Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Transcriptional heterogeneity in mouse embryonic stem cells

Tetsuya S. Tanaka
+ Author Affiliations
- Author Affiliations

Department of Animal Sciences, Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1207 West Gregory Drive, Urbana, IL 61801, USA. Email: ttanaka@illinois.edu

Reproduction, Fertility and Development 21(1) 67-75 https://doi.org/10.1071/RD08219
Published: 9 December 2008

Abstract

The embryonic stem (ES) cell is a stem cell derived from early embryos that can indefinitely repeat self-renewing cell division cycles as an undifferentiated cell in vitro and give rise to all specialised cell types in the body. However, manipulating ES cell differentiation in vitro is a challenge due to, at least in part, heterogeneous gene induction. Recent experimental evidence has demonstrated that undifferentiated mouse ES cells maintained in culture exhibit heterogeneous expression of Dppa3, Nanog, Rex1, Pecam1 and Zscan4 as well as genes (Brachyury/T, Rhox6/9 and Twist2) normally expressed in specialised cell types. The Nanog-negative, Rex1-negative or T-positive ES cell subpopulation has a unique differentiation potential. Thus, studying the mechanism that generates ES cell subpopulations will improve manipulation of ES cell fate and help our understanding of the nature of embryonic development.


Acknowledgement

The author extends special thanks to Dr Matthew B. Wheeler for critical reading of this manuscript. In addition, the author thanks his mentors, who have trained him, and his colleagues for providing support, encouragement and inspiration.


References

Amano, H. , Itakura, K. , Maruyama, M. , Ichisaka, T. , Nakagawa, M. , and Yamanaka, S. (2006). Identification and targeted disruption of the mouse gene encoding ESG1 (PH34/ECAT2/DPPA5). BMC Dev. Biol. 6, 11.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Avilion, A. A. , Nicolis, S. K. , Pevny, L. H. , Perez, L. , Vivian, N. , and Lovell-Badge, R. (2003). Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev. 17, 126–140.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Ben-Shushan, E. , Thompson, J. R. , Gudas, L. J. , and Bergman, Y. (1998). Rex-1, a gene encoding a transcription factor expressed in the early embryo, is regulated via Oct-3/4 and Oct-6 binding to an octamer site and a novel protein, rox-1, binding to an adjacent site. Mol. Cell. Biol. 18, 1866–1878.
PubMed |  CAS |

Boyer, L. A. , Lee, T. I. , Cole, M. F. , Johnstone, S. E. , and Levine, S. S. , et al. (2005). Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122, 947–956.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Bradley, A. , Evans, M. , Kaufman, M. H. , and Robertson, E. (1984). Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines. Nature 309, 255–256.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Brennan, J. , Lu, C. C. , Norris, D. P. , Rodriguez, T. A. , Beddington, R. S. P. , and Robertson, E. J. (2001). Nodal signalling in the epiblast patterns the early mouse embryo. Nature 411, 965–969.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Brons, I. G. M. , Smithers, L. E. , Trotter, M. W. , Rugg-Gunn, P. , and Sun, B. , et al. (2007). Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature 448, 191–195.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Buehr, M. , and McLaren, A. (1974). Size regulation in chimaeric mouse embryos. J. Embryol. Exp. Morphol. 31, 229–234.
PubMed |  CAS |

Bultman, S. , Gebuhr, T. , Yee, D. , La Mantia, C. , and Nicholson, J. , et al. (2000). A Brg1 null mutation in the mouse reveals functional differences among mammalian SWI/SNF complexes. Mol. Cell 6, 1287–1295.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Cai, L. , Friedman, N. , and Xie, X. S. (2006). Stochastic protein expression in individual cells at the single molecule level. Nature 440, 358–362.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Carter, M. G. , Stagg, C. A. , Falco, G. , Yoshikawa, T. , Bassey, U. C. , Aiba, K. , Sharova, L. V. , Shaik, N. , and Ko, M. S. H. (2008). An in situ hybridization-based screen for heterogeneously expressed genes in mouse ES cells. Gene Expr. Patterns 8, 181–198.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Chamberlain, S. J. , Yee, D. , and Magnuson, T. (2008). Polycomb repressive complex 2 is dispensable for maintenance of embryonic stem cell pluripotency. Stem Cells 26, 1496–1505.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Chambers, I. , and Smith, A. (2004). Self-renewal of teratocarcinoma and embryonic stem cells. Oncogene 23, 7150–7160.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Chambers, I. , Colby, D. , Robertson, M. , Nichols, J. , Lee, S. , Tweedie, S. , and Smith, A. (2003). Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 113, 643–655.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Chambers, I. , Silva, J. , Colby, D. , Nichols, J. , Nijmeijer, B. , Robertson, M. , Vrana, J. , Jones, K. , Grotewold, L. , and Smith, A. (2007). Nanog safeguards pluripotency and mediates germline development. Nature 450, 1230–1234.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Chang, H. , Huylebroeck, D. , Verschueren, K. , Guo, Q. , Matzuk, M. M. , and Zwijsen, A. (1999). Smad5 knockout mice die at mid-gestation due to multiple embryonic and extraembryonic defects. Development 126, 1631–1642.
PubMed |  CAS |

Chazaud, C. , Yamanaka, Y. , Pawson, T. , and Rossant, J. (2006). Early lineage segregation between epiblast and primitive endoderm in mouse blastocysts through the Grb2–MAPK pathway. Dev. Cell 10, 615–624.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Chisholm, J. C. , Johnson, M. H. , Warren, P. D. , Fleming, T. P. , and Pickering, S. J. (1985). Developmental variability within and between mouse expanding blastocysts and their ICMs. J. Embryol. Exp. Morphol. 86, 311–336.
PubMed |  CAS |

Daggag, H. , Svingen, T. , Western, P. S. , van den Bergen, J. A. , McClive, P. J. , Harley, V. R. , Koopman, P. , and Sinclair, A. H. (2008). The Rhox homeobox gene family shows sexually dimorphic and dynamic expression during mouse embryonic gonad development. Biol. Reprod. 79, 468–474.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Darr, H. , Mayshar, Y. , and Benvenisty, N. (2006). Overexpression of NANOG in human ES cells enables feeder-free growth while inducing primitive ectoderm features. Development 133, 1193–1201.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Datto, M. B. , Frederick, J. P. , Pan, L. , Borton, A. J. , Zhuang, Y. , and Wang, X.-F. (1999). Targeted disruption of Smad3 reveals an essential role in transforming growth factor beta-mediated signal transduction. Mol. Cell. Biol. 19, 2495–2504.
PubMed |  CAS |

Dejosez, M. , Krumenacker, J. S. , Zitur, L. J. , Passeri, M. , Chu, L.-F. , Songyang, Z. , Thomson, J. A. , and Zwaka, T. P. (2008). Ronin is essential for embryogenesis and the pluripotency of mouse embryonic stem cells. Cell 133, 1162–1174.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Doetschman, T. , Gregg, R. G. , Maeda, N. , Hooper, M. L. , Melton, D. W. , Thompson, S. , and Smithies, O. (1987). Targetted correction of a mutant HPRT gene in mouse embryonic stem cells. Nature 330, 576–578.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Elling, U. , Klasen, C. , Eisenberger, T. , Anlag, K. , and Treier, M. (2006). Murine inner cell mass-derived lineages depend on Sall4 function. Proc. Natl Acad. Sci. USA 103, 16 319–16 324.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Evans, M. J. , and Kaufman, M. H. (1981). Establishment in culture of pluripotential cells from mouse embryos. Nature 292, 154–156.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Falco, G. , Lee, S.-L. , Stanghellini, I. , Bassey, U. C. , Hamatani, T. , and Ko, M. S. H. (2007). Zscan4: a novel gene expressed exclusively in late 2-cell embryos and embryonic stem cells. Dev. Biol. 307, 539–550.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Fujikura, J. , Yamato, E. , Yonemura, S. , Hosoda, K. , Masui, S. , Nakao, K. , Miyazaki Ji, J. , and Niwa, H. (2002). Differentiation of embryonic stem cells is induced by GATA factors. Genes Dev. 16, 784–789.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Fujita, J. , Crane, A. M. , Souza, M. K. , Dejosez, M. , Kyba, M. , Flavell, R. A. , Thomson, J. A. , and Zwaka, T. P. (2008). Caspase activity mediates the differentiation of embryonic stem cells. Cell Stem Cell 2, 595–601.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Furue, M. , Okamoto, T. , Hayashi, Y. , Okochi, H. , and Fujimoto, M. , et al. (2005). Leukemia inhibitory factor as an anti-apoptotic mitogen for pluripotent mouse embryonic stem cells in a serum-free medium without feeder cells. In Vitro Cell. Dev. Biol. Anim. 41, 19–28.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Furusawa, T. , Ohkoshi, K. , Honda, C. , Takahashi, S. , and Tokunaga, T. (2004). Embryonic stem cells expressing both platelet endothelial cell adhesion molecule-1 and stage-specific embryonic antigen-1 differentiate predominantly into epiblast cells in a chimeric embryo. Biol. Reprod. 70, 1452–1457.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Furusawa, T. , Ikeda, M. , Inoue, F. , Ohkoshi, K. , Hamano, T. , and Tokunaga, T. (2006). Gene expression profiling of mouse embryonic stem cell subpopulations. Biol. Reprod. 75, 555–561.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Gardner, R. L. , and Johnson, M. H. (1972). An investigation of inner cell mass and trophoblast tissues following their isolation from the mouse blastocyst. J. Embryol. Exp. Morphol. 28, 279–312.
PubMed |  CAS |

Hanna, L. A. , Foreman, R. K. , Tarasenko, I. A. , Kessler, D. S. , and Labosky, P. A. (2002). Requirement for Foxd3 in maintaining pluripotent cells of the early mouse embryo. Genes Dev. 16, 2650–2661.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Hansis, C. , Barreto, G. , Maltry, N. , and Niehrs, C. (2004). Nuclear reprogramming of human somatic cells by Xenopus egg extract requires BRG1. Curr. Biol. 14, 1475–1480.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Hart, A. H. , Hartley, L. , Ibrahim, M. , and Robb, L. (2004). Identification, cloning and expression analysis of the pluripotency promoting Nanog genes in mouse and human. Dev. Dyn. 230, 187–198.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Hatano, S. Y. , Tada, M. , Kimura, H. , Yamaguchi, S. , Kono, T. , Nakano, T. , Suemori, H. , Nakatsuji, N. , and Tada, T. (2005). Pluripotential competence of cells associated with Nanog activity. Mech. Dev. 122, 67–79.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Hay, D. C. , Sutherland, L. , Clark, J. , and Burdon, T. (2004). Oct-4 knockdown induces similar patterns of endoderm and trophoblast differentiation markers in human and mouse embryonic stem cells. Stem Cells 22, 225–235.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Herrmann, B. G. , Labeit, S. , Poustka, A. , King, T. R. , and Lehrach, H. (1990). Cloning of the T gene required in mesoderm formation in the mouse. Nature 343, 617–622.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Hoeflich, K. P. , Luo, J. , Rubie, E. A. , Tsao, M.-S. , Jin, O. , and Woodgett, J. R. (2000). Requirement for glycogen synthase kinase-3[beta] in cell survival and. Nature 406, 86–90.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Hosler, B. A. , LaRosa, G. J. , Grippo, J. F. , and Gudas, L. J. (1989). Expression of REX-1, a gene containing zinc finger motifs, is rapidly reduced by retinoic acid in F9 teratocarcinoma cells. Mol. Cell. Biol. 9, 5623–5629.
PubMed |  CAS |

Humphrey, R. K. , Beattie, G. M. , Lopez, A. D. , Bucay, N. , King, C. C. , Firpo, M. T. , Rose-John, S. , and Hayek, A. (2004). Maintenance of pluripotency in human embryonic stem cells is STAT3 independent. Stem Cells 22, 522–530.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Hyslop, L. , Stojkovic, M. , Armstrong, L. , Walter, T. , Stojkovic, P. , Przyborski, S. , Herbert, M. , Murdoch, A. , Strachan, T. , and Lako, M. (2005). Downregulation of NANOG induces differentiation of human embryonic stem cells to extraembryonic lineages. Stem Cells 23, 1035–1043.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Ivanova, N. B. , Dimos, J. T. , Schaniel, C. , Hackney, J. A. , Moore, K. A. , and Lemischka, I. R. (2002). A stem cell molecular signature. Science 298, 601–604.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Jiang, J. , Chan, Y.-S. , Loh, Y.-H. , Cai, J. , Tong, G.-Q. , Lim, C.-A. , Robson, P. , Zhong, S. , and Ng, H.-H. (2008). A core Klf circuitry regulates self-renewal of embryonic stem cells. Nat. Cell Biol. 10, 353–360.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Ko, M. S. , Nakauchi, H. , and Takahashi, N. (1990). The dose dependence of glucocorticoid-inducible gene expression results from changes in the number of transcriptionally active templates. EMBO J. 9, 2835–2842.
PubMed |  CAS |

Koopman, P. , and Cotton, R. G. H. (1984). A factor produced by feeder cells which inhibits embryonal carcinoma cell differentiation: characterization and partial purification. Exp. Cell Res. 154, 233–242.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Kurimoto, K. , Yabuta, Y. , Ohinata, Y. , Ono, Y. , Uno, K. D. , Yamada, R. G. , Ueda, H. R. , and Saitou, M. (2006). An improved single-cell cDNA amplification method for efficient high-density oligonucleotide microarray analysis. Nucleic Acids Res. 34, e42.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Li, L. , Cserjesi, P. , and Olson, E. N. (1995a). Dermo-1: a novel twist-related bHLH protein expressed in the developing dermis. Dev. Biol. 172, 280–292.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Li, M. , Sendtner, M. , and Smith, A. (1995b). Essential function of LIF receptor in motor neurons. Nature 378, 724–727.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Lindsley, R. C. , Gill, J. G. , Kyba, M. , Murphy, T. L. , and Murphy, K. M. (2006). Canonical Wnt signaling is required for development of embryonic stem cell-derived mesoderm. Development 133, 3787–3796.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Loh, Y. H. , Wu, Q. , Chew, J. L. , Vega, V. B. , and Zhang, W. , et al. (2006). The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nat. Genet. 38, 431–440.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Losick, R. , and Desplan, C. (2008). Stochasticity and cell fate. Science 320, 65–68.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

MacLean, J. A. , Chen, M. A. , Wayne, C. M. , Bruce, S. R. , Rao, M. , Meistrich, M. L. , Macleod, C. , and Wilkinson, M. F. (2005). Rhox: a new homeobox gene cluster. Cell 120, 369–382.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Martin, G. R. (1981). Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc. Natl Acad. Sci. USA 78, 7634–7638.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Masui, S. , Nakatake, Y. , Toyooka, Y. , Shimosato, D. , and Yagi, R. , et al. (2007). Pluripotency governed by Sox2 via regulation of Oct3/4 expression in mouse embryonic stem cells. Nat. Cell Biol. 9, 625–635.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Masui, S. , Ohtsuka, S. , Yagi, R. , Takahashi, K. , Ko, M. , and Niwa, H. (2008). Rex1/Zfp42 is dispensable for pluripotency in mouse ES cells. BMC Dev. Biol. 8, 45.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Matoba, R. , Niwa, H. , Masui, S. , Ohtsuka, S. , Carter, M. G. , Sharov, A. A. , and Ko, M. S. (2006). Dissecting oct3/4-regulated gene networks in embryonic stem cells by expression profiling. PLoS One 1, e26.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Matsuda, T. , Nakamura, T. , Nakao, K. , Arai, T. , Katsuki, M. , Heike, T. , and Yokota, T. (1999). STAT3 activation is sufficient to maintain an undifferentiated state of mouse embryonic stem cells. EMBO J. 18, 4261–4269.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Matushansky, I. , Maki, R. G. , and Cordon-Cardo, C. (2008). A context dependent role for Wnt signaling in tumorigenesis and stem cells. Cell Cycle 7, 720–724.
PubMed |  CAS |

Mintz, B. (1974). Gene control of mammalian differentiation. Annu. Rev. Genet. 8, 411–470.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Mitsui, K. , Tokuzawa, Y. , Itoh, H. , Segawa, K. , Murakami, M. , Takahashi, K. , Maruyama, M. , Maeda, M. , and Yamanaka, S. (2003). The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 113, 631–642.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Nakatake, Y. , Fukui, N. , Iwamatsu, Y. , Masui, S. , and Takahashi, K. , et al. (2006). Klf4 cooperates with Oct3/4 and Sox2 to activate the Lefty1 core promoter in embryonic stem cells. Mol. Cell. Biol. 26, 7772–7782.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Neildez-Nguyen, T. M. , Parisot, A. , Vignal, C. , Rameau, P. , Stockholm, D. , Picot, J. , Allo, V. , Le Bec, C. , Laplace, C. , and Paldi, A. (2008). Epigenetic gene expression noise and phenotypic diversification of clonal cell populations. Differentiation 76, 33–40.
PubMed |  CAS |

Nichols, J. , Zevnik, B. , Anastassiadis, K. , Niwa, H. , Klewe-Nebenius, D. , Chambers, I. , Scholer, H. , and Smith, A. (1998). Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 95, 379–391.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Nichols, J. , Chambers, I. , Taga, T. , and Smith, A. (2001). Physiological rationale for responsiveness of mouse embryonic stem cells to gp130 cytokines. Development 128, 2333–2339.
PubMed |  CAS |

Niwa, H. (2007). How is pluripotency determined and maintained? Development 134, 635–646.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Niwa, H. , Burdon, T. , Chambers, I. , and Smith, A. (1998). Self-renewal of pluripotent embryonic stem cells is mediated via activation of STAT3. Genes Dev. 12, 2048–2060.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Niwa, H. , Miyazaki, J. , and Smith, A. G. (2000). Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat. Genet. 24, 372–376.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Okamoto, K. , Okazawa, H. , Okuda, A. , Sakai, M. , Muramatsu, M. , and Hamada, H. (1990). A novel octamer binding transcription factor is differentially expressed in mouse embryonic cells. Cell 60, 461–472.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Okuda, A. , Fukushima, A. , Nishimoto, M. , Orimo, A. , and Yamagishi, T. , et al. (1998). UTF1, a novel transcriptional coactivator expressed in pluripotent embryonic stem cells and extra-embryonic cells. EMBO J. 17, 2019–2032.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Payer, B. , Chuva de Sousa Lopes, S. M. , Barton, S. C. , Lee, C. , Saitou, M. , and Surani, M. A. (2006). Generation of stella–GFP transgenic mice: a novel tool to study germ cell development. Genesis 44, 75–83.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Perea-Gomez, A. , Camus, A. , Moreau, A. , Grieve, K. , Moneron, G. , Dubois, A. , Cibert, C. , and Collignon, J. (2004). Initiation of gastrulation in the mouse embryo is preceded by an apparent shift in the orientation of the anterior–posterior axis. Curr. Biol. 14, 197–207.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Ramalho-Santos, M. , Yoon, S. , Matsuzaki, Y. , Mulligan, R. C. , and Melton, D. A. (2002). ‘Stemness’: transcriptional profiling of embryonic and adult stem cells. Science 298, 597–600.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Reya, T. , Duncan, A. W. , Ailles, L. , Domen, J. , Scherer, D. C. , Willert, K. , Hintz, L. , Nusse, R. , and Weissman, I. L. (2003). A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature 423, 409–414.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Rideout, W. M. , Hochedlinger, K. , Kyba, M. , Daley, G. Q. , and Jaenisch, R. (2002). Correction of a genetic defect by nuclear transplantation and combined cell and gene therapy. Cell 109, 17–27.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Rivera-Pérez, J. A. , and Magnuson, T. (2005). Primitive streak formation in mice is preceded by localized activation of Brachyury and Wnt3. Dev. Biol. 288, 363–371.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Robertson, E. , Bradley, A. , Kuehn, M. , and Evans, M. (1986). Germ-line transmission of genes introduced into cultured pluripotential cells by retroviral vector. Nature 323, 445–448.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Rosner, M. H. , Vigano, M. A. , Ozato, K. , Timmons, P. M. , Poirie, F. , Rigby, P. W. J. , and Staudt, L. M. (1990). A POU-domain transcription factor in early stem cells and germ cells of the mammalian embryo. Nature 345, 686–692.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Sakaki-Yumoto, M. , Kobayashi, C. , Sato, A. , Fujimura, S. , and Matsumoto, Y. , et al. (2006). The murine homolog of SALL4, a causative gene in Okihiro syndrome, is essential for embryonic stem cell proliferation, and cooperates with Sall1 in anorectal, heart, brain and kidney development. Development 133, 3005–3013.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Sato, N. , Meijer, L. , Skaltsounis, L. , Greengard, P. , and Brivanlou, A. H. (2004). Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nat. Med. 10, 55–63.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Scholer, H. R. , Hatzopoulos, A. K. , Balling, R. , Suzuki, N. , and Gruss, P. (1989). A family of octamer-specific proteins present during mouse embryogenesis: evidence for germline-specific expression of an Oct factor. EMBO J. 8, 2543–2550.
PubMed |  CAS |

Scholer, H. R. , Ruppert, S. , Suzuki, N. , Chowdhury, K. , and Gruss, P. (1990). New type of POU domain in germ line-specific protein Oct-4. Nature 344, 435–439.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Shamblott, M. J. , Axelman, J. , Wang, S. , Bugg, E. M. , Littlefield, J. W. , Donovan, P. J. , Blumenthal, P. D. , Huggins, G. R. , and Gearhart, J. D. (1998). Derivation of pluripotent stem cells from cultured human primordial germ cells. Proc. Natl Acad. Sci. USA 95, 13 726–13 731.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Sharova, L. V. , Sharov, A. A. , Piao, Y. , Shaik, N. , Sullivan, T. , Stewart, C. L. , Hogan, B. L. M. , and Ko, M. S. H. (2007). Global gene expression profiling reveals similarities and differences among mouse pluripotent stem cells of different origins and strains. Dev. Biol. 307, 446–459.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Shimazaki, T. , Okazawa, H. , Fujii, H. , Ikeda, M. , Tamai, K. , McKay, R. D. , Muramatsu, M. , and Hamada, H. (1993). Hybrid cell extinction and re-expression of Oct-3 function correlates with differentiation potential. EMBO J. 12, 4489–4498.
PubMed |  CAS |

Shiue, Y.-L. , Liou, J.-F. , Shiau, J.-W. , Yang, J.-R. , Chen, Y.-H. , Tailiu, J.-J. , and Chen, L.-R. (2006). In vitro culture period but not the passage number influences the capacity of chimera production of inner cell mass and its deriving cells from porcine embryos. Anim. Reprod. Sci. 93, 134–143.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Singh, A. M. , Hamazaki, T. , Hankowski, K. E. , and Terada, N. (2007). A heterogeneous expression pattern for Nanog in embryonic stem cells. Stem Cells 25, 2534–2542.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Sirard, C. , de la Pompa, J. L. , Elia, A. , Itie, A. , and Mirtsos, C. , et al. (1998). The tumor suppressor gene Smad4/Dpc4 is required for gastrulation and later for anterior development of the mouse embryo. Genes Dev. 12, 107–119.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Skarnes, W. C. , Auerbach, B. A. , and Joyner, A. L. (1992). A gene trap approach in mouse embryonic stem cells: the lacZ reporter is activated by splicing, reflects endogenous gene expression, and is mutagenic in mice. Genes Dev. 6, 903–918.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Smith, T. A. , and Hooper, M. L. (1983). Medium conditioned by feeder cells inhibits the differentiation of embryonal carcinoma cultures. Exp. Cell Res. 145, 458–462.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Smith, A. G. , Heath, J. K. , Donaldson, D. D. , Wong, G. G. , Moreau, J. , Stahl, M. , and Rogers, D. (1988). Inhibition of pluripotential embryonic stem cell differentiation by purified polypeptides. Nature 336, 688–690.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Solter, D. (2006). From teratocarcinomas to embryonic stem cells and beyond: a history of embryonic stem cell research. Nat. Rev. Genet. 7, 319–327.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Stevens, L. C. (1970). The development of transplantable teratocarcinomas from intratesticular grafts of pre- and postimplantation mouse embryos. Dev. Biol. 21, 364–382.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Stewart, C. L. , Kaspar, P. , Brunet, L. J. , Bhatt, H. , Gadi, I. , Kontgen, F. , and Abbondanzo, S. J. (1992). Blastocyst implantation depends on maternal expression of leukaemia inhibitory factor. Nature 359, 76–79.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Suzuki, A. , Raya, A. , Kawakami, Y. , Morita, M. , Matsui, T. , Nakashima, K. , Gage, F. H. , Rodriguez-Esteban, C. , and Belmonte, J. C. (2006a). Maintenance of embryonic stem cell pluripotency by Nanog-mediated reversal of mesoderm specification. Nat. Clin. Pract. Cardiovasc. Med. 3((Suppl. 1)), S114–S122.