Cloning endangered felids using heterospecific donor oocytes and interspecies embryo transfer
Martha C. Gómez A D , C. Earle Pope A , David M. Ricks A B , Justine Lyons A , Cherie Dumas A and Betsy L. Dresser A CA Audubon Center for Research of Endangered Species, 14001 River Road, New Orleans, LA 70124, USA.
B LSU Health Sciences Center, Department of Medicine, Gene Therapy Program, Louisiana State University, 533 Bolivar St, New Orleans, LA 70112, USA.
C Department of Biological Sciences, University of New Orleans, 200 Lakeshore Drive, New Orleans, LA 70131, USA.
D Corresponding author. Email: mgomez@auduboninstitute.org
Reproduction, Fertility and Development 21(1) 76-82 https://doi.org/10.1071/RD08222
Published: 9 December 2008
Abstract
Somatic cell nuclear transfer (SCNT) offers the possibility of preserving endangered species. It is one of the few technologies that avoids the loss of genetic variation and provides the prospect of species continuance, rather than extinction. Nonetheless, there has been a debate over the use of SCNT for preserving endangered species because of abnormal nuclear reprogramming, low efficiency and the involvement of extra mitochondrial DNA (mtDNA) of a different species in live offspring produced by interspecies SCNT. Despite these limitations, live endangered cloned animals have been produced. In the present paper, we describe recent research on the production of cloned embryos derived by fusion of wild felid fibroblast cells with heterospecific domestic cat cytoplasts and their viability after transfer into domestic cat recipients. In addition, we discuss epigenetic events that take place in donor cells and felid cloned embryos and mtDNA inheritance in wild felid clones and their offspring.
Antunes, A. , Pontius, J. , Ramos, M. J. , O’Brien, S. J. , and Johnson, W. E. (2007). Mitochondrial introgressions into the nuclear genome of the domestic cat. J. Hered. 98, 414–420.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Gómez, M. C. , Jenkins, J. A. , Giraldo, A. , Harris, R. F. , King, A. , Dresser, B. L. , and Pope, C. E. (2003). Nuclear transfer of synchronized African wild cat somatic cells into enucleated domestic cat oocytes. Biol. Reprod. 69, 1032–1041.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Hochedlinger, K. , and Jaenisch, R. (2006). Nuclear reprogramming and pluripotency. Nature 441, 1061–1067.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Kenyon, L. , and Moraes, C. T. (1997). Expanding the functional human mitochondrial DNA database by the establishment of primate xenomitochondrial cybrids. Proc. Natl Acad. Sci. USA 94, 9131–9135.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Rybouchkin, A. , Kato, Y. , and Tsunoda, Y. (2006). Role of histone acetylation in reprogramming of somatic nuclei following nuclear transfer. Biol. Reprod. 74, 1083–1089.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Sansinena, M. , Hylan, D. , Hebert, K. , Denniston, R. S. , and Godke, R. A. (2005). Banteng (Bos javanicus) embryos and pregnancies produced by interspecies nuclear transfer. Theriogenology 63, 1081–1091.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Santos-Rosa, H. , Schneider, R. , Bannister, A. J. , Sherriff, J. , Bernstein, B. E. , Emre, T. , Schreiber, S. L. , Mellor, J. , and Kouzarides, T. (2002). Active genes are trimethylated at K4 of Histone 3. Nature 419, 407–411.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Shi, L. H. , Miao, Y. L. , Ouyang, Y. C. , Huang, J. C. , Lei, Z. L. , Yang, J. W. , Han, Z. M. , Song, X. F. , Sun, Q. Y. , and Chen, D. Y. (2008). Trichostatin A (TSA) improves the development of rabbit–rabbit intraspecies cloned embryos, but not rabbit–human interspecies cloned embryos. Dev. Dyn. 237, 640–648.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
St. John, J. C. , Lloyd, R. E. , Bowles, E. J. , Thomas, E. C. , and Shourbagy, S. E. (2004). The consequences of nuclear transfer for mammalian foetal development and offspring survival. A mitochondrial DNA perspective. Reproduction 127, 631–641.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Sutovsky, P. , Moreno, R. , Ramalho-Santos, J. , Dominko, T. , Simerly, C. , and Schatten, G. (2000). Ubiquitinated sperm mitochondria, selective proteolysis and the regulation of mitochondrial inheritance in mammalian embryos. Biol. Reprod. 63, 582–590.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Taanman, J. W. (1999). The mitochondrial genome: structure, transcription, translation and replication Biochim. Biophys. Acta 1410, 103–123.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Thongphakdee, A. , Numchaisrika, P. , Omsongkram, S. , Chatdarong, K. , Kamolnorranath, S. , Dumnui, S. , and Techakumphu, M. (2006). In vitro development of marbled cat embryos derived from interspecies somatic cell nuclear transfer. Reprod. Domest. Anim. 41, 219–226.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Thongphakdee, A. , Kobayashi, S. , Imai, K. , Inaba, Y. , and Tasai, M. , et al. (2008). Interspecies nuclear transfer embryos reconstructed from cat somatic cells and bovine ooplasm. J. Reprod. Dev. 54, 142–147.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Wakayama, T. (2007). Production of cloned mice and ES cells from adult somatic cells by nuclear transfer: how to improve cloning efficiency? J. Reprod. Dev. 53, 13–26.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Wen, D.-C. , Yang, C.-Y. , Cheng, Y. , Li, J.-S. , and Liu, Z.-H. , et al. (2003). Comparison of developmental capacity for intra- and interspecies cloned cat (Felis catus) embryos. Mol. Reprod. Dev. 66, 38–45.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Wilmut, I. , and Paterson, L. (2003). Somatic cell nuclear transfer. Oncol. Res. 13, 303–307.
| PubMed |
Yin, X. , Lee, Y. , Lee, H. , Kim, N. , Kim, L. , Shin, K. , and Kong, I. (2006). In vitro production and initiation of pregnancies in inter-genus nuclear transfer embryos derived from leopard cat (Prionailurus bengalensis) nuclei fused with domestic cat (Felis silvestris catus) enucleated oocytes. Theriogenology 66, 275–282.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Zhang, Y. H. , Pan, D. K. , Sun, X. Z. , Sun, G. J. , Liu, X. H. , Wang, X. B. , Tian, X. H. , Li, Y. , Dai, Y. P. , and Li, N. (2006). In vitro developmental competence of pig nuclear transferred embryos: effects of GFP transfection, refrigeration, cell cycle synchronization and shapes of donor cells. Zygote 14, 239–247.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Zhang, Y. , Li, J. , Villemoes, K. , Pedersen, A. M. , Purup, S. , and Vajta, G. (2007). An epigenetic modifier results in improved in vitro blastocyst production after somatic cell nuclear transfer. Cloning Stem Cells 9, 357–363.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |