Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH FRONT

Spindle assembly checkpoint regulation of chromosome segregation in mammalian oocytes

Zbigniew Polanski
+ Author Affiliations
- Author Affiliations

Department of Genetics and Evolution, Institute of Zoology, Jagiellonian University, ul. Gronostajowa 9, 30-387 Krakow, Poland. Email: zbigniew.polanski@uj.edu.pl

Reproduction, Fertility and Development 25(3) 472-483 https://doi.org/10.1071/RD12145
Submitted: 4 May 2012  Accepted: 16 July 2012   Published: 29 August 2012

Abstract

The spindle assembly checkpoint (SAC) is a surveillance mechanism that monitors the quality of the spindle during division and blocks anaphase entry in the presence of anomalies that could result in erroneous segregation of the chromosomes. Because human aneuploidy is mainly linked to the erroneous segregation of genetic material in oocytes, the issue of the effectiveness of the SAC in female meiosis is especially important. The present review summarises our understanding of the SAC control of mammalian oocyte meiosis, including its possible impact on the incidence of embryonic aneuploidy. Owing to the peculiarities of cell cycle control in female meiosis, the integration of the SAC within such a specific environment results in several unusual situations, which are also discussed.


References

Albertini, D. F., and Eppig, J. J. (1995). Unusual cytoskeletal and chromatin configurations in mouse oocytes that are atypical in meiotic progression. Dev. Genet. 16, 13–19.
Unusual cytoskeletal and chromatin configurations in mouse oocytes that are atypical in meiotic progression.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2M3nsl2qsg%3D%3D&md5=5e27e74a7fd15e8c01ebdc8d760e9834CAS | 7758242PubMed |

Baker, D. J., Jeganathan, K. B., Cameron, J. D., Thompson, M., Juneja, S., Kopecka, A., Kumar, R., Jenkins, R. B., de Groen, P. C., Roche, P., and van Deursen, J. M. (2004). BubR1 insufficiency causes early onset of aging-associated phenotypes and infertility in mice. Nat. Genet. 36, 744–749.
BubR1 insufficiency causes early onset of aging-associated phenotypes and infertility in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlt1Cku7g%3D&md5=90ce8fbe239ae595c6c6d6a4896ec7aeCAS | 15208629PubMed |

Blagosklonny, M. V. (2007). Mitotic arrest and cell fate: why and how mitotic inhibition of transcription drives mutually exclusive events. Cell Cycle 6, 70–74.
Mitotic arrest and cell fate: why and how mitotic inhibition of transcription drives mutually exclusive events.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnvFygtr8%3D&md5=40703d1cb99009990bdf52a366092c95CAS | 17245109PubMed |

Borsuk, E., and Manka, R. (1988). Behavior of sperm nuclei in intact and bisected metaphase II mouse oocytes fertilized in the presence of colcemid. Gamete Res. 20, 365–376.
Behavior of sperm nuclei in intact and bisected metaphase II mouse oocytes fertilized in the presence of colcemid.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL1M7nt1Omsg%3D%3D&md5=6d516189315df02b70938e717d7026beCAS | 3235047PubMed |

Brar, G. A., and Amon, A. (2008). Emerging roles for centromeres in meiosis I chromosome segregation. Nat. Rev. Genet. 9, 899–910.
Emerging roles for centromeres in meiosis I chromosome segregation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlyhtbnN&md5=3eb9ad37b5e616efcbfb8fb1e298d717CAS | 18981989PubMed |

Brunet, S., and Maro, B. (2005). Cytoskeleton and cell cycle control during meiotic maturation of the mouse oocyte: integrating time and space. Reproduction 130, 801–811.
Cytoskeleton and cell cycle control during meiotic maturation of the mouse oocyte: integrating time and space.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xkt12nsw%3D%3D&md5=1a41cd076bbf22e684a22a7b1c0b59b2CAS | 16322540PubMed |

Brunet, S., Polanski, Z., Verlhac, M. H., Kubiak, J. Z., and Maro, B. (1998). Bipolar meiotic spindle formation without chromatin. Curr. Biol. 8, 1231–1234.
Bipolar meiotic spindle formation without chromatin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXnt1Grs7w%3D&md5=02e62585fd449eee6e160f4ef88dfa73CAS | 9811610PubMed |

Brunet, S., Maria, A. S., Guillaud, P., Dujardin, D., Kubiak, J. Z., and Maro, B. (1999). Kinetochore fibers are not involved in the formation of the first meiotic spindle in mouse oocytes, but control the exit from the first meiotic M phase. J. Cell Biol. 146, 1–12.
Kinetochore fibers are not involved in the formation of the first meiotic spindle in mouse oocytes, but control the exit from the first meiotic M phase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXksFCjsrw%3D&md5=bcc951b20550a8fb10019ecc2f9c8c13CAS | 10402455PubMed |

Brunet, S., Pahlavan, G., Taylor, S., and Maro, B. (2003). Functionality of the spindle checkpoint during the first meiotic division of mammalian oocytes. Reproduction 126, 443–450.
Functionality of the spindle checkpoint during the first meiotic division of mammalian oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpt1Clu70%3D&md5=5aa3cb045336d810ff82cf5c8fafe3aaCAS | 14525526PubMed |

Burgoyne, P. S., and Mahadevaiah, S. K. (1993). Unpaired sex chromosomes and gametogenetic failure. In ‘Chromosome Today. Vol. 11.’ (Eds A. T. Sumner and A. C. Chandley.) pp. 243–263. (Chapman and Hall, London.)

Chebotareva, T., Taylor, J., Mullins, J. J., and Wilmut, I. (2011). Rat eggs cannot wait: spontaneous exit from meiotic metaphase-II arrest. Mol. Reprod. Dev. 78, 795–807.
Rat eggs cannot wait: spontaneous exit from meiotic metaphase-II arrest.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlagu7rN&md5=0b411a56056c96648b26d516d587c5ffCAS | 21910153PubMed |

Chen, H. L., Tang, C. J., Chen, C. Y., and Tang, T. K. (2005). Overexpression of an Aurora-C kinase-deficient mutant disrupts the Aurora-B/INCENP complex and induces polyploidy. J. Biomed. Sci. 12, 297–310.
Overexpression of an Aurora-C kinase-deficient mutant disrupts the Aurora-B/INCENP complex and induces polyploidy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlajur7L&md5=31b7729be4bc258decbc18f7f720715dCAS | 15917996PubMed |

Chi, Y. H., Haller, K., Ward, M. D., Semmes, O. J., Li, Y., and Jeang, K. T. (2008). Requirements for protein phosphorylation and the kinase activity of polo-like kinase 1 (Plk1) for the kinetochore function of mitotic arrest deficiency protein 1 (Mad1). J. Biol. Chem. 283, 35 834–35 844.
Requirements for protein phosphorylation and the kinase activity of polo-like kinase 1 (Plk1) for the kinetochore function of mitotic arrest deficiency protein 1 (Mad1).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVylsrbI&md5=a12e59efb8b2ad0b020562b155e96c79CAS |

Chiang, T., Duncan, F. E., Schindler, K., Schultz, R. M., and Lampson, M. A. (2010). Evidence that weakened centromere cohesion is a leading cause of age-related aneuploidy in oocytes. Curr. Biol. 20, 1522–1528.
Evidence that weakened centromere cohesion is a leading cause of age-related aneuploidy in oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFGgsL7O&md5=a9cb7d6aa43a53e25e201929e61330daCAS | 20817534PubMed |

Chiang, T., Schultz, R. M., and Lampson, M. (2011). Age-dependent susceptibility of chromosome cohesion to premature separase activation in mouse oocytes. Biol. Reprod. 85, 1279–1283.
Age-dependent susceptibility of chromosome cohesion to premature separase activation in mouse oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1ShsLfL&md5=c0c336b0198cdbdf08b745fede473128CAS | 21865557PubMed |

Chiang, T., Schultz, R. M., and Lampson, M. A. (2012). Meiotic origins of maternal age-related aneuploidy. Biol. Reprod. 86, 1–7.
Meiotic origins of maternal age-related aneuploidy.Crossref | GoogleScholarGoogle Scholar | 21957193PubMed |

Ciemerych, M. A., and Kubiak, J. Z. (1998). Cytostatic activity develops during meiosis I in oocytes of LT/Sv mice. Dev. Biol. 200, 198–211.
Cytostatic activity develops during meiosis I in oocytes of LT/Sv mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXlslKgtLo%3D&md5=7047787fd3e49e5d26a77fc0fc4ec6cfCAS | 9705227PubMed |

Cimini, D. (2007). Detection and correction of merotelic kinetochore orientation by Aurora B and its partners. Cell Cycle 6, 1558–1564.
Detection and correction of merotelic kinetochore orientation by Aurora B and its partners.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFWlsrzL&md5=23a2549b672a3d4eb2cba070be9a88bfCAS | 17603301PubMed |

de Medina-Redondo, M., and Meraldi, P. (2011). The spindle assembly checkpoint: clock or domino? In ‘Cell Cycle in Development, Results and Problems in Cell Differentiation’. (Ed. J. Z. Kubiak.) pp. 75–91. (Springer Verlag: Berlin.)

Duncan, F. E., Chiang, T., Schultz, R. M., and Lampson, M. A. (2009). Evidence that a defective spindle assembly checkpoint is not the primary cause of maternal age-associated aneuploidy in mouse eggs. Biol. Reprod. 81, 768–776.
Evidence that a defective spindle assembly checkpoint is not the primary cause of maternal age-associated aneuploidy in mouse eggs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFyhsLnE&md5=80aa14e2e1f4330217beffcc8414db31CAS | 19553597PubMed |

Elowe, S. (2011). Bub1 and BubR1: at the interface between chromosome attachment and the spindle checkpoint. Mol. Cell. Biol. 31, 3085–3093.
Bub1 and BubR1: at the interface between chromosome attachment and the spindle checkpoint.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpsVylsbc%3D&md5=52becb9069b3b8fc8529f1a4d74f45baCAS | 21628528PubMed |

Eppig, J. J. (1979). Granulosa cell deficient follicles: occurrence, structure, and relationship to ovarian teratocarcinogenesis in strain LT/Sv mice. Differentiation 12, 111–120.
Granulosa cell deficient follicles: occurrence, structure, and relationship to ovarian teratocarcinogenesis in strain LT/Sv mice.Crossref | GoogleScholarGoogle Scholar |

Fang, X., and Zhang, P. (2011). Aneuploidy and tumorigenesis. Semin. Cell Dev. Biol. 22, 595–601.
Aneuploidy and tumorigenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlCnsbbF&md5=b0c1a8b07e795f725b84579d3e5a179eCAS | 21392584PubMed |

Fang, G., Yu, H., and Kirschner, M. W. (1998). Direct binding of CDC20 protein family members activates the anaphase-promoting complex in mitosis and G1. Mol. Cell 2, 163–171.
Direct binding of CDC20 protein family members activates the anaphase-promoting complex in mitosis and G1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmtVyju7g%3D&md5=5ca77741b3e581fe62d06d539e6cd8bdCAS | 9734353PubMed |

Hached, K., Xie, S. Z., Buffin, E., Cladière, D., Rachez, C., Sacras, M., Sorger, P. K., and Wassmann, K. (2011). Mps1 at kinetochores is essential for female mouse meiosis I. Development 138, 2261–2271.
Mps1 at kinetochores is essential for female mouse meiosis I.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXosVSltL0%3D&md5=07bfdd567ca397778bad5de7861bec63CAS | 21558374PubMed |

Hartwell, L. H., and Weinert, T. A. (1989). Checkpoints: controls that ensure the order of cell cycle events. Science 246, 629–634.
Checkpoints: controls that ensure the order of cell cycle events.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXis12k&md5=d580282e37514c0a34fce8502bf82159CAS | 2683079PubMed |

Hassold, T., and Hunt, P. (2001). To err (meiotically) is human: the genesis of human aneuploidy. Nat. Rev. Genet. 2, 280–291.
To err (meiotically) is human: the genesis of human aneuploidy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXisVCqurY%3D&md5=acb9f508787eef898399a52e0e141258CAS | 11283700PubMed |

Hirao, Y., and Eppig, J. J. (1997). Analysis of the mechanism(s) of metaphase I arrest in strain LT mouse oocytes: participation of MOS. Development 124, 5107–5113.
| 1:CAS:528:DyaK1cXjtV2itA%3D%3D&md5=84728069bb4fd7c7101242e615c11678CAS | 9362468PubMed |

Hoffmann, S., Maro, B., Kubiak, J. Z., and Polanski, Z. (2011). A single bivalent efficiently inhibits cyclin B1 degradation and polar body extrusion in mouse oocytes indicating robust SAC during female meiosis I. PLoS One 6, e27143.
A single bivalent efficiently inhibits cyclin B1 degradation and polar body extrusion in mouse oocytes indicating robust SAC during female meiosis I.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1Smt7bN&md5=0fd57e2c37d6d784c2a8e87ce4adc8ebCAS | 22125605PubMed |

Hoffmann, S., Król, M., and Polanski, Z. (2012). Spindle assembly checkpoint-related meiotic defect in oocytes from LT/Sv mice has cytoplasmic origin and diminishes in older females. Reproduction , .
Spindle assembly checkpoint-related meiotic defect in oocytes from LT/Sv mice has cytoplasmic origin and diminishes in older females.Crossref | GoogleScholarGoogle Scholar | 22736797PubMed |

Holt, J. E., and Jones, K. T. (2009). Control of homologous chromosome division in the mammalian oocyte. Mol. Hum. Reprod. 15, 139–147.
Control of homologous chromosome division in the mammalian oocyte.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXis1aqsb4%3D&md5=7a7059892d9913dce8818d0eec992f33CAS | 19179408PubMed |

Homer, H. (2011). New insights into the genetic regulation of homologue disjunction in mammalian oocytes. Cytogenet. Genome Res. 133, 209–222.
New insights into the genetic regulation of homologue disjunction in mammalian oocytes.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3MvivFCjtw%3D%3D&md5=706a6998ddfc2a93d49878871dff8923CAS | 21335952PubMed |

Homer, H. A., McDougall, A., Levasseur, M., Murdoch, A. P., and Herbert, M. (2005a). Mad2 is required for inhibiting securin and cyclin B degradation following spindle depolymerisation in meiosis I mouse oocytes. Reproduction 130, 829–843.
Mad2 is required for inhibiting securin and cyclin B degradation following spindle depolymerisation in meiosis I mouse oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xkt12ntg%3D%3D&md5=819d092cf3933776d40bd2ef61060fa9CAS | 16322543PubMed |

Homer, H. A., McDougall, A., Levasseur, M., Yallop, K., Murdoch, A. P., and Herbert, M. (2005b). Mad2 prevents aneuploidy and premature proteolysis of cyclin B and securin during meiosis I in mouse oocytes. Genes Dev. 19, 202–207.
Mad2 prevents aneuploidy and premature proteolysis of cyclin B and securin during meiosis I in mouse oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXotlSltg%3D%3D&md5=27cb0a7d050664bc842f868fee2b969bCAS | 15655110PubMed |

Homer, H., Gui, L., and Carroll, J. (2009). A spindle assembly checkpoint protein functions in prophase I arrest and prometaphase progression. Science 326, 991–994.
A spindle assembly checkpoint protein functions in prophase I arrest and prometaphase progression.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlyls7bF&md5=095ea9ee1bcae8dc047f3bd2183be5e3CAS | 19965510PubMed |

Hoyt, M. A., Totis, L., and Roberts, B. T. (1991). S. cerevisiae genes required for cell cycle arrest in response to loss of microtubule function. Cell 66, 507–517.
S. cerevisiae genes required for cell cycle arrest in response to loss of microtubule function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38Xkt1Wgs7s%3D&md5=fc9214b6c3cd295b0869eda9c4a5363eCAS | 1651171PubMed |

Hupalowska, A., Kalaszczynska, I., Hoffmann, S., Tsurumi, C., Kubiak, J. Z., Polanski, Z., and Ciemerych, M. A. (2008). Metaphase I arrest in LT/Sv mouse oocytes involves the spindle assembly checkpoint. Biol. Reprod. 79, 1102–1110.
Metaphase I arrest in LT/Sv mouse oocytes involves the spindle assembly checkpoint.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVCltL%2FK&md5=a36e277aff6f556da56cdecd55610c43CAS | 18753610PubMed |

Iwamatsu, T., and Chang, M. C. (1972). Sperm penetration in vitro of mouse oocytes at various times during maturation. J. Reprod. Fertil. 31, 237–247.
Sperm penetration in vitro of mouse oocytes at various times during maturation.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE3s%2FltFKmsw%3D%3D&md5=a89581f978f5449ff14e7156ee1d1d3dCAS | 4118050PubMed |

Jones, K. T. (2011). Anaphase-promoting complex control in female mouse meiosis. In ‘Cell Cycle in Development, Results and Problems in Cell Differentiation’. (Ed. J. Z. Kubiak.) pp. 343–363. (Springer Verlag: Berlin.)

Kaufman, M. H., and Howlett, S. K. (1986). The ovulation and activation of primary and secondary oocytes in LT/Sv strain mice. Gamete Res. 14, 255–264.
The ovulation and activation of primary and secondary oocytes in LT/Sv strain mice.Crossref | GoogleScholarGoogle Scholar |

Kitajima, T. S., Kawashima, S. A., and Watanabe, Y. (2004). The conserved kinetochore protein shugoshin protects centromeric cohesion during meiosis. Nature 427, 510–517.
The conserved kinetochore protein shugoshin protects centromeric cohesion during meiosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXpsFWnsg%3D%3D&md5=ea1a6cb8a77fa7a7b996f64f3c365181CAS | 14730319PubMed |

Kitajima, T. S., Ohsugi, M., and Ellenberg, J. (2011). Complete kinetochore tracking reveals error-prone homologous chromosome biorientation in mammalian oocytes. Cell 146, 568–581.
Complete kinetochore tracking reveals error-prone homologous chromosome biorientation in mammalian oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVKjsbzL&md5=d0a3e6733ec46521091cd981b289efa2CAS | 21854982PubMed |

Kouznetsova, A., Lister, L., Nordenskjöld, M., Herbert, M., and Höög, C. (2007). Bi-orientation of achiasmatic chromosomes in meiosis I oocytes contributes to aneuploidy in mice. Nat. Genet. 39, 966–968.
Bi-orientation of achiasmatic chromosomes in meiosis I oocytes contributes to aneuploidy in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXot1CmsL4%3D&md5=51447dd4d3edeec6a2a133e38ef49d80CAS | 17618286PubMed |

Kubiak, J. Z. (1989). Mouse oocytes gradually develop the capacity for activation during the metaphase II arrest. Dev. Biol. 136, 537–545.
Mouse oocytes gradually develop the capacity for activation during the metaphase II arrest.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK3c%2FmtVGitA%3D%3D&md5=e701bb74575c60a99306523bbbe1e9eaCAS | 2583375PubMed |

Kubiak, J. Z., Weber, M., Géraud, G., and Maro, B. (1992). Cell cycle modification during the transitions between meiotic M-phases in mouse oocytes. J. Cell Sci. 102, 457–467.
| 1:CAS:528:DyaK38Xls1ynt7Y%3D&md5=dde632fd0b27ae63484cef595e41e561CAS | 1506428PubMed |

Kubiak, J. Z., Weber, M., de Pennart, H., Winston, N. J., and Maro, B. (1993). The metaphase II arrest in mouse oocytes is controlled through microtubule-dependent destruction of cyclin B in the presence of CSF. EMBO J. 12, 3773–3778.
| 1:CAS:528:DyaK3sXmtVSlsrk%3D&md5=7b1b77bde71f622cb0ee6ff1ce13fe2fCAS | 8404848PubMed |

Kubiak, J. Z., Ciemerych, M. A., Hupalowska, A., Sikora-Polaczek, M., and Polanski, Z. (2008). On the transition from the meiotic to mitotic cell cycle during early mouse development. Int. J. Dev. Biol. 52, 201–217.
On the transition from the meiotic to mitotic cell cycle during early mouse development.Crossref | GoogleScholarGoogle Scholar | 18311711PubMed |

Lamb, E., and Hassold, T. J. (2004). Nondisjunction: a view from ringside. N. Engl. J. Med. 351, 1931–1934.
Nondisjunction: a view from ringside.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXps1Wltrs%3D&md5=8f7b58b6b0c19ca942ef2918d921028eCAS |

Lane, S. I. R., Yun, Y., and Jones, K. T. (2012). Timing of anaphase-promoting complex activation in mouse oocytes is predicted by microtubule-kinetochore attachment but not by bivalent alignment or tension. Development 139, 1947–1955.
Timing of anaphase-promoting complex activation in mouse oocytes is predicted by microtubule-kinetochore attachment but not by bivalent alignment or tension.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVGlsLvP&md5=66d103dbaa4cca670dac790a962bb4e8CAS |

Le Masson, F., Razak, Z., Kaigo, M., Audouard, C., Charry, C., Cooke, H., Westwood, J. T., and Christians, E. S. (2011). Identification of heat shock factor 1 molecular and cellular targets during embryonic and adult female meiosis. Mol. Cell. Biol. 31, 3410–3423.
Identification of heat shock factor 1 molecular and cellular targets during embryonic and adult female meiosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVemtLrO&md5=13fc7c3aca001ced5f59ae1ed54f95c3CAS | 21690297PubMed |

Lee, J., Kitajima, T. S., Tanno, Y., Yoshida, K., Morita, T., Miyano, T., Miyake, M., and Watanabe, Y. (2008). Unified mode of centromeric protection by shugoshin in mammalian oocytes and somatic cells. Nat. Cell Biol. 10, 42–52.
Unified mode of centromeric protection by shugoshin in mammalian oocytes and somatic cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXkvVaq&md5=3abfd3359b70ccc3f0f9d1ad7e7f313bCAS | 18084284PubMed |

Leland, S., Nagarajan, P., Polyzos, A., Thomas, S., Samaan, G., Donnell, R., Marchetti, F., and Venkatachalam, S. (2009). Heterozygosity for a Bub1 mutation causes female-specific germ cell aneuploidy in mice. Proc. Natl Acad. Sci. USA 106, 12 776–12 781.
Heterozygosity for a Bub1 mutation causes female-specific germ cell aneuploidy in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVKlt77O&md5=f44681a72573d39b002271b0cc5f3f97CAS |

LeMaire-Adkins, R., Radke, K., and Hunt, P. A. (1997). Lack of checkpoint control at the metaphase/anaphase transition: a mechanism of meiotic nondisjunction in mammalian females. J. Cell Biol. 139, 1611–1619.
| 1:CAS:528:DyaK1cXht12msA%3D%3D&md5=6fbbd37bccbeee87f23a01fb7cce619cCAS | 9412457PubMed |

Li, M., Li, S., Yuan, J., Wang, Z. B., Sun, S. C., Schatten, H., and Sun, Q. Y. (2009). Bub3 is a spindle assembly checkpoint protein regulating chromosome segregation during mouse oocyte meiosis. PLoS One 4, e7701.
Bub3 is a spindle assembly checkpoint protein regulating chromosome segregation during mouse oocyte meiosis.Crossref | GoogleScholarGoogle Scholar | 19888327PubMed |

Li, S., Ou, X. H., Wang, Z. B., Xiong, B., Tong, J. S., Wei, L., Li, M., Yuan, J., Ouyang, Y. C., Hou, Y., Schatten, H., and Sun, Q. Y. (2010). ERK3 is required for metaphase-anaphase transition in mouse oocyte meiosis. PLoS One 5, e13074.
ERK3 is required for metaphase-anaphase transition in mouse oocyte meiosis.Crossref | GoogleScholarGoogle Scholar | 20927325PubMed |

Li, R., and Murray, A. W. (1991). Feedback control of mitosis in budding yeast. Cell 66, 519–531.
Feedback control of mitosis in budding yeast.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XitlWlsLw%3D&md5=8bf7f87ab2297091fd1eafc1b5d90b88CAS | 1651172PubMed |

Lister, L. M., Kouznetsova, A., Hyslop, L. A., Kalleas, D., Pace, S. L., Barel, J. C., Nathan, A., Floros, V., Adelfalk, C., Watanabe, Y., Jessberger, R., Kirkwood, T. B., Höög, C., and Herbert, M. (2010). Age-related meiotic segregation errors in mammalian oocytes are preceded by depletion of cohesin and Sgo2. Curr. Biol. 20, 1511–1521.
Age-related meiotic segregation errors in mammalian oocytes are preceded by depletion of cohesin and Sgo2.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFGgsL7N&md5=700cc5edd4126d82ed24a12100a63958CAS | 20817533PubMed |

Liu, L., and Keefe, D. L. (2008). Defective cohesin is associated with age-dependent misaligned chromosomes in oocytes. Reprod. Biomed. Online 16, 103–112.
Defective cohesin is associated with age-dependent misaligned chromosomes in oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlOisw%3D%3D&md5=5b29d27f83b2432aaa4533a670645dc6CAS | 18252055PubMed |

Ma, W., Zhang, D., Hou, Y., Li, Y. H., Sun, Q. Y., Sun, X. F., and Wang, W. H. (2005). Reduced expression of MAD2, BCL2, and MAP kinase activity in pig oocytes after in vitro aging are associated with defects in sister chromatid segregation during meiosis II and embryo fragmentation after activation. Biol. Reprod. 72, 373–383.
Reduced expression of MAD2, BCL2, and MAP kinase activity in pig oocytes after in vitro aging are associated with defects in sister chromatid segregation during meiosis II and embryo fragmentation after activation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXptFGlsA%3D%3D&md5=85a87b12083d55c1b039a1774c43f174CAS | 15469999PubMed |

Ma, W., Baumann, C., and Viveiros, M. M. (2010). NEDD1 is crucial for meiotic spindle stability and accurate chromosome segregation in mammalian oocytes. Dev. Biol. 339, 439–450.
NEDD1 is crucial for meiotic spindle stability and accurate chromosome segregation in mammalian oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXis1aisrg%3D&md5=50e434eac46abb0535d2276f1282e24cCAS | 20079731PubMed |

Maresca, T. J., and Salmon, E. D. (2009). Intrakinetochore stretch is associated with changes in kinetochore phosphorylation and spindle assembly checkpoint activity. J. Cell Biol. 184, 373–381.
Intrakinetochore stretch is associated with changes in kinetochore phosphorylation and spindle assembly checkpoint activity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXitV2rt74%3D&md5=864b76b825af0c2d8aa75c0e9d41c00aCAS | 19193623PubMed |

Maresca, T. J., and Salmon, E. D. (2010). Welcome to a new kind of tension: translating kinetochore mechanics into a wait-anaphase signal. J. Cell Sci. 123, 825–835.
Welcome to a new kind of tension: translating kinetochore mechanics into a wait-anaphase signal.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXltlWrtLk%3D&md5=6be40e7dbe043628622beb886ea3e39eCAS | 20200228PubMed |

McGuinness, B. E., Anger, M., Kouznetsova, A., Gil-Bernabé, A. M., Helmhart, W., Kudo, N. R., Wuensche, A., Taylor, S., Hoog, C., Novak, B., and Nasmyth, K. (2009). Regulation of APC/C activity in oocytes by a Bub1-dependent spindle assembly checkpoint. Curr. Biol. 19, 369–380.
Regulation of APC/C activity in oocytes by a Bub1-dependent spindle assembly checkpoint.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXivVKit7o%3D&md5=ba84a0904898296aeae5611b721fd041CAS | 19249208PubMed |

Michaelis, C., Ciosk, R., and Nasmyth, K. (1997). Cohesins: chromosomal proteins that prevent premature separation of sister chromatids. Cell 91, 35–45.
Cohesins: chromosomal proteins that prevent premature separation of sister chromatids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmslGgt70%3D&md5=0193f27a36c74358b4fe0b16f471dca6CAS | 9335333PubMed |

Minshull, J., Sun, H., Tonks, N. K., and Murray, A. W. (1994). A MAP kinase-dependent spindle assembly checkpoint in Xenopus egg extracts. Cell 79, 475–486.
A MAP kinase-dependent spindle assembly checkpoint in Xenopus egg extracts.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2M%2Fkt1Ontg%3D%3D&md5=3a2fdea2c406d1c35180fb1d4ec436caCAS | 7954813PubMed |

Musacchio, A., and Salmon, E. D. (2007). The spindle-assembly checkpoint in space and time. Nat. Rev. Mol. Cell. Biol. 8, 379–393.
The spindle-assembly checkpoint in space and time.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXksFSjsr0%3D&md5=dacc1a09860d44c24137e354eb983b3fCAS | 17426725PubMed |

Nagaoka, S. I., Hodges, C. A., Albertini, D. F., and Hunt, P. A. (2011). Oocyte-specific differences in cell-cycle control create an innate susceptibility to meiotic errors. Curr. Biol. 21, 651–657.
Oocyte-specific differences in cell-cycle control create an innate susceptibility to meiotic errors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXltFyjurs%3D&md5=27966d5189041c8379a44ddc07fccd07CAS | 21497085PubMed |

Nasmyth, K. (2002). Segregating sister genomes: the molecular biology of chromosome separation. Science 297, 559–565.
Segregating sister genomes: the molecular biology of chromosome separation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlslWkurk%3D&md5=bf8dfc4aec60acdf878456c230369fe1CAS | 12142526PubMed |

Niault, T., Hached, K., Sotillo, R., Sorger, P. K., Maro, B., Benezra, R., and Wassmann, K. (2007). Changing Mad2 levels affects chromosome segregation and spindle assembly checkpoint control in female mouse meiosis I. PLoS One 2, e1165.
Changing Mad2 levels affects chromosome segregation and spindle assembly checkpoint control in female mouse meiosis I.Crossref | GoogleScholarGoogle Scholar | 18043727PubMed |

Ou, X. H., Li, S., Xu, B. Z., Wang, Z. B., Quan, S., Li, M., Zhang, Q. H., Ouyang, Y. C., Schatten, H., Xing, F. Q., and Sun, Q. Y. (2010). p38α MAPK is a MTOC-associated protein regulating spindle assembly, spindle length and accurate chromosome segregation during mouse oocyte meiotic maturation. Cell Cycle 9, 4130–4143.
p38α MAPK is a MTOC-associated protein regulating spindle assembly, spindle length and accurate chromosome segregation during mouse oocyte meiotic maturation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXit1ahur0%3D&md5=d822bd0dbbdb0812b52c955f26087a43CAS | 20948319PubMed |

Pan, H., Ma, P., Zhu, W., and Schultz, R. M. (2008). Age-associated increase in aneuploidy and changes in gene expression in mouse eggs. Dev. Biol. 316, 397–407.
Age-associated increase in aneuploidy and changes in gene expression in mouse eggs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXksVKrtLw%3D&md5=dfba40d84f10b41ca4a6e83852485038CAS | 18342300PubMed |

Pellestor, F., Anahory, T., and Hamamah, S. (2005). Effect of maternal age on the frequency of cytogenetic abnormalities in human oocytes. Cytogenet. Genome Res. 111, 206–212.
Effect of maternal age on the frequency of cytogenetic abnormalities in human oocytes.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2MrhvVemsA%3D%3D&md5=66bf671c484cbc3280e8981d526a98e6CAS | 16192696PubMed |

Polanski, Z. (1986). In-vivo and in-vitro maturation rate of oocytes from two strains of mice. J. Reprod. Fertil. 78, 103–109.
In-vivo and in-vitro maturation rate of oocytes from two strains of mice.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL2s%2FhtFGitQ%3D%3D&md5=be3d9f01b42b2cdf57726d847f9b10d0CAS | 3761260PubMed |

Polanski, Z. (1990). Different response of maturing oocytes from two inbred strains of mice to sperm penetration. Folia Biol. 38, 13–19.
| 1:STN:280:DyaK3M7pt1ajtg%3D%3D&md5=133c0dbcd45aa531472a8edaccac0f2eCAS |

Polanski, Z. (1995). Activation of in vitro matured mouse oocytes arrested at first or second meiotic metaphase. Int. J. Dev. Biol. 39, 1015–1020.
| 1:STN:280:DyaK2s%2Fls1yltw%3D%3D&md5=b0e85706726df88c080840a152982108CAS | 8901204PubMed |

Polanski, Z. (1997). Strain difference in the timing of meiosis resumption in mouse oocytes: involvement of a cytoplasmic factor(s) acting presumably upstream of the dephosphorylation of p34cdc2 kinase. Zygote 5, 105–109.
Strain difference in the timing of meiosis resumption in mouse oocytes: involvement of a cytoplasmic factor(s) acting presumably upstream of the dephosphorylation of p34cdc2 kinase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXlvFelurk%3D&md5=c4288032fd2d268c3c3ce26b753fe0a5CAS | 9276507PubMed |

Polanski, Z., Ledan, E., Brunet, S., Louvet, S., Verlhac, M. H., Kubiak, J. Z., and Maro, B. (1998). Cyclin synthesis controls the progression of meiotic maturation in mouse oocytes. Development 125, 4989–4997.
| 1:CAS:528:DyaK1MXjs1CmtQ%3D%3D&md5=52a839b44c977ea79d20b5b59b017d89CAS | 9811583PubMed |

Polanski, Z., Hoffmann, S., and Tsurumi, C. (2005). Oocyte nucleus controls progression through meiotic maturation. Dev. Biol. 281, 184–195.
Oocyte nucleus controls progression through meiotic maturation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXkt1Gjtrs%3D&md5=cf47515e29f248a57cf71a0d453ba3c8CAS | 15893972PubMed |

Rauh, N. R., Schmidt, A., Bormann, J., Nigg, E. A., and Mayer, T. U. (2005). Calcium triggers exit from meiosis II by targeting the APC/C inhibitor XErp1 for degradation. Nature 437, 1048–1052.
Calcium triggers exit from meiosis II by targeting the APC/C inhibitor XErp1 for degradation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtV2ktrjI&md5=d2bdda1ed81ce7a85e5d37470aa9a410CAS | 16127448PubMed |

Rieder, C. L., and Palazzo, R. E. (1992). Colcemid and the mitotic cycle. J. Cell Sci. 102, 87–92.

Rieder, C. L., Schultz, A., Cole, R., and Sluder, G. (1994). Anaphase onset in vertebrate somatic cells is controlled by a checkpoint that monitors sister kinetochore attachment to the spindle. J. Cell Biol. 127, 1301–1310.
Anaphase onset in vertebrate somatic cells is controlled by a checkpoint that monitors sister kinetochore attachment to the spindle.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2M%2FltV2qsg%3D%3D&md5=ac23008f009776321dcbed837a1f7cb4CAS | 7962091PubMed |

Rieder, C. L., Cole, R. W., Khodjakov, A., and Sluder, G. (1995). The checkpoint delaying anaphase in response to chromosome monoorientation is mediated by an inhibitory signal produced by unattached kinetochores. J. Cell Biol. 130, 941–948.
The checkpoint delaying anaphase in response to chromosome monoorientation is mediated by an inhibitory signal produced by unattached kinetochores.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXnsVymtLY%3D&md5=7f97cc039f8e2947467c36a0daa2d16dCAS | 7642709PubMed |

Sakuno, T., Tada, K., and Watanabe, Y. (2009). Kinetochore geometry defined by cohesion within the centromere. Nature 458, 852–858.
Kinetochore geometry defined by cohesion within the centromere.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXksFGgtL0%3D&md5=3d8b51cbedcee913478c1f6184d08958CAS | 19370027PubMed |

Schuh, M., and Ellenberg, J. (2007). Self-organization of MTOCs replaces centrosome function during acentrosomal spindle assembly in live mouse oocytes. Cell 130, 484–498.
Self-organization of MTOCs replaces centrosome function during acentrosomal spindle assembly in live mouse oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXptlyntbc%3D&md5=850d27e94cdf135e42ccf7ffa55e6d80CAS | 17693257PubMed |

Shin, Y. H., Choi, Y., Erdin, S. U., Yatsenko, S. A., Kloc, M., Yang, F., Wang, P. J., Meistrich, M. L., and Rajkovic, A. (2010). Hormad1 mutation disrupts synaptonemal complex formation, recombination, and chromosome segregation in mammalian meiosis. PLoS Genet. 6, e1001190.
Hormad1 mutation disrupts synaptonemal complex formation, recombination, and chromosome segregation in mammalian meiosis.Crossref | GoogleScholarGoogle Scholar | 21079677PubMed |

Shoji, S., Yoshida, N., Amanai, M., Ohgishi, M., Fukui, T., Fujimoto, S., Nakano, Y., Kajikawa, E., and Perry, A. C. (2006). Mammalian Emi2 mediates cytostatic arrest and transduces the signal for meiotic exit via Cdc20. EMBO J. 25, 834–845.
Mammalian Emi2 mediates cytostatic arrest and transduces the signal for meiotic exit via Cdc20.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xhs1ers7Y%3D&md5=ffd2a4272468604c5af5ade2ba6c1216CAS | 16456547PubMed |

Sikora-Polaczek, M., Hupalowska, A., Polanski, Z., Kubiak, J. Z., and Ciemerych, M. A. (2006). The first mitosis of the mouse embryo is prolonged by transitional metaphase arrest. Biol. Reprod. 74, 734–743.
The first mitosis of the mouse embryo is prolonged by transitional metaphase arrest.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XislKqtrs%3D&md5=26d3befc468776ab192e3fd4c652917dCAS | 16382027PubMed |

Steuerwald, N., Cohen, J., Herrera, R. J., Sandalinas, M., and Brenner, C. A. (2001). Association between spindle assembly checkpoint expression and maternal age in human oocytes. Mol. Hum. Reprod. 7, 49–55.
Association between spindle assembly checkpoint expression and maternal age in human oocytes.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3M7ktVaqtg%3D%3D&md5=f5e0a261ef3ceaf7a58fb35c9aae7e5aCAS | 11134360PubMed |

Sun, S. C., and Kim, N. H. (2012). Spindle assembly checkpoint and its regulators in meiosis. Hum. Reprod. Update 18, 60–72.
Spindle assembly checkpoint and its regulators in meiosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1agsbnE&md5=72a306d9d0de062cd5b66f60447af0c4CAS | 22086113PubMed |

Sun, S. C., Lee, S. E., Xu, Y. N., and Kim, N. H. (2010). Perturbation of Spc25 expression affects meiotic spindle organization, chromosome alignment and spindle assembly checkpoint in mouse oocytes. Cell Cycle 9, 4552–4559.
Perturbation of Spc25 expression affects meiotic spindle organization, chromosome alignment and spindle assembly checkpoint in mouse oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXit1Krs74%3D&md5=ecefc5e2b825bc0878a32a70f6122d36CAS | 21084868PubMed |

Sutcliffe, M. J., Darling, S. M., and Burgoyne, P. S. (1991). Spermatogenesis in XY, Sxra, and XOSxramice: a quantitative analysis of spermatogenesis throughout puberty. Mol. Reprod. Dev. 30, 81–89.
Spermatogenesis in XY, Sxra, and XOSxramice: a quantitative analysis of spermatogenesis throughout puberty.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK38%2Fmt1CitQ%3D%3D&md5=2a8bf84ecd49fbbc0bd0770b57899753CAS | 1954032PubMed |

Tachibana-Konwalski, K., Godwin, J., van der Weyden, L., Champion, L., Kudo, N. R., Adams, D. J., and Nasmyth, K. (2010). Rec8-containing cohesin maintains bivalents without turnover during the growing phase of mouse oocytes. Genes Dev. 24, 2505–2516.
Rec8-containing cohesin maintains bivalents without turnover during the growing phase of mouse oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFSgu77M&md5=30ca91ee8f52c25d8fb112bc19446923CAS | 20971813PubMed |

Tani, T., Kato, Y., and Tsunoda, Y. (2007). Aberrant spindle assembly checkpoint in bovine somatic cell nuclear transfer oocytes. Front. Biosci. 12, 2693–2705.
Aberrant spindle assembly checkpoint in bovine somatic cell nuclear transfer oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1OnsbfI&md5=958b70b8f23eab014f7e51a8a6b35215CAS | 17127273PubMed |

Thuan, N. V., Kishigami, S., and Wakayama, T. (2010). How to improve the success rate of mouse cloning technology. J. Reprod. Dev. 56, 20–30.
How to improve the success rate of mouse cloning technology.Crossref | GoogleScholarGoogle Scholar | 20203432PubMed |

Tighe, A., Staples, O., and Taylor, S. (2008). Mps1 kinase activity restrains anaphase during an unperturbed mitosis and targets Mad2 to kinetochores. J. Cell Biol. 181, 893–901.
Mps1 kinase activity restrains anaphase during an unperturbed mitosis and targets Mad2 to kinetochores.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXns1yms7g%3D&md5=a94d208ca232998bfb714a662ecd10d0CAS | 18541701PubMed |

Tomasini, R., Tsuchihara, K., Tsuda, C., Lau, S. K., Wilhelm, M., Ruffini, A., Tsao, M. S., Iovanna, J. L., Jurisicova, A., Melino, G., and Mak, T. W. (2009). TAp73 regulates the spindle assembly checkpoint by modulating BubR1 activity. Proc. Natl Acad. Sci. USA 106, 797–802.
TAp73 regulates the spindle assembly checkpoint by modulating BubR1 activity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht12isLY%3D&md5=971867f28ff417fea173775b56cd5110CAS | 19139399PubMed |

Tripathi, A., Kumar, K. V., and Chaube, S. K. (2010). Meiotic cell cycle arrest in mammalian oocytes. J. Cell. Physiol. 223, 592–600.
| 1:CAS:528:DC%2BC3cXktFyqt78%3D&md5=686d378f332d69c49ac5851cea32dedfCAS | 20232297PubMed |

Tsurumi, C., Hoffmann, S., Geley, S., Graeser, R., and Polanski, Z. (2004). The spindle assembly checkpoint is not essential for CSF arrest of mouse oocytes. J. Cell Biol. 167, 1037–1050.
The spindle assembly checkpoint is not essential for CSF arrest of mouse oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmtl2q&md5=4421565877ee417192a99d340421822eCAS | 15611331PubMed |

Uchida, K. S., Takagaki, K., Kumada, K., Hirayama, Y., Noda, T., and Hirota, T. (2009). Kinetochore stretching inactivates the spindle assembly checkpoint. J. Cell Biol. 184, 383–390.
Kinetochore stretching inactivates the spindle assembly checkpoint.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXitV2rt78%3D&md5=6a31f44fda1e8851610906eb36d7267aCAS | 19188492PubMed |

Visintin, R., Prinz, S., and Amon, A. (1997). CDC20 and CDH1: a family of substrate-specific activators of APC-dependent proteolysis. Science 278, 460–463.
CDC20 and CDH1: a family of substrate-specific activators of APC-dependent proteolysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmslKiu7w%3D&md5=7b2956915b8b82304503f0ba4b1aac05CAS | 9334304PubMed |

Vogt, E., Kirsch-Volders, M., Parry, J., and Eichenlaub-Ritter, U. (2008). Spindle formation, chromosome segregation and the spindle checkpoint in mammalian oocytes and susceptibility to meiotic error. Mutat. Res. 651, 14–29.
Spindle formation, chromosome segregation and the spindle checkpoint in mammalian oocytes and susceptibility to meiotic error.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXitlGmtrk%3D&md5=f28de22e91f0e848bf05c0b150f256ffCAS | 18096427PubMed |

Vogt, E., Kipp, A., and Eichenlaub-Ritter, U. (2009). Aurora kinase B, epigenetic state of centromeric heterochromatin and chiasma resolution in oocytes. Reprod. Biomed. Online 19, 352–368.
Aurora kinase B, epigenetic state of centromeric heterochromatin and chiasma resolution in oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1OqtL7M&md5=cf2886ad480a3b61f5d931bc790a8257CAS | 19778480PubMed |

Vogt, E., Sanhaji, M., Klein, W., Seidel, T., Wordeman, L., and Eichenlaub-Ritter, U. (2010). MCAK is present at centromeres, midspindle and chiasmata and involved in silencing of the spindle assembly checkpoint in mammalian oocytes. Mol. Hum. Reprod. 16, 665–684.
MCAK is present at centromeres, midspindle and chiasmata and involved in silencing of the spindle assembly checkpoint in mammalian oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFaiu7zF&md5=32c945a4d007b593ce29afbaa7238abfCAS | 20406800PubMed |

Wang, J. Y., Lei, Z. L., Nan, C. L., Yin, S., Liu, J., Hou, Y., Li, Y. L., Chen, D. Y., and Sun, Q. Y. (2007). RNA interference as a tool to study the function of MAD2 in mouse oocyte meiotic maturation. Mol. Reprod. Dev. 74, 116–124.
RNA interference as a tool to study the function of MAD2 in mouse oocyte meiotic maturation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1yjsbzK&md5=70dc79580ffc70a01a0bf8a87595e3c4CAS | 16924662PubMed |

Wang, J. Z., Sui, H. S., Miao, D. Q., Liu, N., Zhou, P., Ge, L., and Tan, J. H. (2009). Effects of heat stress during in vitro maturation on cytoplasmic versus nuclear components of mouse oocytes. Reproduction 137, 181–189.
Effects of heat stress during in vitro maturation on cytoplasmic versus nuclear components of mouse oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXovV2ks7s%3D&md5=daffa31b48884713a76158ee336cc04cCAS | 19029342PubMed |

Wassmann, K., Niault, T., and Maro, B. (2003). Metaphase I arrest upon activation of the Mad2-dependent spindle checkpoint in mouse oocytes. Curr. Biol. 13, 1596–1608.
Metaphase I arrest upon activation of the Mad2-dependent spindle checkpoint in mouse oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnsVKrsr4%3D&md5=092d51fb6d96fc3114551a486d9ba16fCAS | 13678590PubMed |

Wei, L., Liang, X. W., Zhang, Q. H., Li, M., Yuan, J., Li, S., Sun, S. C., Ouyang, Y. C., Schatten, H., and Sun, Q. Y. (2010). BubR1 is a spindle assembly checkpoint protein regulating meiotic cell cycle progression of mouse oocyte. Cell Cycle 9, 1112–1121.
BubR1 is a spindle assembly checkpoint protein regulating meiotic cell cycle progression of mouse oocyte.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht12itr%2FJ&md5=7b737414127873b1ebedc5d4d4bd6754CAS | 20237433PubMed |

Winston, N. J., McGuinness, O., Johnson, M. H., and Maro, B. (1995). The exit of mouse oocytes from meiotic M-phase requires an intact spindle during intracellular calcium release. J. Cell Sci. 108, 143–151.
| 1:CAS:528:DyaK2MXjsFensro%3D&md5=7ce71f47912b40c758ef29ce79eef5b4CAS | 7738091PubMed |

Wolstenholme, J., and Angell, R. R. (2000). Maternal age and trisomy: a unifying mechanism of formation. Chromosoma 109, 435–438.
Maternal age and trisomy: a unifying mechanism of formation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXotVKnsbo%3D&md5=3886e67cb41811aa4b3c7877e70c699bCAS | 11151672PubMed |

Woods, L. M., Hodges, C. A., Baart, E., Baker, S. M., Liskay, M., and Hunt, P. A. (1999). Chromosomal influence on meiotic spindle assembly: abnormal meiosis I in female Mlh1 mutant mice. J. Cell Biol. 145, 1395–1406.
Chromosomal influence on meiotic spindle assembly: abnormal meiosis I in female Mlh1 mutant mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXktFChu7c%3D&md5=268b6440dc5f67756fb11732fa308efbCAS | 10385520PubMed |

Xiong, B., Li, S., Ai, J. S., Yin, S., Ouyang, Y. C., Sun, S. C., Chen, D. Y., and Sun, Q. Y. (2008). BRCA1 is required for meiotic spindle assembly and spindle assembly checkpoint activation in mouse oocytes. Biol. Reprod. 79, 718–726.
BRCA1 is required for meiotic spindle assembly and spindle assembly checkpoint activation in mouse oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFCqtbfP&md5=a78793a71bd87096bf0849a11e24179fCAS | 18596218PubMed |

Yang, K. T., Li, S. K., Chang, C. C., Tang, C. J., Lin, Y. N., Lee, S. C., and Tang, T. K. (2010). Aurora-C kinase deficiency causes cytokinesis failure in meiosis I and production of large polyploid oocytes in mice. Mol. Biol. Cell 21, 2371–2383.
Aurora-C kinase deficiency causes cytokinesis failure in meiosis I and production of large polyploid oocytes in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlGlsLbP&md5=fa1ca85c2037307a0a5ecf3062033bfcCAS | 20484572PubMed |

Yin, S., Wang, Q., Liu, J. H., Ai, J. S., Liang, C. G., Hou, Y., Chen, D. Y., Schatten, H., and Sun, Q. Y. (2006). Bub1 prevents chromosome misalignment and precocious anaphase during mouse oocyte meiosis. Cell Cycle 5, 2130–2137.
Bub1 prevents chromosome misalignment and precocious anaphase during mouse oocyte meiosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlGqsrzL&md5=90d8e139ae864f6f64e23798dff66312CAS | 16969117PubMed |

Yuan, L., Liu, J. G., Hoja, M. R., Wilbertz, J., Nordqvist, K., and Höög, C. (2002). Female germ cell aneuploidy and embryo death in mice lacking the meiosis-specific protein SCP3. Science 296, 1115–1118.
Female germ cell aneuploidy and embryo death in mice lacking the meiosis-specific protein SCP3.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xjslams7c%3D&md5=b58abdf045aa211041653fb27f66eb9eCAS | 12004129PubMed |

Zhang, D., Ma, W., Li, Y. H., Hou, Y., Li, S. W., Meng, X. Q., Sun, X. F., Sun, Q. Y., and Wang, W. H. (2004). Intra-oocyte localization of MAD2 and its relationship with kinetochores, microtubules, and chromosomes in rat oocytes during meiosis. Biol. Reprod. 71, 740–748.
Intra-oocyte localization of MAD2 and its relationship with kinetochores, microtubules, and chromosomes in rat oocytes during meiosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXntFejtLc%3D&md5=ede4b616baaf147ad8997d012c1c5ccaCAS | 15115722PubMed |

Zhang, D., Li, M., Ma, W., Hou, Y., Li, Y. H., Li, S. W., Sun, Q. Y., and Wang, W. H. (2005). Localization of mitotic arrest deficient 1 (MAD1) in mouse oocytes during the first meiosis and its functions as a spindle checkpoint protein. Biol. Reprod. 72, 58–68.
Localization of mitotic arrest deficient 1 (MAD1) in mouse oocytes during the first meiosis and its functions as a spindle checkpoint protein.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmtlKn&md5=b236b7ae8a29f9564ca1b486beb37ca1CAS | 15342357PubMed |

Zhang, D., Yin, S., Jiang, M. X., Ma, W., Hou, Y., Liang, C. G., Yu, L. Z., Wang, W. H., and Sun, Q. Y. (2007). Cytoplasmic dynein participates in meiotic checkpoint inactivation in mouse oocytes by transporting cytoplasmic mitotic arrest-deficient (Mad) proteins from kinetochores to spindle poles. Reproduction 133, 685–695.
Cytoplasmic dynein participates in meiotic checkpoint inactivation in mouse oocytes by transporting cytoplasmic mitotic arrest-deficient (Mad) proteins from kinetochores to spindle poles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmsFeku78%3D&md5=cbce5d5b6a5e9978d02f4d652efcaa03CAS | 17504913PubMed |

Zhu, X. L., Qi, S. T., Liu, J., Chen, L., Zhang, C., Yang, S. W., Ouyang, Y. C., Hou, Y., Schatten, H., Song, Y. L., Xing, F. Q., and Sun, Q. Y. (2012). Synaptotagmin1 is required for spindle stability and metaphase-to-anaphase transition in mouse oocytes. Cell Cycle 11, 818–826.
Synaptotagmin1 is required for spindle stability and metaphase-to-anaphase transition in mouse oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xks1emsr4%3D&md5=82e15a543a1985cc58dee6b3085d9c3dCAS | 22313732PubMed |