Glucose and fructose as functional modulators of overall dog, but not boar sperm function
J. M. Fernández-Novell A , J. Ballester B , J. Altirriba C D , L. Ramió-Lluch E , A. Barberà C , R. Gomis C D , J. J. Guinovart F and J. E. Rodríguez-Gil E GA Department of Biochemistry and Molecular Biology, University of Barcelona,E-08028 Barcelona, Spain.
B Centre de Biotecnologia Animal i de Teràpia Gènica (CBATeG), Autonomous Universityof Barcelona, E-08190 Bellaterra, Spain.
C Diabetes and Obesity Laboratory, Endocrinology and Nutrition Unit, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clinic de Barcelona,E-08036 Barcelona, Spain.
D CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM),E-08036 Barcelona, Spain.
E Department of Animal Medicine and Surgery, Autonomous University of Barcelona,E-08190 Bellaterra, Spain.
F Institute for Research in Biomedicine, Barcelona Science Park, E-08028 Barcelona, Spain.
G Corresponding author. Email: juanenrique.rodriguez@uab.cat
Reproduction, Fertility and Development 23(3) 468-480 https://doi.org/10.1071/RD10120
Submitted: 27 May 2010 Accepted: 6 October 2010 Published: 16 March 2011
Abstract
The main aim of the present work was to test the effects of glucose and fructose on the phosphorylation levels of proteins linked to the control of overall sperm function in two species with very different metabolic characteristics, dog and boar. Incubation of dog spermatozoa with 10 mM glucose increased serine phosphorylation of proteins related to cell cycle and signal transduction including cyclins B and E, Cdk2, Cdk6, Cdc6, PYK2, c-kit, Raf-1, TRK and several protein phosphatases. Incubation of dog spermatozoa with 10 mM fructose decreased serine phosphorylation levels of cyclins B and D3, Cdk1/Cdc2, Cdk2, Cdk6, Akt, PI3 kinase, ERK‐1 and protein kinase C. Incubation of boar spermatozoa with glucose or fructose did not modify any of the phosphorylation patterns studied. Given that one important difference between dog and boar spermatozoa is the presence of glucokinase (GK) in dog but not in boar, GK-transfected COS7 cells were incubated with either 10 mM glucose or 10 mM fructose. Incubation of GK-transfected cells with fructose decreased serine phosphorylation of cyclin A, ERK-2 and Hsp-70. In contrast, incubation of control COS7 cells with fructose increased serine phosphorylation of Cdk6, Cdk1/Cdc2, protein kinase C and Hsp-70. Incubation with glucose did not induce any significant effect. Our results indicate that monosaccharides act as signalling compounds in dog spermatozoa after ejaculation through changes in the phosphorylation levels of specific proteins. One of the factors that may be related to the action of sugars is the equilibrium of the total sperm hexokinase activity, in which the presence or absence of GK appears to be relevant.
Additional keywords: canine spermatozoa, glucokinase, monosaccharides, protein phosphorylation.
References
Agius, L. (2008). Glucokinase and molecular aspects of liver glycogen metabolism. Biochem. J. 414, 1–18.| Glucokinase and molecular aspects of liver glycogen metabolism.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXptVCisbs%3D&md5=213da2f798b99f9b4d70dbbc9ab916e6CAS | 18651836PubMed |
Albarracín, J. L., Mogas, T., Palomo, M. J., Peña, A., Rigau, T., and Rodríguez-Gil, J. E. (2004a). In vitro capacitation and acrosome reaction of dog spermatozoa can be feasibly attained in a defined medium without glucose. Reprod. Domest. Anim. 39, 129–135.
| In vitro capacitation and acrosome reaction of dog spermatozoa can be feasibly attained in a defined medium without glucose.Crossref | GoogleScholarGoogle Scholar | 15182287PubMed |
Albarracín, J. L., Fernández-Novell, J. M., Ballester, J., Rauch, M. C., Quintero-Moreno, A., Peña, A., Mogas, T., Rigau, T., Yáñez, A., Guinovart, J. J., Slebe, J. C., Concha, I. I., and Rodríguez-Gil, J. E. (2004b). Gluconeogenesis-linked glycogen metabolism is important in the achievement of in vitro capacitation of dog spermatozoa in a medium without glucose. Biol. Reprod. 71, 1437–1445.
| Gluconeogenesis-linked glycogen metabolism is important in the achievement of in vitro capacitation of dog spermatozoa in a medium without glucose.Crossref | GoogleScholarGoogle Scholar | 15215203PubMed |
Aparicio, I. M., Bragado, M. J., Gil, M. C., Garcia-Herreros, M., Gonzalez-Fernandez, L., Tapia, J. A., and Garcia-Marin, L. J. (2007). Porcine sperm motility is regulated by serine phosphorylation of the glycogen synthase kinase-3alfa. Reproduction 134, 435–444.
| Porcine sperm motility is regulated by serine phosphorylation of the glycogen synthase kinase-3alfa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFKnur3I&md5=3b9fe2fc52f0a1c9058afdac6b4ada33CAS | 17709562PubMed |
Aquila, S., Sisci, D., Gentile, M., Middea, E., Catalano, S., Carpino, A., Rago, V., and Ando, S. (2004). Estrogen receptor (ER) alpha and ER beta are both expressed in human ejaculated spermatozoa: evidence of their direct interaction with phosphatidylinositol-3-OH kinase/Akt pathway. J. Clin. Endocrinol. Metab. 89, 1443–1451.
| Estrogen receptor (ER) alpha and ER beta are both expressed in human ejaculated spermatozoa: evidence of their direct interaction with phosphatidylinositol-3-OH kinase/Akt pathway.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXisVWqsLs%3D&md5=d14dc81a3c3e5fe8d5eaaa439d786161CAS | 15001646PubMed |
Arcelay, E., Salicioni, A. M., Wertheimer, E., and Visconti, P. E. (2008). Identification of proteins undergoing tyrosine phosphorylation during mouse sperm capacitation. Int. J. Dev. Biol. 52, 463–472.
| Identification of proteins undergoing tyrosine phosphorylation during mouse sperm capacitation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht12qs7bE&md5=152cc9a93fc900a17d4ec4245ff5184bCAS | 18649259PubMed |
Ballester, J., Fernández-Novell, J. M., Rutllant, J., García-Rocha, M., Palomo, M. J., Mogas, T., Peña, A., Rigau, T., Guinovart, J. J., and Rodríguez-Gil, J. E. (2000). Evidence for a functional glycogen metabolism in mature mammalian spermatozoa. Mol. Reprod. Dev. 56, 207–219.
| Evidence for a functional glycogen metabolism in mature mammalian spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjtFyrtbs%3D&md5=ff7114a42cfe6e79df7cdce06f2b25beCAS | 10813853PubMed |
Bannur, S. V., Kulgod, S. V., Metkar, S. S., Mahajan, S. K., and Sainis, J. K. (1999). Protein determination by Ponceau S using digital colour image analysis of protein spots on nitrocellulose membranes. Anal. Biochem. 267, 382–389.
| Protein determination by Ponceau S using digital colour image analysis of protein spots on nitrocellulose membranes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXht1Oru7g%3D&md5=26d5dfa97a50ec427f281f9716ac95c7CAS | 10036145PubMed |
Barford, D. (2001). The mechanism of protein kinase regulation by protein phosphatases. Biochem. Soc. Trans. 29, 385–391.
| The mechanism of protein kinase regulation by protein phosphatases.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXms1Sls7Y%3D&md5=9505effea48a5e6adf72e55fd67b2c43CAS | 11497994PubMed |
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254.
| A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28XksVehtrY%3D&md5=14300a26927bd8f0c2e23c515fdbb33cCAS | 942051PubMed |
Breitbart, H., and Naor, Z. (1999). Protein kinases in mammalian sperm capacitation and the acrosome reaction. Rev. Reprod. 4, 151–159.
| Protein kinases in mammalian sperm capacitation and the acrosome reaction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmsVClsrw%3D&md5=b013a8570e10b5b6adb37ffdeb136630CAS | 10521152PubMed |
Bucci, D., Isani, G., Spinaci, M., Tamanini, C., Mari, G., Zambelli, D., and Galeati, G. (2010). Comparative immunolocalization of GLUTs 1, 2, 3 and 5 in boar, stallion and dog spermatozoa. Reprod. Domest. Anim. 45, 315–322.
| Comparative immunolocalization of GLUTs 1, 2, 3 and 5 in boar, stallion and dog spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXltV2htb0%3D&md5=d8200e278b0dd0260de8327c3691dd40CAS | 19055550PubMed |
Burnette, W. N. (1981). “Western blotting”: electrophoretic transfer of proteins from sodium dodecyl sulfate-polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. J. Anal. Biochem. 112, 195–203.
| “Western blotting”: electrophoretic transfer of proteins from sodium dodecyl sulfate-polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXhvVOqtbs%3D&md5=4ceaf8d57e59212c65d5cf0977fd44d0CAS |
Cheatham, B., and Kahn, C. R. (1995). Insulin action and the insulin signalling network. Endocr. Rev. 16, 117–142.
| 1:CAS:528:DyaK2MXmtFWisrw%3D&md5=deeffa0165b5f79d6ee408e8d1bae5d7CAS | 7781591PubMed |
Danial, N. N., Gramm, C. F., Scorrano, L., Zhang, C. Y., Krauss, S., Ranger, A. M., Datta, S. R., Greenberg, M. E., Licklider, L. J., Lowell, B. B., Gygi, S. P., and Korsmeyer, S. J. (2003). BAD and glucokinase reside in a mitochondrial complex that integrates glycolysis and apoptosis. Nature 424, 952–956.
| BAD and glucokinase reside in a mitochondrial complex that integrates glycolysis and apoptosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmsV2isL8%3D&md5=333101e73909cb4e6e14b272514f5d9bCAS | 12931191PubMed |
de Lamirande, E., and Gagnon, C. (2002). The extracellular signal-regulated kinase (ERK) involved in human sperm function and modulate superoxide anion. Mol. Hum. Reprod. 8, 124–135.
| The extracellular signal-regulated kinase (ERK) involved in human sperm function and modulate superoxide anion.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XitFOgsr8%3D&md5=e823e7053d5fa4d5aec3b3255bab6f26CAS | 11818515PubMed |
Erata, G. O., Koçak Toker, N., Durlanik, O., Kadioğlu, A., Aktan, G., and Aykaç Toker, G. (2008). The role of heat-shock protein 70 (Hsp 70) in male infertility: is it a line of defence against sperm DNA fragmentation? Fertil. Steril. 90, 322–327.
| The role of heat-shock protein 70 (Hsp 70) in male infertility: is it a line of defence against sperm DNA fragmentation?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVGlsLrE&md5=da9a28b6103a0e6ac5d1df4b85ecb704CAS | 17880957PubMed |
Fernández-Novell, J. M., Ballester, J., Medrano, A., Otaegui, P. J., Rigau, T., Guinovart, J. J., and Rodríguez-Gil, J. E. (2004). The presence of a high-Km hexokinase activity in dog, but not in boar, sperm. FEBS Lett. 570, 211–216.
| The presence of a high-Km hexokinase activity in dog, but not in boar, sperm.Crossref | GoogleScholarGoogle Scholar | 15251466PubMed |
Fernández-Novell, J. M., Ramió, L., Rivera, M. M., Peña, A., Rigau, T., Guinovart, J. J., and Rodríguez-Gil, J. E. (2005). Hexose-specific protein phosphorylation: a feasible system to modulate overall function in dog spermatozoa. Reprod. Domest. Anim. 40, 350.
Flesch, F. M., and Gadella, B. M. (2000). Dynamics of the mammalian sperm plasma membrane in the process of fertilization. Biochim. Biophys. Acta 1469, 197–235.
| 1:CAS:528:DC%2BD3cXovFKnsL4%3D&md5=629d7f0a1aa6ee96d93e37baa9911a63CAS | 11063883PubMed |
Fraser, L. R., and Herod, J. E. (1990). Expression of capacitation-dependent changes in chlorotetracycline fluoresecence patterns in mouse spermatozoa requires a suitable glycosylable substrate. J. Reprod. Fertil. 88, 611–621.
| Expression of capacitation-dependent changes in chlorotetracycline fluoresecence patterns in mouse spermatozoa requires a suitable glycosylable substrate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXitFCgurY%3D&md5=193137fedbe51ac7d7c47dad95e2dad2CAS | 2325021PubMed |
Furuya, S., Endo, Y., Oba, M., Nozawa, S., and Suzuki, S. (1992). Effects of modulators of protein kinases and phosphatases on mouse sperm capacitation. J. Assist. Reprod. Genet. 9, 391–399.
| Effects of modulators of protein kinases and phosphatases on mouse sperm capacitation.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK3s7htlWlug%3D%3D&md5=ab7f6bb463ff5f8dcfd10adb1b1516d3CAS | 1335315PubMed |
Galantino-Homer, H. L., Visconti, P. E., and Kopf, G. S. (1997). Regulation of protein tyrosine phosphorylation during bovine capacitation by a cyclic adenosine 3′,5′ monophosphate-dependent pathway. Biol. Reprod. 56, 707–719.
| Regulation of protein tyrosine phosphorylation during bovine capacitation by a cyclic adenosine 3′,5′ monophosphate-dependent pathway.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXht1GhtLg%3D&md5=c31f394bbe3b00adcd9b4eff8dbb6c34CAS | 9047017PubMed |
Gomis, R. R., Cid, E., García-Rocha, M., Ferrer, J. C., and Guinovart, J. J. (2002). Liver glycogen synthase but not the muscle isoform differentiates between glucose 6-phosphate produced by glucokinase or hexokinase. J. Biol. Chem. 277, 23 246–23 252.
| Liver glycogen synthase but not the muscle isoform differentiates between glucose 6-phosphate produced by glucokinase or hexokinase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XltF2ns7Y%3D&md5=26595ea52d29c2db65b702bcc9c68ec2CAS |
González-Fernández, L., Ortega-Ferrusola, C., Macias-García, B., Salido, G. M., Peña, F. J., and Tapia, J. A. (2009). Identification of protein tyrosine phosphatases and dual-specificity phosphatases in mammalian spermatozoa and their role in sperm motility and protein tyrosine phosphorylation. Biol. Reprod. 80, 1239–1252.
| Identification of protein tyrosine phosphatases and dual-specificity phosphatases in mammalian spermatozoa and their role in sperm motility and protein tyrosine phosphorylation.Crossref | GoogleScholarGoogle Scholar | 19211810PubMed |
Grünewald, S., Paasch, U., Wuendrich, K., and Glander, H. J. (2005). Sperm caspases become more activated in infertility patients than in healthy donors during cryopreservation. Arch. Androl. 51, 449–460.
| Sperm caspases become more activated in infertility patients than in healthy donors during cryopreservation.Crossref | GoogleScholarGoogle Scholar | 16214731PubMed |
Han, Y., Haines, C. J., and Feng, H. L. (2007). Role(s) of the serine/threonine protein phosphatase 1 on mammalian sperm motility. Arch. Androl. 53, 169–177.
| Role(s) of the serine/threonine protein phosphatase 1 on mammalian sperm motility.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVagtL3I&md5=44332ab954f11a262e36cdb6de426e7cCAS | 17852041PubMed |
Harrison, R. A. P. (2004). Rapid PKA-catalysed phosphorylation of boar sperm proteins induced by the capacitating agent bicarbonate (p 337–352). Mol. Reprod. Dev. 67, 337–352.
| Rapid PKA-catalysed phosphorylation of boar sperm proteins induced by the capacitating agent bicarbonate (p 337–352).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtlKisLw%3D&md5=de90636309eca074c916bbf075a6e7c5CAS | 14735495PubMed |
Haynes, N. B., and Lamming, G. E. (1967). The carbohydrate content of sow uterine flushings. J. Reprod. Fertil. 14, 335–337.
| The carbohydrate content of sow uterine flushings.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaF1c%2Fht12msw%3D%3D&md5=5f0152ef5978a2c5b4da3c3d7f8f6845CAS | 6069599PubMed |
Heap, R. B. (1962). Some chemical constituents of uterine washings: a method of analysis with results from various species. J. Endocrinol. 24, 367–378.
| Some chemical constituents of uterine washings: a method of analysis with results from various species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF38Xktlylt7s%3D&md5=0c7558e465950d7157dca5166d54002bCAS | 13905761PubMed |
Holst, J. J., and Gromada, J. (2004). Role of incretin hormones in the regulation of insulin secretion in diabetic and nondiabetic humans. Am. J. Physiol. Endocrinol. Metab. 287, E199–E206.
| Role of incretin hormones in the regulation of insulin secretion in diabetic and nondiabetic humans.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmvVKnt78%3D&md5=b6049b4d5f509a9da2942676f4f5d94aCAS | 15271645PubMed |
Ibrahim, N. M., Gilbert, G. R., Loseth, K. J., and Crabo, B. G. (2000). Correlation between clusterin-positive spermatozoa determined by flow cytometry in bull semen and fertility. J. Androl. 21, 887–894.
| 1:STN:280:DC%2BD3MzgtlyqtQ%3D%3D&md5=26b4ffbbe5d420d24049845696970149CAS | 11105915PubMed |
Ibrahim, N. M., Romano, J. E., Troedsson, M. H. T., and Crabo, B. G. (2001). Effect of scrotal insulation on clusterin-positive cells in ram semen and their relationship to semen quality. J. Androl. 22, 863–877.
| 1:STN:280:DC%2BD3MvpslCnug%3D%3D&md5=2d1c01645fcdb60f2a06246d4b651d6fCAS | 11545301PubMed |
Jha, K. N., Salicioni, A. M., Arcelay, E., Chertihin, O., Kumari, S., Herr, J. C., and Visconti, P. E. (2006). Evidence for the involvement of proline-directed serine/threonine phosphorylation in sperm capacitation. Mol. Hum. Dev. 12, 781–789.
| 1:CAS:528:DC%2BD28XhtlChtLvO&md5=644f81be06488e88ef29602d004eff65CAS |
Jungnickel, M. K., Sutton, K. A., Wang, Y., and Florman, H. M. (2007). Phosphoinositide-dependent pathways in mouse sperm are regulated by egg ZP3 and drive the acrosome reaction. Dev. Biol. 304, 116–126.
| Phosphoinositide-dependent pathways in mouse sperm are regulated by egg ZP3 and drive the acrosome reaction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjt1SksbY%3D&md5=988cfd2b998a6bd115448227e951be78CAS | 17258189PubMed |
Kaláb, P., Pěknicová, J., Geussová, G., and Moos, J. (1998). Regulation of protein tyrosine phosphorylation in boar sperm through a cAMP-dependent pathway. Mol. Reprod. Dev. 51, 304–314.
| Regulation of protein tyrosine phosphorylation in boar sperm through a cAMP-dependent pathway.Crossref | GoogleScholarGoogle Scholar | 9771651PubMed |
Kawano, N., Ito, J., and Yoshida, M. (2004). Activation of RAF/MEK/ERK pathway during acrosome reaction in boar sperm. Zoolog. Sci. 21, 1293..
Lambrecht, M., and Transtschold, D. (1984). ATP determination with hexokinase and glucose 6-phosphate dehydrogenase. In ‘Methods of Enzymatic Analysis’. (Ed. H.U. Bergmeyer.) pp. 543–551. (Verlag Chemie: Weinheim, Germany.)
Leclerc, P., de Lamirande, E., and Gagnon, C. (1996). Cyclic adenosine 3′,5′ monophosphate-dependent regulation of protein tyrosine phosphorylation in relation to human sperm capacitation and motility. Biol. Reprod. 55, 684–692.
| Cyclic adenosine 3′,5′ monophosphate-dependent regulation of protein tyrosine phosphorylation in relation to human sperm capacitation and motility.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XltlKgur4%3D&md5=3db40412e8cde9b8bb4ca5654dfc30b3CAS | 8862788PubMed |
Leyton, L., and Saling, P. (1989). 95 kDa sperm proteins bin ZP3 and serve as tyrosine kinase substrates in response to zona binding. Cell 57, 1123–1130.
| 95 kDa sperm proteins bin ZP3 and serve as tyrosine kinase substrates in response to zona binding.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXkslGntLs%3D&md5=55c3959f4826fc65b2e1784757e1cde6CAS | 2472220PubMed |
Martin, G., Cagnon, N., Sabido, O., Sion, B., Grizard, G., Durand, P., and Levy, R. (2010). Kinetics of occurrence of some features of apoptosis during the cryopreservation process of bovine spermatozoa. Hum. Reprod. 22, 380–388.
| Kinetics of occurrence of some features of apoptosis during the cryopreservation process of bovine spermatozoa.Crossref | GoogleScholarGoogle Scholar |
Medrano, A., García-Gil, N., Ramió, L., Rivera, M. M., Fernández-Novell, J. M., Ramírez, A., Peña, A., Briz, M. D., Pinart, E., Concha, I. I., Bonet, S., Rigau, T., and Rodríguez-Gil, J. E. (2006). Hexose specificity of hexokinase and ADP-dependence of pyruvate kinase play important roles in the control of monosaccharide utilization in freshly diluted boar spermatozoa. Mol. Reprod. Dev. 73, 1179–1194.
| Hexose specificity of hexokinase and ADP-dependence of pyruvate kinase play important roles in the control of monosaccharide utilization in freshly diluted boar spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XnvFahtrw%3D&md5=9cfabbd7ebb71236f124fa08c07b4234CAS | 16804879PubMed |
Millward, T. A., Zolnierowicz, S., and Hemmings, B. A. (1999). Regulation of protein kinase cascades by protein phosphatase 2A. Trends Biochem. Sci. 24, 186–191.
| Regulation of protein kinase cascades by protein phosphatase 2A.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXkslSntr8%3D&md5=8f627352a9673b1feaa51f246ec8bd0dCAS | 10322434PubMed |
Murata, T., Katagiri, H., Ishihara, H., Shibasaki, Y., Asano, T., Toyoda, Y., Pekiner, B., Pekiner, C., Miwa, I., and Oka, Y. (1997). Co-localization of glucokinase with actin filaments. FEBS Lett. 406, 109–113.
| Co-localization of glucokinase with actin filaments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXisFKntbw%3D&md5=457f43b80dcd9550d6663fcf03bdcc1aCAS | 9109397PubMed |
Murphy, R., Tura, A., Clark, P. M., Holst, J. J., Mari, A., and Hattersley, A. T. (2009). Glucokinase, the pancreatic glucose sensor, is not the gut glucose sensor. Diabetologia 52, 154–159.
| Glucokinase, the pancreatic glucose sensor, is not the gut glucose sensor.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVCmsrfN&md5=8f3014cd4b9a058adbd20b6795831bfaCAS | 18974968PubMed |
NagDas, S. K., Winfrey, V. P., and Olson, G. E. (2002). Identification of Ras and its downstream signalling elements and their potential role in hamster sperm motility. Biol. Reprod. 67, 1058–1066.
| Identification of Ras and its downstream signalling elements and their potential role in hamster sperm motility.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XnsV2rsbo%3D&md5=2284e1b1a051acc4c2f0ab1de9295c92CAS | 12297518PubMed |
Nauc, V., de Lamirande, E., Leclerc, P., and Gagnon, C. (2004). Inhibitors of phosphoinositide 3-kinase LY294002 and wortmannin, affect sperm capacitation and associated phosphorylation of proteins differently: Ca2+-dependent divergences. J. Androl. 25, 573–585.
| 1:CAS:528:DC%2BD2cXmtFSnsL0%3D&md5=aadd6958e07dcdb0681e540f001310eeCAS | 15223846PubMed |
Naz, R. K., and Ahmad, K. (1994). Molecular identities of human sperm proteins that bind human zona pellucida: nature of sperm–zona interaction, tyrosine kinase activity and involvement of FA-1. Mol. Reprod. Dev. 39, 397–408.
| Molecular identities of human sperm proteins that bind human zona pellucida: nature of sperm–zona interaction, tyrosine kinase activity and involvement of FA-1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXisFWjtrk%3D&md5=f98f017f35b9923bebe12dcf094fdc03CAS | 7534465PubMed |
Naz, R. K., Ahmad, K., and Kaplan, P. (1993). Involvement of cyclins and cdc2 serine/threonine protein kinase in human sperm cell function. Biol. Reprod. 48, 720–728.
| Involvement of cyclins and cdc2 serine/threonine protein kinase in human sperm cell function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXks1yqu7o%3D&md5=d87931cd559113e28c610b08eebbc540CAS | 8485236PubMed |
O’Farell, H. P. (1975). Evidence for in situ and in vitro association between β-dystroglycan and the subsynaptic 43K rapsyn protein. J. Biol. Chem. 250, 4007–4021.
| 236308PubMed |
Paasch, U., Grunewald, S., Agarwal, A., and Glandera, H. J. (2004). Activation pattern of caspases in human spermatozoa. Fertil. Steril. 81, 802–809.
| Activation pattern of caspases in human spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXitFGhs7c%3D&md5=3659bf0388a873ddef14f52e27cbfb2eCAS | 15019813PubMed |
Peña, F. J., Núñez Martínez, I., and Morán, J. M. (2006). Semen technologies in dog breeding: an update. Reprod. Domest. Anim. 41, 21–29.
| Semen technologies in dog breeding: an update.Crossref | GoogleScholarGoogle Scholar | 16984466PubMed |
Petrunkina, A. M., Simon, K., Günzel-Apel, A. R., and Töpfer-Petersen, E. (2003). Specific order in the appearance of protein tyrosine phosphorylation patterns is functionally coordinated with dog sperm hyperactivation and capacitation. J. Androl. 24, 423–437.
| 12721219PubMed |
Petrunkina, A. M., Harrison, R. A. P., Tsolova, M., Jebe, E., and Töpfer-Petersen, E. (2007). Signalling pathways involved in the control of sperm cell volume. Reproduction 133, 61–73.
| Signalling pathways involved in the control of sperm cell volume.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjs1ajurc%3D&md5=1e12c0bdd4eda7238cd7d7fb0c618557CAS | 17244733PubMed |
Piehler, E., Petrunkina, A. M., Ekhlasi-Hundrieser, M., and Töpfer-Petersen, E. (2006). Dynamic quantification of the tyrosine phosphorylation of the sperm surface proteins during capacitation. Cytometry A 69A, 1062–1070.
| Dynamic quantification of the tyrosine phosphorylation of the sperm surface proteins during capacitation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtF2gs77J&md5=87148db88490d7b31d8fb4502445c15dCAS |
Pommer, A. C., Rutllant, J., and Meyers, S. A. (2003). Phosphorylation of protein tyrosine residues in fresh and cryopreserved stallion spermatozoa under capacitating conditions. Biol. Reprod. 68, 1208–1214.
| Phosphorylation of protein tyrosine residues in fresh and cryopreserved stallion spermatozoa under capacitating conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXisVertL8%3D&md5=c692e843abea52d104e0f6d46796b7fcCAS | 12606471PubMed |
Ramió, L., Rivera, M. M., Ramírez, A., Concha, I. I., Peña, A., Rigau, T., and Rodríguez-Gil, J. E. (2008). Dynamics of motile-sperm subpopulation structure in boar ejaculates subjected to in vitro capacitation and further in vitro acrosome reaction. Theriogenology 69, 501–512.
| Dynamics of motile-sperm subpopulation structure in boar ejaculates subjected to in vitro capacitation and further in vitro acrosome reaction.Crossref | GoogleScholarGoogle Scholar | 18068222PubMed |
Rigau, T., Farré, M., Ballester, J., Mogas, T., Peña, A., and Rodríguez-Gil, J. E. (2001). Effects of glucose and fructose on motility patterns of dog spermatozoa from fresh ejaculates. Theriogenology 56, 801–815.
| Effects of glucose and fructose on motility patterns of dog spermatozoa from fresh ejaculates.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnvF2mtL4%3D&md5=50de3de89fd819e23d581052bf3f5bb9CAS | 11665883PubMed |
Rigau, T., Rivera, M., Palomo, M. J., Fernández-Novell, J. M., Mogas, T., Ballester, J., Peña, A., Otaegui, P. J., Guinovart, J. J., and Rodríguez-Gil, J. E. (2002). Differential effects of glucose and fructose on hexose metabolism in dog spermatozoa. Reproduction 123, 579–591.
| Differential effects of glucose and fructose on hexose metabolism in dog spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XivFGhtbk%3D&md5=a6b4bcf5da52271d25886bd504377485CAS | 11914120PubMed |
Rodríguez-Gil, J. E. (2006). Mammalian sperm energy resources management and survival during conservation in refrigeration. Reprod. Domest. Anim. 41, 11–20.
| Mammalian sperm energy resources management and survival during conservation in refrigeration.Crossref | GoogleScholarGoogle Scholar | 16984465PubMed |
Rogers, B. J., and Perreault, S. D. (1990). Importance of glycosylable substrates for in vitro capacitation of human spermatozoa. Biol. Reprod. 43, 1064–1069.
| Importance of glycosylable substrates for in vitro capacitation of human spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXktVSiug%3D%3D&md5=8e47e9707fa268f4df2f9145eee2b876CAS | 2291925PubMed |
Sancho, S., Casas, I., Ekwall, H., Saravia, F., Rodríguez-Martínez, H., Rodríguez-Gil, J. E., Flores, E., Pinart, E., Briz, M., García-Gil, N., Bassols, J., Pruneda, A., Bussalleu, E., Yeste, M., and Bonet, S. (2007). Effects of cryopreservation on semen quality and the expression of sperm membrane hexose transporters in the spermatozoa of Iberian pigs. Reproduction 134, 111–121.
| Effects of cryopreservation on semen quality and the expression of sperm membrane hexose transporters in the spermatozoa of Iberian pigs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpvFGis7o%3D&md5=77f111da63f42dd552ee609f172607fbCAS | 17641093PubMed |
Scruel, O., Sener, A., and Malaisse, W. J. (1997). Glucose-induced positive cooperativity of fructose phosphorylation by human β-cell glucokinase. Mol. Cell. Biochem. 175, 263–269.
| Glucose-induced positive cooperativity of fructose phosphorylation by human β-cell glucokinase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmvVGjsLg%3D&md5=0f594cb0316d19fb94ef1407a1a37235CAS | 9350059PubMed |
Setchell, B. P., and Brooks, D. E. (1994). Seminal plasma. In ‘The Physiology of Reproduction’. (Eds E. Knobil and J. D. Neill.) pp. 797–836. (Raven Press: New York, NY.)
Silvestroni, L., Modesti, A., and Sartori, C. (1992). Insulin–sperm interaction: effects on plasma membrane and binding to acrosome. Arch. Androl. 28, 201–211.
| Insulin–sperm interaction: effects on plasma membrane and binding to acrosome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XltVCks70%3D&md5=a892b13810a2325ef025f64f31dae388CAS | 1530369PubMed |
Suzuki, T., Fujinoki, M., Shibahara, H., and Suzuki, M. (2010). Regulation of hyperactivation by protein phosphatase 2A on hamster spermatozoa. Reproduction 139, 847–856.
| Regulation of hyperactivation by protein phosphatase 2A on hamster spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmvVCgsLs%3D&md5=cc75f6aaf87efef4b4a72f60a372b599CAS | 20185533PubMed |
Sylvester, S. R., Morales, C., Oko, R., and Griswold, M. D. (1991). Localization of sulfated glycoprotein-2 (clusterin) on spermatozoa and in the reproductive tract of the male rat. Biol. Reprod. 45, 195–207.
| Localization of sulfated glycoprotein-2 (clusterin) on spermatozoa and in the reproductive tract of the male rat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXlvVSjsr0%3D&md5=a0128e150fdf46044f5438bef484dafeCAS | 1878433PubMed |
Tardif, S., Dubé, C., Chevalier, S., and Bailey, J. L. (2001). Capacitation is associated with tyrosine phosphorylation and tyrosine kinase-like activity of pig sperm proteins. Biol. Reprod. 65, 784–792.
| Capacitation is associated with tyrosine phosphorylation and tyrosine kinase-like activity of pig sperm proteins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmtFems7w%3D&md5=3da6c9c0785047463f1fafcf84dbd5baCAS | 11514342PubMed |
Tash, J. S., and Means, A. R. (1983). Cyclic adenosine 3′,5′ monophosphate, calcium and protein phosphorylation in flagellar motility. Biol. Reprod. 28, 75–104.
| Cyclic adenosine 3′,5′ monophosphate, calcium and protein phosphorylation in flagellar motility.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXht1Wntrk%3D&md5=fd6b590bb4eebaef614ff1f1c94a2a02CAS | 6299416PubMed |
Thundathil, J., de Lamirande, E., and Gagnon, C. (2002). Different signal transduction pathways are involved during human sperm capacitation induced by biological and pharmacological agents. Mol. Hum. Reprod. 8, 811–816.
| Different signal transduction pathways are involved during human sperm capacitation induced by biological and pharmacological agents.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XnvF2jtbc%3D&md5=0f158c83c2cbd2c8dfd658f42f43e06cCAS | 12200458PubMed |
Travert, C., Carreau, S., and Galeraud-Denis, I. (2009). Sperm capacitation: physiology. Gynecol. Obstet. Fertil. 37, 523–528.
| Sperm capacitation: physiology.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1MvhslehsA%3D%3D&md5=da219092c2d338538482ea0ddd6175c1CAS | 19477675PubMed |
Urner, F., and Sakkas, D. (2003). Protein phosphorylation in mammal spermatozoa. Reproduction 125, 17–26.
| Protein phosphorylation in mammal spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhvFGls78%3D&md5=bb5106fa86adfb923b9b5c804c9f5234CAS | 12622692PubMed |
Vijayaraghavan, S., Trautmann, K. D., Goueli, S. A., and Carr, D. W. (1997). A tyrosine phosphorylated 55-kilodalton motility-associated bovine sperm protein is regulated by cyclic adenosine 3′,5′ monophosphate and calcium. Biol. Reprod. 56, 1450–1457.
| A tyrosine phosphorylated 55-kilodalton motility-associated bovine sperm protein is regulated by cyclic adenosine 3′,5′ monophosphate and calcium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjtlKitb4%3D&md5=ac5d4fa14bf46016f9b2732cfe6c2274CAS | 9166697PubMed |
Vijayaraghavan, S., Chakrabarti, R., and Myers, K. (2007). Regulation of sperm function by protein phosphatase PP1gamma2. Soc. Reprod. Fertil. Suppl. 63, 111–121.
| 1:CAS:528:DC%2BD1cXpvVyksbc%3D&md5=86c532d05b721be9b6d9bfb136df9e96CAS | 17566266PubMed |
Visconti, P. E., and Kopf, G. (1998). Regulation of protein phosphorylation during sperm capacitation. Biol. Reprod. 59, 1–6.
| Regulation of protein phosphorylation during sperm capacitation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXktFaksLw%3D&md5=06bd8a80525fdde3019e9828012f9310CAS | 9674985PubMed |
Visconti, P. E., Bailey, J. L., Moore, G. D., Pan, D., Olds-Clarke, P., and Kopf, G. S. (1995). Capacitation of mouse spermatozoa I. Correlation between the capacitation state and protein tyrosine phosphorylation. Development 121, 1129–1137.
| 1:CAS:528:DyaK2MXltVamur8%3D&md5=3d50f34ef5eaa2daff00686c48be2cc2CAS | 7743926PubMed |
Young, L. E., Sinclair, K. D., and Wilmut, I. (1998). Large offspring syndrome in cattle and sheep. Rev. Reprod. 3, 155–163.
| Large offspring syndrome in cattle and sheep.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXntlaltL8%3D&md5=cff78c8ba0918655e205b40cf2dd6b49CAS | 9829550PubMed |