division in human cells.Crossref | GoogleScholarGoogle Scholar | 19468302PubMed |

Busch, H., and Goldknopf, I. L. (1981). Ubiquitin–protein conjugates. Mol. Cell. Biochem. 40, 173–187.
Ubiquitin–protein conjugates.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XmsVagsA%3D%3D&md5=1d47740ac499d26091c3df993d98311dCAS | 6275256PubMed |

Chau, V., Tobias, J. W., Bachmair, A., Marriott, D., Ecker, D. J., Gonda, D. K., and Varshavsky, A. (1989). A multiubiquitin chain is confined to specific lysine in a targeted short-lived protein. Science 243, 1576–1583.
A multiubiquitin chain is confined to specific lysine in a targeted short-lived protein.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXhs1ylsrY%3D&md5=d44fc444416a56cfe89bd2029d457641CAS | 2538923PubMed |

Chiang, T., Schultz, R. M., and Lampson, M. A. (2011). Age-dependent susceptibility of chromosome cohesion to premature separase activation in mouse oocytes. Biol. Reprod. 85, 1279–1283.
Age-dependent susceptibility of chromosome cohesion to premature separase activation in mouse oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1ShsLfL&md5=c0c336b0198cdbdf08b745fede473128CAS | 21865557PubMed |

Choi, T., Aoki, F., Mori, M., Yamashita, M., Nagahama, Y., and Kohmoto, K. (1991). Activation of p34cdc2 protein kinase activity in meiotic and mitotic cell cycles in mouse oocytes and embryos. Development 113, 789–795.
| 1:CAS:528:DyaK38XotFWhsg%3D%3D&md5=539605ab9aed9dd2d9a2e0193d298b94CAS | 1821850PubMed |

Chu, Y., Yao, P. Y., Wang, W., Wang, D., Wang, Z., Zhang, L., Huang, Y., Ke, Y., Ding, X., and Yao, X. (2011). Aurora B kinase activation requires survivin priming phosphorylation by PLK1. J. Mol. Cell Biol. 3, 260–267.
Aurora B kinase activation requires survivin priming phosphorylation by PLK1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFCjtLzM&md5=bf47eba01baf05b1278ec40b36cac146CAS | 21148584PubMed |

Colello, D., Mathew, S., Ward, R., Pumiglia, K., and Laflamme, S. E. (2012). Integrins regulate the microtubule nucleating activity of the centrosome through MEK/ERK signaling. J. Biol. Chem. 287, 2520–2530.
Integrins regulate the microtubule nucleating activity of the centrosome through MEK/ERK signaling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XpslOisw%3D%3D&md5=7a0f19a1711dd882b5be90b791c4f3ceCAS | 22117069PubMed |

Colledge, W. H., Carlton, M. B., Udy, G. B., and Evans, M. J. (1994). Disruption of c-mos causes parthenogenetic development of unfertilized mouse eggs. Nature 370, 65–68.
Disruption of c-mos causes parthenogenetic development of unfertilized mouse eggs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXltVWhs7g%3D&md5=a1ff0879988888dacb3bd9de79ad699bCAS | 8015609PubMed |

Daum, J. R., Tugendreich, S., Topper, L. M., Jorgensen, P. M., Hoog, C., Hieter, P., and Gorbsky, G. J. (2000). The 3F3/2 anti-phosphoepitope antibody binds the mitotically phosphorylated anaphase-promoting complex/cyclosome. Curr. Biol. 10, R850–R852.
The 3F3/2 anti-phosphoepitope antibody binds the mitotically phosphorylated anaphase-promoting complex/cyclosome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXoslGntbY%3D&md5=971455ff99f437724ce8b429476d58afCAS | 11114529PubMed |

Dumont, J., Million, K., Sunderland, K., Rassinier, P., Lim, H., Leader, B., and Verlhac, M. H. (2007). Formin-2 is required for spindle migration and for the late steps of cytokinesis in mouse oocytes. Dev. Biol. 301, 254–265.
Formin-2 is required for spindle migration and for the late steps of cytokinesis in mouse oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1Wnsg%3D%3D&md5=16b1f88b20f28cb9c8f479da950989abCAS | 16989804PubMed |

Dupré, A., Haccard, O., and Jessus, C. (2011). Mos in the oocyte: how to use MAPK independently of growth factors and transcription to control meiotic divisions. J. Signal Transduct. 2011, Article ID 350412.
Mos in the oocyte: how to use MAPK independently of growth factors and transcription to control meiotic divisions.Crossref | GoogleScholarGoogle Scholar |

Echeverri, C. J., Paschal, B. M., Vaughan, K. T., and Vallee, R. B. (1996). Molecular characterization of the 50-kD subunit of dynactin reveals function for the complex in chromosome alignment and spindle organization during mitosis. J. Cell Biol. 132, 617–633.
Molecular characterization of the 50-kD subunit of dynactin reveals function for the complex in chromosome alignment and spindle organization during mitosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XhtF2ktr4%3D&md5=b64a2497e2b68295b81778a74b2daa41CAS | 8647893PubMed |

Edson, M. A., Nagaraja, A. K., and Matzuk, M. M. (2009). The mammalian ovary from genesis to revelation. Endocr. Rev. 30, 624–712.
The mammalian ovary from genesis to revelation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVyhsrbL&md5=e2c2083927f950c9df1c6a49c4968803CAS | 19776209PubMed |

Edwards, R. G. (1965). Maturation in vitro of mouse, sheep, cow, pig, rhesus monkey and human ovarian oocytes. Nature 208, 349–351.
Maturation in vitro of mouse, sheep, cow, pig, rhesus monkey and human ovarian oocytes.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaF287lsVagsg%3D%3D&md5=d36cfc2d831a566b12d7bd4c820dd5fcCAS | 4957259PubMed |

Elbaz, J., Reizel, Y., Nevo, N., Galiani, D., and Dekel, N. (2010). Epithelial cell transforming protein 2 (ECT2) depletion blocks polar body extrusion and generates mouse oocytes containing two metaphase II spindles. Endocrinology 151, 755–765.
Epithelial cell transforming protein 2 (ECT2) depletion blocks polar body extrusion and generates mouse oocytes containing two metaphase II spindles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVOqu7s%3D&md5=1db38a625732fdc864b3fe6b9d6c7901CAS | 19996184PubMed |

Elia, A. E., Rellos, P., Haire, L. F., Chao, J. W., Ivins, F. J., Hoepker, K., Mohammad, D., Cantley, L. C.,, Smerdon, S. J., and Yaffe, M. B. (2003). The molecular basis for phosphodependent substrate targeting and regulation of Plks by the Polo-box domain. Cell 115, 83–95.
The molecular basis for phosphodependent substrate targeting and regulation of Plks by the Polo-box domain.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXotFSltb4%3D&md5=1e4c4cbe2e22ce2ce071e9bfa153ba82CAS | 14532005PubMed |

Elowe, S., Hummer, S., Uldschmid, A., Li, X., and Nigg, E. A. (2007). Tension-sensitive Plk1 phosphorylation on BubR1 regulates the stability of kinetochore microtubule interactions. Genes Dev. 21, 2205–2219.
Tension-sensitive Plk1 phosphorylation on BubR1 regulates the stability of kinetochore microtubule interactions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVaks73P&md5=3a8dd12d0fb0da8b99356290f6e136f5CAS | 17785528PubMed |

Garnett, M. J., Mansfeld, J., Godwin, C., Matsusaka, T., Wu, J., Russell, P., Pines, J., and Venkitaraman, A. R. (2009). UBE2S elongates ubiquitin chains on APC/C substrates to promote mitotic exit. Nat. Cell Biol. 11, 1363–1369.
UBE2S elongates ubiquitin chains on APC/C substrates to promote mitotic exit.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlCnu73M&md5=83da04b42117512321aec4bf1a833333CAS | 19820702PubMed |

Glotzer, M., Murray, A. W., and Kirschner, M. W. (1991). Cyclin is degraded by the ubiquitin pathway. Nature 349, 132–138.
Cyclin is degraded by the ubiquitin pathway.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXps12jtA%3D%3D&md5=8ab428e595881508830ac5a270f9a631CAS | 1846030PubMed |

Golan, A., Yudkovsky, Y., and Hershko, A. (2002). The cyclin–ubiquitin ligase activity of cyclosome/APC is jointly activated by protein kinases Cdk1–cyclin B and Plk. J. Biol. Chem. 277, 15 552–15 557.
The cyclin–ubiquitin ligase activity of cyclosome/APC is jointly activated by protein kinases Cdk1–cyclin B and Plk.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xjs1Wjsr4%3D&md5=92cd379ed471577d2cb17fba9449d89bCAS |

Gorr, I. H., Boos, D., and Stemmann, O. (2005). Mutual inhibition of separase and Cdk1 by two-step complex formation. Mol. Cell 19, 135–141.
Mutual inhibition of separase and Cdk1 by two-step complex formation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmsVejtrY%3D&md5=fbb2bac8efe114f27418c0b1c7e65571CAS | 15989971PubMed |

Gorr, I. H., Reis, A., Boos, D., Wuhr, M., Madgwick, S., Jones, K. T., and Stemmann, O. (2006). Essential CDK1-inhibitory role for separase during meiosis I in vertebrate oocytes. Nat. Cell Biol. 8, 1035–1037.
Essential CDK1-inhibitory role for separase during meiosis I in vertebrate oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XovFyktbs%3D&md5=509bdc8b8f724a47a463c9bac54e80dbCAS | 16906143PubMed |

Gotoh, Y., Nishida, E., Matsuda, S., Shiina, N., Kosako, H., Shiokawa, K., Akiyama, T., Ohta, K., and Sakai, H. (1991). In vitro effects on microtubule dynamics of purified Xenopus M phase-activated MAP kinase. Nature 349, 251–254.
In vitro effects on microtubule dynamics of purified Xenopus M phase-activated MAP kinase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXnslGhsw%3D%3D&md5=24521ec35d70465fd6e0063d59fcea18CAS | 1702878PubMed |

Hagting, A., Den Elzen, N., Vodermaier, H. C., Waizenegger, I. C., Peters, J. M., and Pines, J. (2002). Human securin proteolysis is controlled by the spindle checkpoint and reveals when the APC/C switches from activation by Cdc20 to Cdh1. J. Cell Biol. 157, 1125–1137.
Human securin proteolysis is controlled by the spindle checkpoint and reveals when the APC/C switches from activation by Cdc20 to Cdh1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XkvFCmur0%3D&md5=4d9ab2fb668d6bdad596b1d30947579cCAS | 12070128PubMed |

Hampl, A., and Eppig, J. J. (1995). Analysis of the mechanism(s) of metaphase I arrest in maturing mouse oocytes. Development 121, 925–933.
| 1:CAS:528:DyaK2MXltVamtL0%3D&md5=e4fa6d5d565336a49ec9c457fc72ab77CAS | 7743936PubMed |

Han, S. J., Chen, R., Paronetto, M. P., and Conti, M. (2005). Wee1B is an oocyte-specific kinase involved in the control of meiotic arrest in the mouse. Curr. Biol. 15, 1670–1676.
Wee1B is an oocyte-specific kinase involved in the control of meiotic arrest in the mouse.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVWnsLjO&md5=622bce0eb4a38cc435946f772e043969CAS | 16169490PubMed |

Hashimoto, N., and Kishimoto, T. (1988). Regulation of meiotic metaphase by a cytoplasmic maturation-promoting factor during mouse oocyte maturation. Dev. Biol. 126, 242–252.
Regulation of meiotic metaphase by a cytoplasmic maturation-promoting factor during mouse oocyte maturation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXhsVOrt7w%3D&md5=2a81cc3dc75c4f698e72614ed3b249fcCAS | 3350209PubMed |

Hashimoto, N., Watanabe, N., Furuta, Y., Tamemoto, H., Sagata, N., Yokoyama, M., Okazaki, K., Nagayoshi, M., Takedat, N., Ikawatll, Y., and Aizawai, S. (1994). Parthenogenetic activation of oocytes in c-mos-deficient mice. Nature 370, 68–71.
Parthenogenetic activation of oocytes in c-mos-deficient mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXltVKjs7k%3D&md5=5c7b6c47536b6997995f4600036e3b83CAS | 8015610PubMed |

Hassold, T., and Hunt, P. (2001). To err (meiotically) is human: the genesis of human aneuploidy. Nat. Rev. Genet. 2, 280–291.
To err (meiotically) is human: the genesis of human aneuploidy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXisVCqurY%3D&md5=acb9f508787eef898399a52e0e141258CAS | 11283700PubMed |

Hatch, K. R., and Capco, D. G. (2001). Colocalization of CaM KII and MAP kinase on architectural elements of the mouse egg: potentiation of MAP kinase activity by CaM KII. Mol. Reprod. Dev. 58, 69–77.
Colocalization of CaM KII and MAP kinase on architectural elements of the mouse egg: potentiation of MAP kinase activity by CaM KII.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXovVWrsrY%3D&md5=3fe49ca15a4d0544178438e9c49f1c0fCAS | 11144223PubMed |

Hauf, S., Biswas, A., Langegger, M., Kawashima, S. A., Tsukahara, T., and Watanabe, Y. (2007). Aurora controls sister kinetochore mono-orientation and homolog bi-orientation in meiosis-I. EMBO J. 26, 4475–4486.
Aurora controls sister kinetochore mono-orientation and homolog bi-orientation in meiosis-I.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1emtbvK&md5=bb1e19082354c5215d083ec7a5ea3d00CAS | 17932486PubMed |

Herbert, M., Levasseur, M., Homer, H., Yallop, K., Murdoch, A., and McDougall, A. (2003). Homologue disjunction in mouse oocytes requires proteolysis of securin and cyclin B1. Nat. Cell Biol. 5, 1023–1025.
Homologue disjunction in mouse oocytes requires proteolysis of securin and cyclin B1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXosFWrur8%3D&md5=843508e636a1a6a56a9cf011ce71e0d7CAS | 14593421PubMed |

Hershko, A., and Ciechanover, A. (1998). The ubiquitin system. Annu. Rev. Biochem. 67, 425–479.
The ubiquitin system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXlsFOmsLc%3D&md5=0938eb1ba13ab544299aeb9d4549dfddCAS | 9759494PubMed |

Hershko, A., Ciechanover, A., and Rose, I. A. (1981). Identification of the active amino acid residue of the polypeptide of ATP-dependent protein breakdown. J. Biol. Chem. 256, 1525–1528.
| 1:CAS:528:DyaL3MXhtFKgs7o%3D&md5=e10238a87d7a61fcf7733de96e01d815CAS | 6257674PubMed |

Hershko, A., Heller, H., Elias, S., and Ciechanover, A. (1983). Components of ubiquitin–protein ligase system. Resolution, affinity purification, and role in protein breakdown. J. Biol. Chem. 258, 8206–8214.
| 1:CAS:528:DyaL3sXksV2nsLc%3D&md5=7919858625b50836e6cbd4ce78d56cf9CAS | 6305978PubMed |

Holland, A. J., and Taylor, S. S. (2006). Cyclin-B1-mediated inhibition of excess separase is required for timely chromosome disjunction. J. Cell Sci. 119, 3325–3336.
Cyclin-B1-mediated inhibition of excess separase is required for timely chromosome disjunction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVart73J&md5=2033d5003ce4bfc77e57c298c3c4ea1eCAS | 16868023PubMed |

Holt, J. E., and Jones, K. T. (2009). Control of homologous chromosome division in the mammalian oocyte. Mol. Hum. Reprod. 15, 139–147.
Control of homologous chromosome division in the mammalian oocyte.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXis1aqsb4%3D&md5=7a7059892d9913dce8818d0eec992f33CAS | 19179408PubMed |

Homer, H. A., McDougall, A., Levasseur, M., Murdoch, A. P., and Herbert, M. (2005). Mad2 is required for inhibiting securin and cyclin B degradation following spindle depolymerisation in meiosis I mouse oocytes. Reproduction 130, 829–843.
Mad2 is required for inhibiting securin and cyclin B degradation following spindle depolymerisation in meiosis I mouse oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xkt12ntg%3D%3D&md5=819d092cf3933776d40bd2ef61060fa9CAS | 16322543PubMed |

Hornig, N. C., and Uhlmann, F. (2004). Preferential cleavage of chromatin-bound cohesin after targeted phosphorylation by Polo-like kinase. EMBO J. 23, 3144–3153.
Preferential cleavage of chromatin-bound cohesin after targeted phosphorylation by Polo-like kinase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmt1Wqu7o%3D&md5=f05a6b8995a05d69c73b4766fc6f7687CAS | 15241476PubMed |

Huang, X., Hatcher, R., York, J. P., and Zhang, P. (2005). Securin and separase phosphorylation act redundantly to maintain sister chromatid cohesion in mammalian cells. Mol. Biol. Cell 16, 4725–4732.
Securin and separase phosphorylation act redundantly to maintain sister chromatid cohesion in mammalian cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVygtLzO&md5=f45358afd785830608933b60a7acf569CAS | 16030258PubMed |

Huang, X., Andreu-Vieyra, C. V., York, J. P., Hatcher, R., Lu, T., Matzuk, M. M., and Zhang, P. (2008). Inhibitory phosphorylation of separase is essential for genome stability and viability of murine embryonic germ cells. PLoS Biol. 6, e15.
Inhibitory phosphorylation of separase is essential for genome stability and viability of murine embryonic germ cells.Crossref | GoogleScholarGoogle Scholar | 18232736PubMed |

Huang, X., Andreu-Vieyra, C. V., Wang, M., Cooney, A. J., Matzuk, M. M., and Zhang, P. (2009). Preimplantation mouse embryos depend on inhibitory phosphorylation of separase to prevent chromosome missegregation. Mol. Cell. Biol. 29, 1498–1505.
Preimplantation mouse embryos depend on inhibitory phosphorylation of separase to prevent chromosome missegregation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjt1WlsLw%3D&md5=e09115f1754fbbfb66e49efb87527b90CAS | 19124608PubMed |

Hunt, P. A. (1998). The control of mammalian female meiosis: factors that influence chromosome segregation. J. Assist. Reprod. Genet. 15, 246–252.
The control of mammalian female meiosis: factors that influence chromosome segregation.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1c3mvVWitg%3D%3D&md5=0a9bfcb732f7478565b1c09d8d4d7370CAS | 9604755PubMed |

Hutterer, A., Glotzer, M., and Mishima, M. (2009). Clustering of centralspindlin is essential for its accumulation to the central spindle and the midbody. Curr. Biol. 19, 2043–2049.
Clustering of centralspindlin is essential for its accumulation to the central spindle and the midbody.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFyksrrL&md5=956effa7b10851968a9c9200f6b951d9CAS | 19962307PubMed |

Ishida, N., Tanaka, K., Tamura, T., Nishizawa, M., Okazaki, K., Sagata, N., and Ichihara, A. (1993). Mos is degraded by the 26S proteasome in a ubiquitin-dependent fashion. FEBS Lett. 324, 345–348.
Mos is degraded by the 26S proteasome in a ubiquitin-dependent fashion.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXks1Grsrk%3D&md5=92157fa4c25a367d82fc0ffda8b55699CAS | 8405379PubMed |

Jang, Y. J., Lin, C. Y., Ma, S., and Erikson, R. L. (2002). Functional studies on the role of the C-terminal domain of mammalian polo-like kinase. Proc. Natl Acad. Sci. USA 99, 1984–1989.
Functional studies on the role of the C-terminal domain of mammalian polo-like kinase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XitVSrsLo%3D&md5=c84580ddbb007f91d86c966c17cb59b5CAS | 11854496PubMed |

Jeganathan, K. B., Baker, D. J., and van Deursen, J. M. (2006). Securin associates with APCCdh1 in prometaphase but its destruction is delayed by Rae1 and Nup98 until the metaphase/anaphase transition. Cell Cycle 5, 366–370.
Securin associates with APCCdh1 in prometaphase but its destruction is delayed by Rae1 and Nup98 until the metaphase/anaphase transition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xkslaqtb4%3D&md5=e17317ec4ddb3a37044f6f290ac21d36CAS | 16479161PubMed |

Jin, L., Williamson, A., Banerjee, S., Philipp, I., and Rape, M. (2008). Mechanism of ubiquitin-chain formation by the human anaphase-promoting complex. Cell 133, 653–665.
Mechanism of ubiquitin-chain formation by the human anaphase-promoting complex.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmsVOrurY%3D&md5=cc61ef0c265553818a070311d0acd528CAS | 18485873PubMed |

Jones, K. T. (2011). Anaphase-promoting complex control in female mouse meiosis. Results Probl. Cell Differ. 53, 343–363.
Anaphase-promoting complex control in female mouse meiosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1SrsLbK&md5=0e797d6961e49804ff9540c8d3e39456CAS | 21630152PubMed |

Josefsberg, L. B., Galiani, D., Dantes, A., Amsterdam, A., and Dekel, N. (2000). The proteasome is involved in the first metaphase-to-anaphase transition of meiosis in rat oocytes. Biol. Reprod. 62, 1270–1277.
The proteasome is involved in the first metaphase-to-anaphase transition of meiosis in rat oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXisl2htLw%3D&md5=356f8f54538c5043dfee5c7f9c4884cfCAS | 10775176PubMed |

Karaiskou, A., Jessus, C., Brassac, T., and Ozon, R. (1999). Phosphatase 2A and polo kinase, two antagonistic regulators of cdc25 activation and MPF auto-amplification. J. Cell Sci. 112, 3747–3756.
| 1:CAS:528:DyaK1MXns1OlsbY%3D&md5=223a208f743eab8c0fc93554a87093a3CAS | 10523510PubMed |

Kirkpatrick, D. S., Hathaway, N. A., Hanna, J., Elsasser, S., Rush, J., Finley, D., King, R. W., and Gygi, S. P. (2006). Quantitative analysis of in vitro ubiquitinated cyclin B1 reveals complex chain topology. Nat. Cell Biol. 8, 700–710.
Quantitative analysis of in vitro ubiquitinated cyclin B1 reveals complex chain topology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmsVenur8%3D&md5=79c9809c92d2bfeed57db2a3515ec2c2CAS | 16799550PubMed |

Köhler, A., Bajorek, M., Groll, M., Moroder, L., Rubin, D. M., Huber, R., Glickman, M. H., and Finley, D. (2001). The substrate translocation channel of the proteasome. Biochimie 83, 325–332.
The substrate translocation channel of the proteasome.Crossref | GoogleScholarGoogle Scholar | 11295493PubMed |

Kotani, S., Tugendreich, S., Fujii, M., Jorgensen, P. M., Watanabe, N., Hoog, C., Hieter, P., and Todokoro, K. (1998). PKA and MPF-activated polo-like kinase regulate anaphase-promoting complex activity and mitosis progression. Mol. Cell 1, 371–380.
PKA and MPF-activated polo-like kinase regulate anaphase-promoting complex activity and mitosis progression.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhtlyhtbk%3D&md5=6af79dec20a84105d9858376db385124CAS | 9660921PubMed |

Kudo, N. R., Wassmann, K., Anger, M., Schuh, M., Wirth, K. G., Xu, H., Helmhart, W., Kudo, H., Mckay, M., Maro, B., Ellenberg, J., de Boer, P., and Nasmyth, K. (2006). Resolution of chiasmata in oocytes requires separase-mediated proteolysis. Cell 126, 135–146.
Resolution of chiasmata in oocytes requires separase-mediated proteolysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xns1Cgt70%3D&md5=2da317ce9b17b01208d89afb6ec50b8fCAS | 16839882PubMed |

Kudo, N. R., Anger, M., Peters, A. H., Stemmann, O., Theussl, H. C., Helmhart, W., Kudo, H., Heyting, C., and Nasmyth, K. (2009). Role of cleavage by separase of the Rec8 kleisin subunit of cohesin during mammalian meiosis I. J. Cell Sci. 122, 2686–2698.
Role of cleavage by separase of the Rec8 kleisin subunit of cohesin during mammalian meiosis I.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVGhsLzM&md5=366867560a412c6e967bffb540ded6bfCAS | 19625504PubMed |

Kwon, S., and Lim, H. J. (2011). Small GTPases and formins in mammalian oocyte maturation: cytoskeletal organizers. Clin. Exp. Reprod. Med. 38, 1–5.
Small GTPases and formins in mammalian oocyte maturation: cytoskeletal organizers.Crossref | GoogleScholarGoogle Scholar | 22384410PubMed |

Ledan, E., Polanski, Z., Terret, M. E., and Maro, B. (2001). Meiotic maturation of the mouse oocyte requires an equilibrium between cyclin B synthesis and degradation. Dev. Biol. 232, 400–413.
Meiotic maturation of the mouse oocyte requires an equilibrium between cyclin B synthesis and degradation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXitlejtr4%3D&md5=10d8928175acf9e538608661b26c3720CAS | 11401401PubMed |

Lee, J., Miyano, T., and Moor, R. M. (2000). Localisation of phosphorylated MAP kinase during the transition from meiosis I to meiosis II in pig oocytes. Zygote 8, 119–125.
Localisation of phosphorylated MAP kinase during the transition from meiosis I to meiosis II in pig oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXksFeqtbo%3D&md5=d1f4eb2eced5356036d1da803f210d98CAS | 10857582PubMed |

Lefebvre, C., Terret, M. E., Djiane, A., Rassinier, P., Maro, B., and Verlhac, M. H. (2002). Meiotic spindle stability depends on MAPK-interacting and spindle-stabilizing protein (MISS), a new MAPK substrate. J. Cell Biol. 157, 603–613.
Meiotic spindle stability depends on MAPK-interacting and spindle-stabilizing protein (MISS), a new MAPK substrate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjslGlsLs%3D&md5=65c6c0ed94f76b21b2dc1d9bae52c38bCAS | 12011110PubMed |

Leland, S., Nagarajan, P., Polyzos, A., Thomas, S., Samaan, G., Donnell, R., Marchetti, F., and Venkatachalam, S. (2009). Heterozygosity for a Bub1 mutation causes female-specific germ cell aneuploidy in mice. Proc. Natl Acad. Sci. USA 106, 12 776–12 781.
Heterozygosity for a Bub1 mutation causes female-specific germ cell aneuploidy in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVKlt77O&md5=f44681a72573d39b002271b0cc5f3f97CAS |

Lénárt, P., Petronczki, M., Steegmaier, M., Di Fiore, B., Lipp, J. J., Hoffmann, M., Rettig, W. J., Kraut, N., and Peters, J. M. (2007). The small-molecule inhibitor BI 2536 reveals novel insights into mitotic roles of polo-like kinase 1. Curr. Biol. 17, 304–315.
The small-molecule inhibitor BI 2536 reveals novel insights into mitotic roles of polo-like kinase 1.Crossref | GoogleScholarGoogle Scholar | 17291761PubMed |

Lew, D. J., and Kornbluth, S. (1996). Regulatory roles of cyclin dependent kinase phosphorylation in cell cycle control. Curr. Opin. Cell Biol. 8, 795–804.
Regulatory roles of cyclin dependent kinase phosphorylation in cell cycle control.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XnsVWitr0%3D&md5=e2c300b80c9fa6469b0699492913cebbCAS | 8939679PubMed |

Li, J., Wang, J., Jiao, H., Liao, J., and Xu, X. (2010). Cytokinesis and cancer: Polo loves ROCK‘n’Rho(A). J. Genet. Genomics 37, 159–172.
Cytokinesis and cancer: Polo loves ROCK‘n’Rho(A).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlsFCmtrc%3D&md5=9fb3caaae23bf82f3b69e44e9c895ef6CAS | 20347825PubMed |

Li, M., Li, S., Yuan, J., Wang, Z. B., Sun, S. C., Schatten, H., and Sun, Q. Y. (2009). Bub3 is a spindle assembly checkpoint protein regulating chromosome segregation during mouse oocyte meiosis. PLoS One 4, e7701.
Bub3 is a spindle assembly checkpoint protein regulating chromosome segregation during mouse oocyte meiosis.Crossref | GoogleScholarGoogle Scholar | 19888327PubMed |

Lin, S. L., Qi, S. T., Sun, S. C., Wang, Y. P., Schatten, H., and Sun, Q. Y. (2010). PAK1 regulates spindle microtubule organization during oocyte meiotic maturation. Front. Biosci. E2, 1254–1264.
PAK1 regulates spindle microtubule organization during oocyte meiotic maturation.Crossref | GoogleScholarGoogle Scholar |

Lincoln, A. J., Wickramasinghe, D., Stein, P., Schultz, R. M., Palko, M. E., De Miguel, M. P., Tessarollo, L., and Donovan, P. J. (2002). Cdc25b phosphatase is required for resumption of meiosis during oocyte maturation. Nat. Genet. 30, 446–449.
Cdc25b phosphatase is required for resumption of meiosis during oocyte maturation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xisl2lsbg%3D&md5=a5b204a66a766c0fa8f62e0e461e72b9CAS | 11912493PubMed |

Lindon, C., and Pines, J. (2004). Ordered proteolysis in anaphase inactivates Plk1 to contribute to proper mitotic exit in human cells. J. Cell Biol. 164, 233–241.
Ordered proteolysis in anaphase inactivates Plk1 to contribute to proper mitotic exit in human cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmsV2jug%3D%3D&md5=4cbf537f993ce5ea8c535388e43e952bCAS | 14734534PubMed |

Liot, C., Seguin, L., Siret, A., Crouin, C., Schmidt, S., and Bertoglio, J. (2011). APC mediates degradation of the oncogenic Rho-GEF Ect2 after mitosis. PLoS One 6, e23676.
APC mediates degradation of the oncogenic Rho-GEF Ect2 after mitosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFyrsL%2FI&md5=33644c6d98827e1c5f89f26e528cc427CAS | 21886810PubMed |

Litvak, V., Argov, R., Dahan, N., Ramachandran, S., Amarilio, R., Shainskaya, A., and Lev, S. (2004). Mitotic phosphorylation of the peripheral Golgi protein Nir2 by Cdk1 provides a docking mechanism for Plk1 and affects cytokinesis completion. Mol. Cell 14, 319–330.
Mitotic phosphorylation of the peripheral Golgi protein Nir2 by Cdk1 provides a docking mechanism for Plk1 and affects cytokinesis completion.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXks1Cls74%3D&md5=3137deba7499c16af95095ea23088948CAS | 15125835PubMed |

Macůrek, L., Lindqvist, A., Lim, D., Lampson, M. A., Klompmaker, R., Freire, R., Clouin, C., Taylor, S. S., Yaffe, M. B., and Medema, R. H. (2008). Polo-like kinase-1 is activated by aurora A to promote checkpoint recovery. Nature 455, 119–123.
Polo-like kinase-1 is activated by aurora A to promote checkpoint recovery.Crossref | GoogleScholarGoogle Scholar | 18615013PubMed |

Masui, Y., and Clarke, H. J. (1979). Oocyte maturation. Int. Rev. Cytol. 57, 185–282.
Oocyte maturation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXlslaju7g%3D&md5=0fc6a66a3502f8a858ca489dca6b0c7fCAS | 385540PubMed |

Masui, Y., and Markert, C. L. (1971). Cytoplasmic control of nuclear behavior during meiotic maturation of frog oocytes. J. Exp. Zool. 177, 129–145.
Cytoplasmic control of nuclear behavior during meiotic maturation of frog oocytes.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE3M3ptFOitA%3D%3D&md5=88b8f3ac295b38e87fdb8b909ba11364CAS | 5106340PubMed |

Matsumura, S., Toyoshima, F., and Nishida, E. (2007). Polo-like kinase 1 facilitates chromosome alignment during prometaphase through BubR1. J. Biol. Chem. 282, 15 217–15 227.
Polo-like kinase 1 facilitates chromosome alignment during prometaphase through BubR1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXltFelsL4%3D&md5=03cafe29fbe5a57e32fcb84f81897974CAS |

McGuinness, B. E., Anger, M., Kouznetsova, A., Gil-Bernabé, A. M., Helmhart, W., Kudo, N. R., Wuensche, A., Taylor, S., Hoog, C., Novak, B., and Nasmyth, K. (2009). Regulation of APC/C activity in oocytes by a Bub1-dependent spindle assembly checkpoint. Curr. Biol. 19, 369–380.
Regulation of APC/C activity in oocytes by a Bub1-dependent spindle assembly checkpoint.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXivVKit7o%3D&md5=ba84a0904898296aeae5611b721fd041CAS | 19249208PubMed |

Mei, J., Huang, X., and Zhang, P. (2001). Securin is not required for cellular viability, but is required for normal growth of mouse embryonic fibroblasts. Curr. Biol. 11, 1197–1201.
Securin is not required for cellular viability, but is required for normal growth of mouse embryonic fibroblasts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmtFWhtr8%3D&md5=07a3b00ecfb3a11938209e1c74d0b12aCAS | 11516952PubMed |

Mishima, M., Kaitna, S., and Glotzer, M. (2002). Central spindle assembly and cytokinesis require a kinesin-like protein/RhoGAP complex with microtubule bundling activity. Dev. Cell 2, 41–54.
Central spindle assembly and cytokinesis require a kinesin-like protein/RhoGAP complex with microtubule bundling activity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xos1ShtA%3D%3D&md5=b2895b161c225e77e78d9bf77944f3dcCAS | 11782313PubMed |

Monje-Casas, F., Prabhu, V. R., Lee, B. H., Boselli, M., and Amon, A. (2007). Kinetochore orientation during meiosis is controlled by aurora B and the monopolin complex. Cell 128, 477–490.
Kinetochore orientation during meiosis is controlled by aurora B and the monopolin complex.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXit1Wlt7Y%3D&md5=317c1a0d15fe4932789820114e91002dCAS | 17289568PubMed |

Morgan, D. O. (1995). Principles of CDK regulation. Nature 374, 131–134.
Principles of CDK regulation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXkt1yju7s%3D&md5=98a4d6a1f643bef152555346cb82e4a8CAS | 7877684PubMed |

Murray, A. W., Solomon, M. J., and Kirschner, M. W. (1989). The role of cyclin synthesis and degradation in the control of maturation promoting factor activity. Nature 339, 280–286.
The role of cyclin synthesis and degradation in the control of maturation promoting factor activity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXkslGjtbY%3D&md5=311c76ae96c6d822d57b32607f734bb2CAS | 2566918PubMed |

Niiya, F., Tatsumoto, T., Lee, K. S., and Miki, T. (2006). Phosphorylation of the cytokinesis regulator ECT2 at G2/M phase stimulates association of the mitotic kinase Plk1 and accumulation of GTP-bound RhoA. Oncogene 25, 827–837.
Phosphorylation of the cytokinesis regulator ECT2 at G2/M phase stimulates association of the mitotic kinase Plk1 and accumulation of GTP-bound RhoA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1Wrt7s%3D&md5=233824137d3291f58a5c142c5c1505e2CAS | 16247472PubMed |

Normand, G., and King, R. W. (2010). Understanding cytokinesis failure. Adv. Exp. Med. Biol. 676, 27–55.
Understanding cytokinesis failure.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1Wrsr3I&md5=7253375dd3eab9c8378b38109960b437CAS | 20687468PubMed |

Nurse, P. (1990). Universal control mechanism regulating onset of M-phase. Nature 344, 503–508.
Universal control mechanism regulating onset of M-phase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXitFamtrs%3D&md5=4576e7f783b1899304d4b86f7c7e9e40CAS | 2138713PubMed |

Oh, J. S., Han, S. J., and Conti, M. (2010). Wee1B, Myt1, and Cdc25 function in distinct compartments of the mouse oocyte to control meiotic resumption. J. Cell Biol. 188, 199–207.
Wee1B, Myt1, and Cdc25 function in distinct compartments of the mouse oocyte to control meiotic resumption.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVyjs7c%3D&md5=8a85f2b1d6ff1a479be7298ea307a1cfCAS | 20083600PubMed |

Otsuki, J., Nagai, Y., and Chiba, K. (2009). Association of spindle midzone particles with polo-like kinase 1 during meiosis in mouse and human oocytes. Reprod. Biomed. Online 18, 522–528.
Association of spindle midzone particles with polo-like kinase 1 during meiosis in mouse and human oocytes.Crossref | GoogleScholarGoogle Scholar | 19400994PubMed |

Pahlavan, G., Polanski, Z., Kalab, P., Golsteyn, R., Nigg, E. A., and Maro, B. (2000). Characterization of polo-like kinase 1 during meiotic maturation of the mouse oocyte. Dev. Biol. 220, 392–400.
Characterization of polo-like kinase 1 during meiotic maturation of the mouse oocyte.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXit1Clurg%3D&md5=a472920c5bdef0e4d1a2eabb0d415f33CAS | 10753525PubMed |

Pavicic-Kaltenbrunner, V., Mishima, M., and Glotzer, M. (2007). Cooperative assembly of CYK-4/MgcRacGAP and ZEN-4/MKLP1 to form the centralspindlin complex. Mol. Biol. Cell 18, 4992–5003.
Cooperative assembly of CYK-4/MgcRacGAP and ZEN-4/MKLP1 to form the centralspindlin complex.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVeis7%2FL&md5=25b0a2684b0246fd8d23907ca04145f2CAS | 17942600PubMed |

Peters, J. M. (2006). The anaphase promoting complex/cyclosome: a machine designed to destroy. Nat. Rev. Mol. Cell Biol. 7, 644–656.
The anaphase promoting complex/cyclosome: a machine designed to destroy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xot12ju7s%3D&md5=a92bfe12777a9866f5bdfce4309eaf5fCAS | 16896351PubMed |

Petronczki, M., Lenart, P., and Peters, J. M. (2008). Polo on the rise: from mitotic entry to cytokinesis with Plk1. Dev. Cell 14, 646–659.
Polo on the rise: from mitotic entry to cytokinesis with Plk1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmtleju7s%3D&md5=53467f896e11f2935f961b0810eff6d9CAS | 18477449PubMed |

Piekny, A., Werner, M., and Glotzer, M. (2005). Cytokinesis: welcome to the Rho zone. Trends Cell Biol. 15, 651–658.
Cytokinesis: welcome to the Rho zone.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1OntLjP&md5=56c50d1ae206b57128c186ec9bbe1938CAS | 16243528PubMed |

Pincus, G., and Enzmann, E. V. (1935). The comparative behavior of mammalian eggs in vivo and in vitro: I. The activation of ovarian eggs. J. Exp. Med. 62, 665–675.
The comparative behavior of mammalian eggs in vivo and in vitro: I. The activation of ovarian eggs.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3crjs1agtA%3D%3D&md5=fd113bb5a01e073cecfc8abbc8525b15CAS | 19870440PubMed |

Pomerantz, Y., Elbaz, J., Ben-Eliezer, I., Reizel, Y., David, Y., Galiani, D., Nevo, N., Navon, A., and Dekel, N. (2012). From ubiquitin-proteasomal degradation to CDK1 inactivation: requirements for the first polar body extrusion in mouse oocytes. FASEB J. 26, 4495–4505.
From ubiquitin-proteasomal degradation to CDK1 inactivation: requirements for the first polar body extrusion in mouse oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1Cju77O&md5=fb60f4b9790fd74c2b2be88c9229d079CAS | 22859367PubMed |

Potapova, T. A., Daum, J. R., Pittman, B. D., Hudson, J. R., Jones, T. N., Satinover, D. L., Stukenberg, P. T., and Gorbsky, G. J. (2006). The reversibility of mitotic exit in vertebrate cells. Nature 440, 954–958.
The reversibility of mitotic exit in vertebrate cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjsVWktbc%3D&md5=e54157eb2aaf36b9f64f97fffc315c3bCAS | 16612388PubMed |

Potapova, T. A., Daum, J. R., Byrd, K. S., and Gorbsky, G. J. (2009). Fine tuning the cell cycle: activation of the Cdk1 inhibitory phosphorylation pathway during mitotic exit. Mol. Biol. Cell 20, 1737–1748.
Fine tuning the cell cycle: activation of the Cdk1 inhibitory phosphorylation pathway during mitotic exit.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlsFygsr4%3D&md5=8ded8d6196827467ee9dc295e4d52827CAS | 19158392PubMed |

Reis, A., Levasseur, M., Chang, H. Y., Elliott, D. J., and Jones, K. T. (2006). The CRY box: a second APCcdh1-dependent degron in mammalian cdc20. EMBO Rep. 7, 1040–1045.
The CRY box: a second APCcdh1-dependent degron in mammalian cdc20.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVajsbfE&md5=011c019605b5ff9e2d0356f7897160e8CAS | 16878123PubMed |

Reis, A., Madgwick, S., Chang, H. Y., Nabti, I., Levasseur, M., and Jones, K. T. (2007). Prometaphase APCcdh1 activity prevents non-disjunction in mammalian oocytes. Nat. Cell Biol. 9, 1192–1198.
Prometaphase APCcdh1 activity prevents non-disjunction in mammalian oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFSntb%2FN&md5=05185a784c75a0cbc14bf6dc59fda241CAS | 17891138PubMed |

Revenkova, E., and Jessberger, R. (2005). Keeping sister chromatids together: cohesins in meiosis. Reproduction 130, 783–790.
Keeping sister chromatids together: cohesins in meiosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xkt12guw%3D%3D&md5=6369e7582046ad7a8428479e05808192CAS | 16322538PubMed |

Ruiz, E. J., Vilar, M., and Nebreda, A. R. (2010). A two-step inactivation mechanism of Myt1 ensures CDK1/cyclin B activation and meiosis I entry. Curr. Biol. 20, 717–723.
A two-step inactivation mechanism of Myt1 ensures CDK1/cyclin B activation and meiosis I entry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlsFCrsL8%3D&md5=25801888abebf5cda16a79cdfa1cdafaCAS | 20362450PubMed |

Sakuno, T., and Watanabe, Y. (2009). Studies of meiosis disclose distinct roles of cohesin in the core centromere and pericentromeric regions. Chromosome Res. 17, 239–249.
Studies of meiosis disclose distinct roles of cohesin in the core centromere and pericentromeric regions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjsFCit78%3D&md5=c70aa7b69bf620107509f2ad6b696506CAS | 19308704PubMed |

Sakuno, T., Tanaka, K., Hauf, S., and Watanabe, Y. (2011). Repositioning of aurora B promoted by chiasmata ensures sister chromatid mono-orientation in meiosis I. Dev. Cell 21, 534–545.
Repositioning of aurora B promoted by chiasmata ensures sister chromatid mono-orientation in meiosis I.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtF2rsLvM&md5=df932f21dd7d4f419183c77a88afa797CAS | 21920317PubMed |

Salimian, K. J., Ballister, E. R., Smoak, E. M., Wood, S., Panchenko, T., Lampson, M. A., and Black, B. E. (2011). Feedback control in sensing chromosome biorientation by the aurora B kinase. Curr. Biol. 21, 1158–1165.
Feedback control in sensing chromosome biorientation by the aurora B kinase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXoslaktbk%3D&md5=c4311f99aee07a29a952980e1bf5efdaCAS | 21723127PubMed |

Santamaria, A., Neef, R., Eberspächer, U., Eis, K., Husemann, M., Mumberg, D., Prechtl, S., Schulze, V., Siemeister, G., Wortmann, L., Barr, F. A., and Nigg, E. A. (2007). Use of the novel Plk1 inhibitor ZK-thiazolidinone to elucidate functions of Plk1 in early and late stages of mitosis. Mol. Biol. Cell 18, 4024–4036.
Use of the novel Plk1 inhibitor ZK-thiazolidinone to elucidate functions of Plk1 in early and late stages of mitosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFCnsLbP&md5=1f4e31213aa8e4c9a3664e92fdde8dc1CAS | 17671160PubMed |

Schindler, K. (2011). Protein kinases and protein phosphatases that regulate meiotic maturation in mouse oocytes. Results Probl. Cell Differ. 53, 309–341.
Protein kinases and protein phosphatases that regulate meiotic maturation in mouse oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1SrsLbJ&md5=350229fb9fb1492aa5529e08f64fc453CAS | 21630151PubMed |

Schuh, M., and Ellenberg, J. (2007). Self-organization of MTOCs replaces centrosome function during acentrosomal spindle assembly in live mouse oocytes. Cell 130, 484–498.
Self-organization of MTOCs replaces centrosome function during acentrosomal spindle assembly in live mouse oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXptlyntbc%3D&md5=850d27e94cdf135e42ccf7ffa55e6d80CAS | 17693257PubMed |

Seki, A., Coppinger, J. A., Jang, C. Y., Yates, J. R., and Fang, G. (2008). Bora and the kinase aurora A cooperatively activate the kinase Plk1 and control mitotic entry. Science 320, 1655–1658.
Bora and the kinase aurora A cooperatively activate the kinase Plk1 and control mitotic entry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnt1Oju7g%3D&md5=38e650c7fac49504570fc7b248391cfaCAS | 18566290PubMed |

Shaul, Y. D., and Seger, R. (2007). The MEK/ERK cascade: from signaling specificity to diverse functions. Biochim. Biophys. Acta 1773, 1213–1226.
The MEK/ERK cascade: from signaling specificity to diverse functions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXosFyksbw%3D&md5=f9faa1cec5b0dc659afc7614cbc75c15CAS | 17112607PubMed |

Sorensen, R. A., and Wassarman, P. M. (1976). Relationship between growth and meiotic maturation of the mouse oocyte. Dev. Biol. 50, 531–536.
Relationship between growth and meiotic maturation of the mouse oocyte.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE283htFeguw%3D%3D&md5=c5f3056ae00290a3a1bf223e1f348108CAS | 1278599PubMed |

Stemmann, O., Zou, H., Gerber, S. A., Gygi, S. P., and Kirschner, M. W. (2001). Dual inhibition of sister chromatid separation at metaphase. Cell 107, 715–726.
Dual inhibition of sister chromatid separation at metaphase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhtFymsQ%3D%3D&md5=989530e305ebca9a144485b5017a7e36CAS | 11747808PubMed |

Stemmann, O., Gorr, I. H., and Boos, D. (2006). Anaphase topsy-turvy: Cdk1 a securin, separase a CKI. Cell Cycle 5, 11–13.
Anaphase topsy-turvy: Cdk1 a securin, separase a CKI.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjtVeqtr0%3D&md5=ab6fb2d8be8398da4fb9bf2fdf382056CAS | 16340311PubMed |

Sudakin, V., Ganoth, D., Dahan, A., Heller, H., Hershko, J., Luca, F. C., Ruderman, J. V., and Hershko, A. (1995). The cyclosome, a large complex containing cyclin-selective ubiquitin ligase activity, targets cyclins for destruction at the end of mitosis. Mol. Biol. Cell 6, 185–197.
| 1:CAS:528:DyaK2MXksFGhsbg%3D&md5=948738b40d468ebbe3b7b3e1c6200a55CAS | 7787245PubMed |

Sumara, I., Gimenez-Abian, J. F., Gerlich, D., Hirota, T., Kraft, C., de la Torre, C., Ellenberg, J., and Peters, J. M. (2004). Roles of polo-like kinase 1 in the assembly of functional mitotic spindles. Curr. Biol. 14, 1712–1722.
Roles of polo-like kinase 1 in the assembly of functional mitotic spindles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXotFCkur4%3D&md5=c09c0c52f66981ccaf2d0c74d3e8a7d3CAS | 15458642PubMed |

Sun, S. C., Xiong, B., Lu, S. S., and Sun, Q. Y. (2008). MEK1/2 is a critical regulator of microtubule assembly and spindle organization during rat oocyte meiotic maturation. Mol. Reprod. Dev. 75, 1542–1548.
MEK1/2 is a critical regulator of microtubule assembly and spindle organization during rat oocyte meiotic maturation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVKmsrbI&md5=e821baf0dfc1eee063a3a4fda41294dfCAS | 18270979PubMed |

Terret, M. E., Wassmann, K., Waizenegger, I., Maro, B., Peters, J. M., and Verlhac, M. H. (2003). The meiosis I-to-meiosis II transition in mouse oocytes requires separase activity. Curr. Biol. 13, 1797–1802.
The meiosis I-to-meiosis II transition in mouse oocytes requires separase activity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXot12iur4%3D&md5=e0fe73d08fa45ad8ebbf3ede0c3c244bCAS | 14561405PubMed |

Tong, C., Fan, H. Y., Lian, L., Li, S. W., Chen, D. Y., Schatten, H., and Sun, Q. Y. (2002). Polo-like kinase-1 is a pivotal regulator of microtubule assembly during mouse oocyte meiotic maturation, fertilization, and early embryonic mitosis. Biol. Reprod. 67, 546–554.
Polo-like kinase-1 is a pivotal regulator of microtubule assembly during mouse oocyte meiotic maturation, fertilization, and early embryonic mitosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlsFKqtLo%3D&md5=1b0a04a245fb77948bc318c5b9558f33CAS | 12135894PubMed |

Tong, C., Fan, H. Y., Chen, D. Y., Song, X. F., Schatten, H., and Sun, Q. Y. (2003). Effects of MEK inhibitor U0126 on meiotic progression in mouse oocytes: microtuble organization, asymmetric division and metaphase II arrest. Cell Res. 13, 375–383.
Effects of MEK inhibitor U0126 on meiotic progression in mouse oocytes: microtuble organization, asymmetric division and metaphase II arrest.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhsFWiurw%3D&md5=13a368aed0b68d00a01d8bd1355c58bfCAS | 14672561PubMed |

Verlhac, M. H., Kubiak, J. Z., Clarke, H. J., and Maro, B. (1994). Microtubule and chromatin behavior follow MAP kinase activity but not MPF activity during meiosis in mouse oocytes. Development 120, 1017–1025.
| 1:CAS:528:DyaK2cXksl2gtb4%3D&md5=dda8676b3404208b34199ac39470540aCAS | 7600950PubMed |

Verlhac, M. H., Kubiak, J. Z., Weber, M., Geraud, G., Colledge, W. H., Evans, M. J., and Maro, B. (1996). Mos is required for MAP kinase activation and is involved in microtubule organization during meiotic maturation in the mouse. Development 122, 815–822.
| 1:CAS:528:DyaK28XhvVOrtLY%3D&md5=fcaf9c238784385c4bbc47017a034327CAS | 8631259PubMed |

Verlhac, M. H., Lefebvre, C., Guillaud, P., Rassinier, P., and Maro, B. (2000). Asymmetric division in mouse oocytes: with or without Mos. Curr. Biol. 10, 1303–1306.
Asymmetric division in mouse oocytes: with or without Mos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXotVSrs78%3D&md5=5e7b2c55a65721187e6d34d75ea9adeeCAS | 11069114PubMed |

Wei, L., Liang, X.-W., Zhang, Q.-H., Li, M., Yuan, J., Li, S., Sun, S.-C., Ouyang, Y.-C., Schatten, H., and Sun, Q.-Y. (2010). BubR1 is a spindle assembly checkpoint protein regulating meiotic cell cycle progression of mouse oocyte. Cell Cycle 9, 1112–1121.
BubR1 is a spindle assembly checkpoint protein regulating meiotic cell cycle progression of mouse oocyte.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht12itr%2FJ&md5=7b737414127873b1ebedc5d4d4bd6754CAS | 20237433PubMed |

Wianny, F., Tavares, A., Evans, M. J., Glover, D. M., and Zernicka-Goetz, M. (1998). Mouse polo-like kinase 1 associates with the acentriolar spindle poles, meiotic chromosomes and spindle midzone during oocyte maturation. Chromosoma 107, 430–439.
Mouse polo-like kinase 1 associates with the acentriolar spindle poles, meiotic chromosomes and spindle midzone during oocyte maturation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXktlWkug%3D%3D&md5=2ac3aea24136aa40be9427020abd1c7aCAS | 9914375PubMed |

Williamson, A., Wickliffe, K. E., Mellone, B. G., Song, L., Karpen, G. H., and Rape, M. (2009). Identification of a physiological E2 module for the human anaphase-promoting complex. Proc. Natl Acad. Sci. USA 106, 18 213–18 218.
Identification of a physiological E2 module for the human anaphase-promoting complex.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVags7vM&md5=34237a3382718835a8617153a9cef29eCAS |

Winston, N. J. (1997). Stability of cyclin B protein during meiotic maturation and the first mitotic cell division in mouse oocytes. Biol. Cell 89, 211–219.
| 1:CAS:528:DyaK1cXitVCiug%3D%3D&md5=2af6b0e4e9a250cbffe569858e4536afCAS | 9429304PubMed |

Wolfe, B. A., Takaki, T., Petronczki, M., and Glotzer, M. (2009). Polo-like kinase 1 directs assembly of the HsCyk-4 RhoGAP/Ect2 RhoGEF complex to initiate cleavage furrow formation. PLoS Biol. 7, e1000110.
Polo-like kinase 1 directs assembly of the HsCyk-4 RhoGAP/Ect2 RhoGEF complex to initiate cleavage furrow formation.Crossref | GoogleScholarGoogle Scholar | 19468300PubMed |

Wong, O. K., and Fang, G. (2007). Cdk1 phosphorylation of BubR1 controls spindle checkpoint arrest and Plk1-mediated formation of the 3F3/2 epitope. J. Cell Biol. 179, 611–617.
Cdk1 phosphorylation of BubR1 controls spindle checkpoint arrest and Plk1-mediated formation of the 3F3/2 epitope.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlOgu7nJ&md5=9b61d3f6cca6efa5b5511cb62f1eb681CAS | 17998400PubMed |

Wu, T., Merbl, Y., Huo, Y., Gallop, J. L., Tzur, A., and Kirschner, M. W. (2010). UBE2S drives elongation of K11-linked ubiquitin chains by the anaphase-promoting complex. Proc. Natl Acad. Sci. USA 107, 1355–1360.
UBE2S drives elongation of K11-linked ubiquitin chains by the anaphase-promoting complex.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhslOkur0%3D&md5=c3098dfd4b81c60e1f3f95afa207d420CAS | 20080579PubMed |

Xiong, B., Yu, L.-Z., Wang, Q., Ai, J.-S., Yin, S., Liu, J.-H., OuYang, Y.-C., Hou, Y., Chen, D.-Y., Zou, H., and Sun, Q.-Y. (2007). Regulation of intracellular MEK1/2 translocation in mouse oocytes: cytoplasmic dynein/dynactin-mediated poleward transport and cyclin B degradation-dependent release from spindle poles. Cell Cycle 6, 1521–1527.
Regulation of intracellular MEK1/2 translocation in mouse oocytes: cytoplasmic dynein/dynactin-mediated poleward transport and cyclin B degradation-dependent release from spindle poles.Crossref | GoogleScholarGoogle Scholar | 17507801PubMed |

Xu, J., Wang, M., Gao, X., Hu, B., Du, Y., Zhou, J., Tian, X., and Huang, X. (2011). Separase phosphosite mutation leads to genome instability and primordial germ cell depletion during oogenesis. PLoS One 6, e18763.
Separase phosphosite mutation leads to genome instability and primordial germ cell depletion during oogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXltVWqsrw%3D&md5=9fe6bc4480e734ee2ea36c1ecdc5b2f5CAS | 21494564PubMed |

Young, L. M., and Pagano, M. (2010). Cdc25 phosphatases: differential regulation by ubiquitin-mediated proteolysis. Cell Cycle 9, 4613–4614.
Cdc25 phosphatases: differential regulation by ubiquitin-mediated proteolysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXit1KrsLs%3D&md5=e814ef0354bdb0c328f9c9d5304bac61CAS | 21260951PubMed |

Yu, L.-Z., Xiong, B., Gao, W.-X., Wang, C.-M., Zhong, Z.-S., Huo, L.-J., Wang, Q., Hou, Y., Liu, K., Liu, J., Schatten, H., Chen, D-Y., and Sun, Q.-Y. (2007). MEK1/2 regulates microtubule organization, spindle pole tethering and asymmetric division during mouse oocyte meiotic maturation. Cell Cycle 6, 330–338.
MEK1/2 regulates microtubule organization, spindle pole tethering and asymmetric division during mouse oocyte meiotic maturation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnvFygtLo%3D&md5=6d78b95c2464b56c9c732a852c4be63cCAS | 17297311PubMed |

Yuan, K., Hu, H., Guo, Z., Fu, G., Shaw, A. P., Hu, R., and Yao, X. (2007). Phospho-regulation of HsCdc14A By Polo-like kinase 1 is essential for mitotic progression. J. Biol. Chem. 282, 27 414–27 423.
Phospho-regulation of HsCdc14A By Polo-like kinase 1 is essential for mitotic progression.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVWjsb%2FO&md5=14c3aeadb51e4a66661adc4d76057e4bCAS |

Yuan, K., Huang, Y., and Yao, X. (2011). Illumination of mitotic orchestra during cell division: a Polo view. Cell. Signal. 23, 1–5.
Illumination of mitotic orchestra during cell division: a Polo view.Crossref | GoogleScholarGoogle Scholar | 20633640PubMed |

Yuce, O., Piekny, A., and Glotzer, M. (2005). An ECT2–centralspindlin complex regulates the localization and function of RhoA. J. Cell Biol. 170, 571–582.
An ECT2–centralspindlin complex regulates the localization and function of RhoA.Crossref | GoogleScholarGoogle Scholar | 16103226PubMed |

Zhang, C.-H., Wang, Z.-B., Quan, S., Huang, X., Tong, J.-S., Ma, J.-Y., Guo, L., Wei, Y., Ouyang, Y.-C., Hou, Y., Xing, F.-Q., and Sun, Q.-Y. (2011). GM130, a cis-Golgi protein, regulates meiotic spindle assembly and asymmetric division in mouse oocyte. Cell Cycle 10, 1861–1870.
GM130, a cis-Golgi protein, regulates meiotic spindle assembly and asymmetric division in mouse oocyte.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1eku7zF&md5=e24cdd60dccf622345da476d82ef693aCAS | 21552007PubMed |

Zou, H., McGarry, T. J., Bernal, T., and Kirschner, M. W. (1999). Identification of a vertebrate sister-chromatid separation inhibitor involved in transformation and tumorigenesis. Science 285, 418–422.
Identification of a vertebrate sister-chromatid separation inhibitor involved in transformation and tumorigenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXkvVGgtbg%3D&md5=584121f8a49c681fe2e703e0d01e4e48CAS | 10411507PubMed |