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Suzuki, A. , Raya, A. , Kawakami, Y. , Morita, M. , Matsui, T. , Nakashima, K. , Gage, F. H. , Rodriguez-Esteban, C. , and Izpisua Belmonte, J. C. (2006b). Nanog binds to Smad1 and blocks bone morphogenetic protein-induced differentiation of embryonic stem cells. Proc. Natl Acad. Sci. USA 103, 10 294–10 299.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Takahashi, K. , and Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Takaku, K. , Oshima, M. , Miyoshi, H. , Matsui, M. , Seldin, M. F. , and Taketo, M. M. (1998). Intestinal tumorigenesis in compound mutant mice of both Dpc4 (Smad4) and Apc genes. Cell 92, 645–656.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Takeda, K. , Noguchi, K. , Shi, W. , Tanaka, T. , Matsumoto, M. , Yoshida, N. , Kishimoto, T. , and Akira, S. (1997). Targeted disruption of the mouse Stat3 gene leads to early embryonic lethality. Proc. Natl Acad. Sci. USA 94, 3801–3804.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Tanaka, Y. , Patestos, N. P. , Maekawa, T. , and Ishii, S. (1999). B-myb is required for inner cell mass formation at an early stage of development. J. Biol. Chem. 274, 28 067–28 070.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Tanaka, T. S. , Jaradat, S. A. , Lim, M. K. , Kargul, G. J. , and Wang, X. , et al. (2000). Genome-wide expression profiling of mid-gestation placenta and embryo using a 15,000 mouse developmental cDNA microarray. Proc. Natl Acad. Sci. USA 97, 9127–9132.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Tanaka, T. S. , Kunath, T. , Kimber, W. L. , Jaradat, S. A. , Stagg, C. A. , Usuda, M. , Yokota, T. , Niwa, H. , Rossant, J. , and Ko, M. S. (2002). Gene expression profiling of embryo-derived stem cells reveals candidate genes associated with pluripotency and lineage specificity. Genome Res. 12, 1921–1928.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Tanaka, T. S. , Lopez de Silanes, I. , Sharova, L. V. , Akutsu, H. , Yoshikawa, T. , Amano, H. , Yamanaka, S. , Gorospe, M. , and Ko, M. S. (2006). Esg1, expressed exclusively in preimplantation embryos, germline, and embryonic stem cells, is a putative RNA-binding protein with broad RNA targets. Dev. Growth Differ. 48, 381–390.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Tanaka, T. S. , Davey, R. E. , Lan, Q. , Zandstra, P. W. , and Stanford, W. L. (2008). Development of a gene trap vector with a highly-sensitive fluorescent protein reporter system aiming for the real-time single cell expression profiling. Genesis 46, 347–356.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Tesar, P. J. , Chenoweth, J. G. , Brook, F. A. , Davies, T. J. , Evans, E. P. , Mack, D. L. , Gardner, R. L. , and McKay, R. D. G. (2007). New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature 448, 196–199.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Thomas, K. R. , and Capecchi, M. R. (1987). Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell 51, 503–512.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Thomson, J. A. , Itskovitz-Eldor, J. , Shapiro, S. S. , Waknitz, M. A. , Swiergiel, J. J. , Marshall, V. S. , and Jones, J. M. (1998). Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Tokuzawa, Y. , Kaiho, E. , Maruyama, M. , Takahashi, K. , Mitsui, K. , Maeda, M. , Niwa, H. , and Yamanaka, S. (2003). Fbx15 is a novel target of Oct3/4 but is dispensable for embryonic stem cell self-renewal and mouse development. Mol. Cell. Biol. 23, 2699–2708.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Toyooka, Y. , Shimosato, D. , Murakami, K. , Takahashi, K. , and Niwa, H. (2008). Identification and characterization of subpopulations in undifferentiated ES cell culture. Development 135, 909–918.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Tremblay, K. D. , Dunn, N. R. , and Robertson, E. J. (2001). Mouse embryos lacking Smad1 signals display defects in extra-embryonic tissues and germ cell formation. Development 128, 3609–3621.
PubMed |  CAS |

Umehara, H. , Kimura, T. , Ohtsuka, S. , Nakamura, T. , Kitajima, K. , Ikawa, M. , Okabe, M. , Niwa, H. , and Nakano, T. (2007). Efficient derivation of embryonic stem cells by inhibition of glycogen synthase kinase-3. Stem Cells 25, 2705–2711.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Waldrip, W. R. , Bikoff, E. K. , Hoodless, P. A. , Wrana, J. L. , and Robertson, E. J. (1998). Smad2 signaling in extraembryonic tissues determines anterior-posterior polarity of the early mouse embryo. Cell 92, 797–808.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Walker, E. , Ohishi, E. , Davey, R. E. , Zhang, W. , and Cassar, P. A. , et al. (2007). Prediction and testing of novel transcriptional networks regulating embryonic stem cell self-renewal and commitment. Cell Stem Cell 1, 71–86.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Ware, C. B. , Horowitz, M. C. , Renshaw, B. R. , Hunt, J. S. , and Liggitt, D. , et al. (1995). Targeted disruption of the low-affinity leukemia inhibitory factor receptor gene causes placental, skeletal, neural and metabolic defects and results in perinatal death. Development 121, 1283–1299.
PubMed |  CAS |

Watanabe, S. , Umehara, H. , Murayama, K. , Okabe, M. , Kimura, T. , and Nakano, T. (2006). Activation of Akt signaling is sufficient to maintain pluripotency in mouse and primate embryonic stem cells. Oncogene 25, 2697–2707.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Western, P. , Maldonado-Saldivia, J. , van den Bergen, J. , Hajkova, P. , Saitou, M. , Barton, S. , and Surani, M. A. (2005). Analysis of Esg1 expression in pluripotent cells and the germline reveals similarities with Oct4 and Sox2 and differences between human pluripotent cell lines. Stem Cells 23, 1436–1442.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Wilkinson, D. G. , Bhatt, S. , and Herrmann, B. G. (1990). Expression pattern of the mouse T gene and its role in mesoderm formation. Nature 343, 657–659.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Williams, R. L. , Hilton, D. J. , Pease, S. , Willson, T. A. , Stewart, C. L. , Gearing, D. P. , Wagner, E. F. , Metcalf, D. , Nicola, N. A. , and Gough, N. M. (1988). Myeloid leukaemia inhibitory factor maintains the developmental potential of embryonic stem cells. Nature 336, 684–687.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Winnier, G. , Blessing, M. , Labosky, P. A. , and Hogan, B. L. (1995). Bone morphogenetic protein-4 is required for mesoderm formation and patterning in the mouse. Genes Dev. 9, 2105–2116.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Wu, Q. , Chen, X. , Zhang, J. , Loh, Y. H. , Low, T. Y. , Zhang, W. , Zhang, W. , Sze, S. K. , Lim, B. , and Ng, H. H. (2006). Sall4 interacts with Nanog and co-occupies nanog genomic sites in embryonic stem cells. J. Biol. Chem. 281, 24 090–24 094.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Yamanaka, Y. , Ralston, A. , Stephenson, R. O. , and Rossant, J. (2006). Cell and molecular regulation of the mouse blastocyst. Dev. Dyn. 235, 2301–2314.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Yan, Z. , Wang, Z. , Sharova, L. , Sharov, A. A. , Ling, C. , Piao, Y. , Aiba, K. , Matoba, R. , Wang, W. , and Ko, M. S. H. (2008). BAF250B-associated SWI/SNF chromatin-remodeling complex is required to maintain undifferentiated mouse embryonic stem cells. Stem Cells 26, 1155–1165.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Yang, X. , Li, C. , Xu, X. , and Deng, C. (1998). The tumor suppressor SMAD4/DPC4 is essential for epiblast proliferation and mesoderm induction in mice. Proc. Natl Acad. Sci. USA 95, 3667–3672.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Yang, X. , Letterio, J. J. , Lechleider, R. J. , Chen, L. , Hayman, R. , Gu, H. , Roberts, A. B. , and Deng, C. (1999). Targeted disruption of SMAD3 results in impaired mucosal immunity and diminished T cell responsiveness to TGF-beta. EMBO J. 18, 1280–1291.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Yasuda, S. Y. , Tsuneyoshi, N. , Sumi, T. , Hasegawa, K. , Tada, T. , Nakatsuji, N. , and Suemori, H. (2006). NANOG maintains self-renewal of primate ES cells in the absence of a feeder layer. Genes Cells 11, 1115–1123.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Ying, Q. L. , Nichols, J. , Chambers, I. , and Smith, A. (2003). BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell 115, 281–292.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Ying, Q.-L. , Wray, J. , Nichols, J. , Batlle-Morera, L. , Doble, B. , Woodgett, J. , Cohen, P. , and Smith, A. (2008). The ground state of embryonic stem cell self-renewal. Nature 453, 519–523.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Yoshida, K. , Taga, T. , Saito, M. , Suematsu, S. , and Kumanogoh, A. , et al. (1996). Targeted disruption of gp130, a common signal transducer for the interleukin 6 family of cytokines, leads to myocardial and hematological disorders. Proc. Natl Acad. Sci. USA 93, 407–411.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Yu, J. , and Thomson, J. A. (2008). Pluripotent stem cell lines. Genes Dev. 22, 1987–1997.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Yuan, H. , Corbi, N. , Basilico, C. , and Dailey, L. (1995). Developmental-specific activity of the FGF-4 enhancer requires the synergistic action of Sox2 and Oct-3. Genes Dev. 9, 2635–2645.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Zhang, J. , Tam, W.-L. , Tong, G. Q. , Wu, Q. , and Chan, H. Y. , et al. (2006). Sall4 modulates embryonic stem cell pluripotency and early embryonic development by the transcriptional regulation of Pou5f1. Nat. Cell Biol. 8, 1114–1123.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |