Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Cloning from stem cells: different lineages, different species, same story

Björn Oback
+ Author Affiliations
- Author Affiliations

AgResearch Ltd, Ruakura Research Centre, Hamilton, New Zealand. Email: bjorn.oback@agresearch.co.nz

Reproduction, Fertility and Development 21(1) 83-94 https://doi.org/10.1071/RD08212
Published: 9 December 2008

Abstract

Following nuclear transfer (NT), the most stringent measure of extensive donor cell reprogramming is development into viable offspring. This is referred to as cloning efficiency and quantified as the proportion of cloned embryos transferred into surrogate mothers that survive into adulthood. Cloning efficiency depends on the ability of the enucleated recipient cell to carry out the reprogramming reactions (‘reprogramming ability’) and the ability of the nuclear donor cell to be reprogrammed (‘reprogrammability’). It has been postulated that reprogrammability of the somatic donor cell epigenome is inversely proportional to its differentiation status. In order to test this hypothesis, reprogrammability was compared between undifferentiated stem cells and their differentiated isogenic progeny. In the mouse, cells of divergent differentiation status from the neuronal, haematopoietic and skin epithelial lineage were tested. In cattle and deer, skeletal muscle and antler cells, respectively, were used as donors. No conclusive correlation between differentiation status and cloning efficiency was found, indicating that somatic donor cell type may not be the limiting factor for cloning success. This may reflect technical limitations of the NT-induced reprogramming assay. Alternatively, differentiation status and reprogrammability may be unrelated, making all cells equally difficult to reprogramme once they have left the ground state of pluripotency.

Additional keywords: cell differentiation, epigenetic reprogramming, nuclear transfer.


Acknowledgements

The author’s work reported herein was supported by the New Zealand Foundation for Research, Science and Technology and AgResearch.


References

Akashi, K. (2005). Lineage promiscuity and plasticity in hematopoietic development. Ann. N. Y. Acad. Sci. 1044, 125–131.
Crossref | GoogleScholarGoogle Scholar | PubMed | Di Stefano B., Prigione A., and Broccoli V. (2008). Efficient genetic reprogramming of unmodified somatic neural progenitors uncovers the essential requirement of Oct4 and Klf4. Stem Cells Dev., in press.

Eggan, K. , Rode, A. , Jentsch, I. , Samuel, C. , and Hennek, T. , et al. (2002). Male and female mice derived from the same embryonic stem cell clone by tetraploid embryo complementation. Nat. Biotechnol. 20, 455–459.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS | Silva J., Barrandon O., Nichols J., Kawaguchi J., Theunissen T., and Smith A. (2008). Promotion of reprogramming to ground state pluripotency by signal inhibition. PLoS Biol., in press. doi:10.1371/JOURNAL.PBIO.0060253

Simonsson, S. , and Gurdon, J. (2004). DNA demethylation is necessary for the epigenetic reprogramming of somatic cell nuclei. Nat. Cell Biol. 6, 984–990.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS | Vassena R., Han Z., Gao S., and Latham K. E. (2007c). Erratum: Deficiency in recapitulation of stage-specific embryonic gene transcription in two-cell stage cloned mouse embryos. Mol. Reprod. Dev. 75, 217.

Wakayama, T. , Perry, A. C. , Zuccotti, M. , Johnson, K. R. , and Yanagimachi, R. (1998). Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature 394, 369–374.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Wakayama, S. , Ohta, H. , Kishigami, S. , Thuan, N. V. , Hikichi, T. , Mizutani, E. , Miyake, M. , and Wakayama, T. (2005). Establishment of male and female nuclear transfer embryonic stem cell lines from different mouse strains and tissues. Biol. Reprod. 72, 932–936.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Wang, F. , Kou, Z. , Zhang, Y. , and Gao, S. (2007). Dynamic reprogramming of histone acetylation and methylation in the first cell cycle of cloned mouse embryos. Biol. Reprod. 77, 1007–1016.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Wang, L. , Duan, E. , Sung, L. Y. , Jeong, B. S. , Yang, X. , and Tian, X. C. (2005). Generation and characterization of pluripotent stem cells from cloned bovine embryos. Biol. Reprod. 73, 149–155.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Wells, D. N. , Misica, P. M. , and Tervit, H. R. (1999). Production of cloned calves following nuclear transfer with cultured adult mural granulosa cells. Biol. Reprod. 60, 996–1005.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Wells, D. N. , Oback, B. , and Laible, G. (2003). Cloning livestock: a return to embryonic cells. Trends Biotechnol. 21, 428–432.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Wells, D. N. , Forsyth, J. T. , McMillan, V. , and Oback, B. (2004). The health of somatic cell cloned cattle and their offspring. Cloning Stem Cells 6, 101–110.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Wernig, M. , Meissner, A. , Foreman, R. , Brambrink, T. , Ku, M. , Hochedlinger, K. , Bernstein, B. E. , and Jaenisch, R. (2007). In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 448, 318–324.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Wuensch, A. , Habermann, F. A. , Kurosaka, S. , Klose, R. , Zakhartchenko, V. , Reichenbach, H. D. , Sinowatz, F. , McLaughlin, K. J. , and Wolf, E. (2007). Quantitative monitoring of pluripotency gene activation after somatic cloning in cattle. Biol. Reprod. 76, 983–991.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Yamazaki, Y. , Makino, H. , Hamaguchi-Hamada, K. , Hamada, S. , Sugino, H. , Kawase, E. , Miyata, T. , Ogawa, M. , Yanagimachi, R. , and Yagi, T. (2001). Assessment of the developmental totipotency of neural cells in the cerebral cortex of mouse embryo by nuclear transfer. Proc. Natl Acad. Sci. USA 98, 14 022–14 026.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Yamazaki, Y. , Mann, M. R. , Lee, S. S. , Marh, J. , McCarrey, J. R. , Yanagimachi, R. , and Bartolomei, M. S. (2003). Reprogramming of primordial germ cells begins before migration into the genital ridge, making these cells inadequate donors for reproductive cloning. Proc. Natl Acad. Sci. USA 100, 12 207–12 212.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Yang, F. , Hao, R. , Kessler, B. , Brem, G. , Wolf, E. , and Zakhartchenko, V. (2007a). Rabbit somatic cell cloning: effects of donor cell type, histone acetylation status and chimeric embryo complementation. Reproduction 133, 219–230.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Yang, J. , Yang, S. , Beaujean, N. , Niu, Y. , He, X. , Xie, Y. , Tang, X. , Wang, L. , Zhou, Q. , and Ji, W. (2007b). Epigenetic marks in cloned rhesus monkey embryos: comparison with counterparts produced in vitro. Biol. Reprod. 76, 36–42.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |