Register      Login
Pacific Conservation Biology Pacific Conservation Biology Society
A journal dedicated to conservation and wildlife management in the Pacific region.
RESEARCH ARTICLE (Open Access)

Devil women

Samantha Fox A B E , Carolyn J. Hogg C E , Catherine E. Grueber C D E and Katherine Belov orcid.org/0000-0002-9762-5554 C E
+ Author Affiliations
- Author Affiliations

A Save the Tasmanian Devil Program, DPIPWE, Hobart, Tas. 7000, Australia.

B Toledo Zoo, 2605 Broadway, Toledo, OH 43609, USA.

C School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia.

D San Diego Zoo Global, PO Box 120551, San Diego, CA 92112, USA.

E Corresponding authors. Email: samantha.fox@dpipwe.tas.gov.au; carolyn.hogg@sydney.edu.au; catherine.grueber@sydney.edu.au; kathy.belov@sydney.edu.au

Pacific Conservation Biology 24(3) 271-279 https://doi.org/10.1071/PC18021
Submitted: 12 February 2018  Accepted: 29 April 2018   Published: 24 July 2018

Journal compilation © CSIRO 2018 Open Access CC BY-NC-ND

Abstract

The Tasmanian devil, an iconic carnivorous marsupial, is at risk of extinction due to a contagious cancer called devil facial tumour disease. Saving any species from extinction requires strong partnerships between government agencies, zoo bodies and academia. The Devil Tools & Tech project brought these groups together under a single banner to achieve a common goal. The project has strong leadership from women. Here we tell our personal stories as to how we came to be involved in saving the devil and emphasise the importance of strong networks for women to reach their full potential.

Additional keywords: conservation, genetics, management, Tasmanian devils


References

Beeton, N., and McCallum, H. (2011). Models predict that culling is not a feasible strategy to prevent extinction of Tasmanian devils from facial tumour disease. Journal of Applied Ecology 48, 1315–1323.
Models predict that culling is not a feasible strategy to prevent extinction of Tasmanian devils from facial tumour disease.Crossref | GoogleScholarGoogle Scholar |

Belov, K., Harrison, G. A., and Cooper, D. W. (1998). Molecular cloning of the cDNA encoding the constant region of the immunoglobulin A heavy chain (C alpha) from a marsupial: Trichosurus vulpecula (common brushtail possum). Immunology Letters 60, 165–170.
Molecular cloning of the cDNA encoding the constant region of the immunoglobulin A heavy chain (C alpha) from a marsupial: Trichosurus vulpecula (common brushtail possum).Crossref | GoogleScholarGoogle Scholar |

Belov, K., Harrison, G. A., Miller, R. D., and Cooper, D. W. (1999a). Isolation and sequence of a cDNA coding for the heavy chain constant region of IgG from the Australian brushtail possum, Trichosurus vulpecula. Molecular Immunology 36, 535–541.
Isolation and sequence of a cDNA coding for the heavy chain constant region of IgG from the Australian brushtail possum, Trichosurus vulpecula.Crossref | GoogleScholarGoogle Scholar |

Belov, K., Harrison, G. A., Miller, R. D., and Cooper, D. W. (1999b). Molecular cloning of the brushtail possum (Trichosurus vulpecula) immunglobulin E heavy chain constant region. Molecular Immunology 36, 1255–1261.
Molecular cloning of the brushtail possum (Trichosurus vulpecula) immunglobulin E heavy chain constant region.Crossref | GoogleScholarGoogle Scholar |

Belov, K., Harrison, G. A., Rosenberg, G. H., Miller, R. D., and Cooper, D. W. (1999c). Isolation and comparison of the IgM heavy chain constant regions from Australian (Trichosurus vulpecula) and American (Monodelphis domestica) marsupials. Developmental and Comparative Immunology 23, 649–656.
Isolation and comparison of the IgM heavy chain constant regions from Australian (Trichosurus vulpecula) and American (Monodelphis domestica) marsupials.Crossref | GoogleScholarGoogle Scholar |

Belov, K., Sanderson, C. E., Deakin, J. E., Wong, E. S., Assange, D., McColl, K. A., Gout, A., de Bono, B., Barrow, A. D., and Speed, T. P. (2007). Characterization of the opossum immune genome provides insights into the evolution of the mammalian immune system. Genome Research 17, 982–991.
Characterization of the opossum immune genome provides insights into the evolution of the mammalian immune system.Crossref | GoogleScholarGoogle Scholar |

Cheng, Y., and Belov, K. (2014). Characterisation of non-classical MHC class I genes in the Tasmanian devil (Sarcophilus harrisii). Immunogenetics 66, 727–735.
Characterisation of non-classical MHC class I genes in the Tasmanian devil (Sarcophilus harrisii).Crossref | GoogleScholarGoogle Scholar |

Cheng, Y., Sanderson, C., Jones, M., and Belov, K. (2012). Low MHC class II diversity in the Tasmanian devil (Sarcophilus harrisii). Immunogenetics 64, 525–533.
Low MHC class II diversity in the Tasmanian devil (Sarcophilus harrisii).Crossref | GoogleScholarGoogle Scholar |

Constable, S., Parslow, A., Dutton, G., Rogers, T., and Hogg, C. (2006). Urinary cortisol sampling: a non‐invasive technique for examining cortisol concentrations in the Weddell seal, Leptonychotes weddellii. Zoo Biology 25, 137–144.
Urinary cortisol sampling: a non‐invasive technique for examining cortisol concentrations in the Weddell seal, Leptonychotes weddellii.Crossref | GoogleScholarGoogle Scholar |

Deakin, J. E. K. (2012). A comparative genomics approach to understanding transmissible cancer in Tasmanian devils. Annual Review of Genomics and Human Genetics 13, 207–222.
A comparative genomics approach to understanding transmissible cancer in Tasmanian devils.Crossref | GoogleScholarGoogle Scholar |

Farquharson, K. A., Hogg, C. J., and Grueber, C. E. (2017). Pedigree analysis reveals a generational decline in reproductive success of captive Tasmanian devil (Sarcophilus harrisii): implications for captive management of threatened species. The Journal of Heredity 108, 488–495.
Pedigree analysis reveals a generational decline in reproductive success of captive Tasmanian devil (Sarcophilus harrisii): implications for captive management of threatened species.Crossref | GoogleScholarGoogle Scholar |

Farquharson, K. A., Hogg, C. J., and Grueber, C. E. (2018). A meta-analysis of birth-origin effects on reproduction in diverse captive environments. Nature Communications 9, 1055.
A meta-analysis of birth-origin effects on reproduction in diverse captive environments.Crossref | GoogleScholarGoogle Scholar |

Fox, S., Johnson, C., Brooks, R., and Lewis, M. (2002). Polymorphism, mate choice and sexual selection in the Gouldian finch (Erythrura gouldiae). Australian Journal of Zoology 50, 125–134.
Polymorphism, mate choice and sexual selection in the Gouldian finch (Erythrura gouldiae).Crossref | GoogleScholarGoogle Scholar |

Fox, S., Waycott, M., and Dunshea, G. (2007). Isolation and characterisation of polymorphic microsatellite loci in the vulnerable spectacled flying fox, Pteropus conspicillatus. Conservation Genetics 8, 1013–1016.
Isolation and characterisation of polymorphic microsatellite loci in the vulnerable spectacled flying fox, Pteropus conspicillatus.Crossref | GoogleScholarGoogle Scholar |

Fox, S., Luly, J., Mitchell, C., Maclean, J., and Westcott, D. A. (2008a). Demographic indications of decline in the spectacled flying fox (Pteropus conspicillatus) on the Atherton Tablelands of northern Queensland. Wildlife Research 35, 417–424.
Demographic indications of decline in the spectacled flying fox (Pteropus conspicillatus) on the Atherton Tablelands of northern Queensland.Crossref | GoogleScholarGoogle Scholar |

Fox, S., Spencer, H., and O’Brien, G. M. (2008b). Analysis of twinning in flying-foxes (Megachiroptera) reveals superfoetation and multiple-paternity. Acta Chiropterologica 10, 271–278.
Analysis of twinning in flying-foxes (Megachiroptera) reveals superfoetation and multiple-paternity.Crossref | GoogleScholarGoogle Scholar |

Fox, S., Waycott, M., Blair, D., and Luly, J. (2012). , .

Gooley, R., Hogg, C. J., Belov, K., and Grueber, C. E. (2017). No evidence of inbreeding depression in a Tasmanian devil insurance population despite significant variation in inbreeding. Scientific Reports 7, 1830.
No evidence of inbreeding depression in a Tasmanian devil insurance population despite significant variation in inbreeding.Crossref | GoogleScholarGoogle Scholar |

Gooley, R., Hogg, C. J., Belov, K., and Grueber, C. E. (2018). The effects of group versus intensive housing on the retention of genetic diversity in insurance populations. BMC Zoology 3, 2.
The effects of group versus intensive housing on the retention of genetic diversity in insurance populations.Crossref | GoogleScholarGoogle Scholar |

Grueber, C. E., and Jamieson, I. G. (2011). Low genetic diversity and small population size of takahe Porphyrio hochstetteri on European arrival in New Zealand. The Ibis 153, 384–394.
Low genetic diversity and small population size of takahe Porphyrio hochstetteri on European arrival in New Zealand.Crossref | GoogleScholarGoogle Scholar |

Grueber, C. E., Laws, R. J., Nakagawa, S., and Jamieson, I. G. (2010). Inbreeding depression accumulation across life‐history stages of the endangered takahe. Conservation Biology 24, 1617–1625.
Inbreeding depression accumulation across life‐history stages of the endangered takahe.Crossref | GoogleScholarGoogle Scholar |

Grueber, C., Nakagawa, S., Laws, R., and Jamieson, I. (2011). Multimodel inference in ecology and evolution: challenges and solutions. Journal of Evolutionary Biology 24, 699–711.
Multimodel inference in ecology and evolution: challenges and solutions.Crossref | GoogleScholarGoogle Scholar |

Grueber, C. E., Maxwell, J. M., and Jamieson, I. G. (2012). Are introduced takahe populations on offshore islands at carrying capacity? Implications for genetic management. New Zealand Journal of Ecology 32, 223–227.

Grueber, C. E., Wallis, G. P., and Jamieson, I. G. (2013). Genetic drift outweighs natural selection at toll‐like receptor (TLR) immunity loci in a re‐introduced population of a threatened species. Molecular Ecology 22, 4470–4482.
Genetic drift outweighs natural selection at toll‐like receptor (TLR) immunity loci in a re‐introduced population of a threatened species.Crossref | GoogleScholarGoogle Scholar |

Grueber, C. E., Knafler, G. J., King, T. M., Senior, A. M., Grosser, S., Robertson, B., Weston, K. A., Brekke, P., Harris, C. L., and Jamieson, I. G. (2015). Toll-like receptor diversity in 10 threatened bird species: relationship with microsatellite heterozygosity. Conservation Genetics 16, 595–611.
Toll-like receptor diversity in 10 threatened bird species: relationship with microsatellite heterozygosity.Crossref | GoogleScholarGoogle Scholar |

Grueber, C. E., Sutton, J. T., Heber, S., Briskie, J. V., Jamieson, I. G., and Robertson, B. C. (2017). Reciprocal translocation of small numbers of inbred individuals rescues immunogenetic diversity. Molecular Ecology 26, 2660–2673.
Reciprocal translocation of small numbers of inbred individuals rescues immunogenetic diversity.Crossref | GoogleScholarGoogle Scholar |

Grueber, C., Fox, S., Belov, K., Pemberton, D., and Hogg, C. (2018). Landscape-level field data reveal broad-scale effects of a fatal, transmissible cancer on population ecology of the Tasmanian devil. Mammalian Biology 91, 41–45.
Landscape-level field data reveal broad-scale effects of a fatal, transmissible cancer on population ecology of the Tasmanian devil.Crossref | GoogleScholarGoogle Scholar |

Guiler, E. (1970). Observations on the Tasmanian devil, Sarcophilus harrisii (Marsupialia: Dasyuridae) II. Reproduction, breeding and growth of pouch young. Australian Journal of Zoology 18, 63–70.
Observations on the Tasmanian devil, Sarcophilus harrisii (Marsupialia: Dasyuridae) II. Reproduction, breeding and growth of pouch young.Crossref | GoogleScholarGoogle Scholar |

Hamede, R. K., McCallum, H., and Jones, M. (2013). Biting injuries and transmission of Tasmanian Devil Facial Tumour Disease. Journal of Animal Ecology 82, 182–190.
Biting injuries and transmission of Tasmanian Devil Facial Tumour Disease.Crossref | GoogleScholarGoogle Scholar |

Hawkins, C. E., Baars, C., Hesterman, H., Hocking, G. J., Jones, M. E., Lazenby, B., Mann, D., Mooney, N., Pemberton, D., Pyecroft, S., Restani, M., and Wiersma, J. (2006). Emerging disease and population decline of an island endemic, the Tasmanian devil Sarcophilus harrisii. Biological Conservation 131, 307–324.
Emerging disease and population decline of an island endemic, the Tasmanian devil Sarcophilus harrisii.Crossref | GoogleScholarGoogle Scholar |

Hogg, C. J. (2005). Development of a non-invasive technique to determine reproductive hormones in cetaceans. Available at: http://hdl.handle.net/2123/1865

Hogg, C. J. (2013). Preserving Australian native fauna: zoo-based breeding programs as part of a more unified strategic approach. Australian Journal of Zoology 61, 101–108.
Preserving Australian native fauna: zoo-based breeding programs as part of a more unified strategic approach.Crossref | GoogleScholarGoogle Scholar |

Hogg, C., Vickers, E., and Rogers, T. (2005). Determination of testosterone in saliva and blow of bottlenose dolphins (Tursiops truncatus) using liquid chromatography–mass spectrometry. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences 814, 339–346.
Determination of testosterone in saliva and blow of bottlenose dolphins (Tursiops truncatus) using liquid chromatography–mass spectrometry.Crossref | GoogleScholarGoogle Scholar |

Hogg, C., Rogers, T., Shorter, A., Barton, K., Miller, P., and Nowacek, D. (2009). Determination of steroid hormones in whale blow: it is possible. Marine Mammal Science 25, 605–618.
Determination of steroid hormones in whale blow: it is possible.Crossref | GoogleScholarGoogle Scholar |

Hogg, C. J., Hibbard, C., Ford, C., and Embury, A. (2013). Species Management Benchmarking: Outcomes Over Outputs in a Changing Operating Environment. Zoo Biology 32, 230–237.
Species Management Benchmarking: Outcomes Over Outputs in a Changing Operating Environment.Crossref | GoogleScholarGoogle Scholar |

Hogg, C. J., Ivy, J. A., Srb, C., Hockley, J., Lees, C., Hibbard, C., and Jones, M. (2015). Influence of genetic provenance and birth origin on productivity of the Tasmanian devil insurance population. Conservation Genetics 16, 1465–1473.
Influence of genetic provenance and birth origin on productivity of the Tasmanian devil insurance population.Crossref | GoogleScholarGoogle Scholar |

Hogg, C. J., Grueber, C. E., Pemberton, D., Fox, S., Lee, A. V., Ivy, J. A., and Belov, K. (2017a). “Devil Tools & Tech”: a synergy of conservation research and management practice. Conservation Letters 10, 133–138.
“Devil Tools & Tech”: a synergy of conservation research and management practice.Crossref | GoogleScholarGoogle Scholar |

Hogg, C. J., Lee, A. V., Srb, C., and Hibbard, C. (2017b). Metapopulation management of an Endangered species with limited genetic diversity in the presence of disease: the Tasmanian devil Sarcophilus harrisii. International Zoo Yearbook 51, 137–153.
Metapopulation management of an Endangered species with limited genetic diversity in the presence of disease: the Tasmanian devil Sarcophilus harrisii.Crossref | GoogleScholarGoogle Scholar |

Johnson, R. N., O’Meally, D., Chen, Z., Etherington, G. J., Ho, S. Y. W., Nash, W. J., Grueber, C. E., Cheng, Y., Whittington, C. M., Dennison, S., Peel, E., Haerty, W., O’Neill, R. J., Colgan, D., Russell, T. L., Alquezar-Planas, D. E., Attenbrow, V., Bragg, J. G., Brandies, P. A., Chong, A. Y-Y, Deakin, J. E., Di Palma, F., Duda, Z., Eldridge, M. D. B., Ewart, K. M., Hogg, C. J., Frankham, G. J., Georges, A., Gillett, A. K., Govendir, M., Greenwood, A. D., Hayakawa, T., Helgen, K. M., Hobbs, M., Holleley, C. E., Heider, T. N., Jones, E. A., King, A., Madden, D., Marshall Graves, J. A., Morris, K. M., Neaves, L. E., Patel, H. R., Polkinghorne, A., Renfree, M. B., Robin, C., Salinas, R., Tsangaras, K., Waters, P. D., Waters, S. A., Wright, B., Wilkins, M. R., Timms, P., and Belov, K. (). Adaptation and conservation insights from the koala genome. Nature Genetics , .
Adaptation and conservation insights from the koala genome.Crossref | GoogleScholarGoogle Scholar |

Jones, M. E., Paetkau, D., Geffen, E., and Moritz, C. (2004). Genetic diversity and population structure of Tasmanian devils, the largest marsupial carnivore. Molecular Ecology 13, 2197–2209.
Genetic diversity and population structure of Tasmanian devils, the largest marsupial carnivore.Crossref | GoogleScholarGoogle Scholar |

Jones, M. E., Cockburn, A., Hamede, R., Hawkins, C., Hesterman, H., Lachish, S., Mann, D., McCallum, H., and Pemberton, D. (2008). Life-history change in disease-ravaged Tasmanian devil populations. Proceedings of the National Academy of Sciences of the United States of America 105, 10023–10027.
Life-history change in disease-ravaged Tasmanian devil populations.Crossref | GoogleScholarGoogle Scholar |

Kennedy, E. S., Grueber, C. E., Duncan, R. P., and Jamieson, I. G. (2014). Severe inbreeding depression and no evidence of purging in an extremely inbred wild species – the Chatham Island black robin. Evolution 68, 987–995.
Severe inbreeding depression and no evidence of purging in an extremely inbred wild species – the Chatham Island black robin.Crossref | GoogleScholarGoogle Scholar |

Knafler, G. J., Ortiz-Catedral, L., Jackson, B., Varsani, A., Grueber, C. E., Robertson, B. C., and Jamieson, I. G. (2016). Comparison of beak and feather disease virus prevalence and immunity-associated genetic diversity over time in an island population of red-crowned parakeets. Archives of Virology 161, 811–820.
Comparison of beak and feather disease virus prevalence and immunity-associated genetic diversity over time in an island population of red-crowned parakeets.Crossref | GoogleScholarGoogle Scholar |

Kreiss, A., Cheng, Y., Kimble, F., Wells, B., Donovan, S., Belov, K., and Woods, G. M. (2011). Allorecognition in the Tasmanian Devil (Sarcophilus harrisii), an endangered marsupial species with limited genetic diversity. PLoS One 6, e22402.
Allorecognition in the Tasmanian Devil (Sarcophilus harrisii), an endangered marsupial species with limited genetic diversity.Crossref | GoogleScholarGoogle Scholar |

Lachish, S., McCallum, H., Mann, D., Pukk, C. E., and Jones, M. E. (2010). Evaluation of selective culling of infected individuals to control Tasmanian Devil Facial Tumor Disease. Conservation Biology 24, 841–851.
Evaluation of selective culling of infected individuals to control Tasmanian Devil Facial Tumor Disease.Crossref | GoogleScholarGoogle Scholar |

Lazenby, B. T., Tobler, M. W., Brown, W. E., Hawkins, C. E., Hocking, G. J., Hume, F., Huxtable, S., Iles, P., Jones, M. E., Lawrence, C., Thalmann, S., Wise, P., Williams, H., Fox, S., and Pemberton, D. (2018). Density trends and demographic signals uncover the long-term impact of transmissible cancer in Tasmanian devils. Journal of Applied Ecology 55, 1368–1379.
Density trends and demographic signals uncover the long-term impact of transmissible cancer in Tasmanian devils.Crossref | GoogleScholarGoogle Scholar |

Loh, R., Bergfeld, J., Hayes, D., O’Hara, A., Pyecroft, S., and Raidal, S. (2006). The pathology of devil facial tumor disease (DFTD) in Tasmanian devils (Sarcophilus harrisii). Veterinary Pathology 43, 890–895.
The pathology of devil facial tumor disease (DFTD) in Tasmanian devils (Sarcophilus harrisii).Crossref | GoogleScholarGoogle Scholar |

Luly, J. G., Blair, D., Parsons, J. G., Fox, S., and VanDerWal, J. (2010). Last Glacial Maximum habitat change and its effects on the grey-headed flying fox (Pteropus poliocephalus Temminck 1825). In ‘Altered Ecologies: Fire, Climate and Human Influence on Terrestrial Landscapes’. (Eds S. G. Haberle, J. Stevenson, and M. Prebble.). pp. 83–100. (ANU e-Press: Canberra.)

McCallum, H., Jones, M., Hawkins, C., Hamede, R., Lachish, S., Sinn, D. L., Beeton, N., and Lazenby, B. (2009). Transmission dynamics of Tasmanian devil facial tumor disease may lead to disease-induced extinction. Ecology 90, 3379–3392.
Transmission dynamics of Tasmanian devil facial tumor disease may lead to disease-induced extinction.Crossref | GoogleScholarGoogle Scholar |

McLennan, E. A., Gooley, R. M., Wise, P., Belov, K., Hogg, C. J., and Grueber, C. E. (2018). Pedigree reconstruction using molecular data reveals an early warning sign of gene diversity loss in an island population of Tasmanian devils (Sarcophilus harrisii). Conservation Genetics 19, 439–450.
Pedigree reconstruction using molecular data reveals an early warning sign of gene diversity loss in an island population of Tasmanian devils (Sarcophilus harrisii).Crossref | GoogleScholarGoogle Scholar |

Mikkelsen, T. S., Wakefield, M. J., Aken, B., Amemiya, C. T., Chang, J. L., Duke, S., Garber, M., Gentles, A. J., Goodstadt, L., and Heger, A. (2007). Genome of the marsupial Monodelphis domestica reveals innovation in non-coding sequences. Nature 447, 167.
Genome of the marsupial Monodelphis domestica reveals innovation in non-coding sequences.Crossref | GoogleScholarGoogle Scholar |

Morris, K., and Belov, K. (2013). Does the devil facial tumor produce immunosuppressive cytokines as an immune evasion strategy? Veterinary Immunology and Immunopathology 153, 159–164.
Does the devil facial tumor produce immunosuppressive cytokines as an immune evasion strategy?Crossref | GoogleScholarGoogle Scholar |

Morris, K. M., Wright, B., Grueber, C. E., Hogg, C., and Belov, K. (2015). Lack of genetic diversity across diverse immune genes in an endangered mammal, the Tasmanian devil (Sarcophilus harrisii). Molecular Ecology 24, 3860–3872.
Lack of genetic diversity across diverse immune genes in an endangered mammal, the Tasmanian devil (Sarcophilus harrisii).Crossref | GoogleScholarGoogle Scholar |

Murchison, E. P., Tovar, C., Hsu, A., Bender, H. S., Kheradpour, P., Rebbeck, C. A., Obendorf, D., Conlan, C., Bahlo, M., Blizzard, C. A., Pyecroft, S., Kreiss, A., Kellis, M., Stark, A., Harkins, T. T., Graves, J. A. M., Woods, G. M., Hannon, G. J., and Papenfuss, A. T. (2010). The Tasmanian devil transcriptome reveals Schwann cell origins of a clonally transmissible cancer. Science 327, 84–87.
The Tasmanian devil transcriptome reveals Schwann cell origins of a clonally transmissible cancer.Crossref | GoogleScholarGoogle Scholar |

Murchison, E. P., Schulz-Trieglaff, O. B., Ning, Z., Alexandrov, L. B., Bauer, M. J., Fu, B., Hims, M., Ding, Z., Ivakhno, S., and Stewart, C. (2012). Genome sequencing and analysis of the Tasmanian devil and its transmissible cancer. Cell 148, 780–791.
Genome sequencing and analysis of the Tasmanian devil and its transmissible cancer.Crossref | GoogleScholarGoogle Scholar |

O’Brien, S. J., Roelke, M. E., Marker, L., Newman, A., Winkler, C., Meltzer, D., Colly, L., Evermann, J., Bush, M., and Wildt, D. E. (1985). Genetic basis for species vulnerability in the cheetah. Science 227, 1428–1434.
Genetic basis for species vulnerability in the cheetah.Crossref | GoogleScholarGoogle Scholar |

Owen, D., and Pemberton, D. (2011). ‘Tasmanian Devil: A Unique and Threatened Animal.’ (Allen & Unwin.)

Pearse, A. M., and Swift, K. (2006). Allograft theory: transmission of devil facial-tumour disease. Nature 439, 549.
Allograft theory: transmission of devil facial-tumour disease.Crossref | GoogleScholarGoogle Scholar |

Pearse, A. M., Swift, K., Hodson, P., Hua, B., McCallum, H., Pyecroft, S., Taylor, R., Eldridge, M. D. B., and Belov, K. (2012). Evolution in a transmissible cancer: a study of the chromosomal changes in devil facial tumor (DFT) as it spreads through the wild Tasmanian devil population. Cancer Genetics 205, 101–112.
Evolution in a transmissible cancer: a study of the chromosomal changes in devil facial tumor (DFT) as it spreads through the wild Tasmanian devil population.Crossref | GoogleScholarGoogle Scholar |

Peel, E., Cheng, Y., Djordjevic, J. T., Kuhn, M., Sorrell, T., and Belov, K. (2017). Marsupial and monotreme cathelicidins display antimicrobial activity, including against methicillin-resistant Staphylococcus aureus. Microbiology 163, 1457–1465.
Marsupial and monotreme cathelicidins display antimicrobial activity, including against methicillin-resistant Staphylococcus aureus.Crossref | GoogleScholarGoogle Scholar |

Reeves, R. R., Rolland, R., and Clapham, P. J. (2001). Causes of reproductive failure in North Atlantic right whale: new avenues of research., Northeast Fisheries Science Center Reference Document. 01–16: 1–55.

Renfree, M. B., Papenfuss, A. T., Deakin, J. E., Lindsay, J., Heider, T., Belov, K., Rens, W., Waters, P. D., Pharo, E. A., and Shaw, G. (2011). Genome sequence of an Australian kangaroo, Macropus eugenii, provides insight into the evolution of mammalian reproduction and development. Genome Biology 12, R81.
Genome sequence of an Australian kangaroo, Macropus eugenii, provides insight into the evolution of mammalian reproduction and development.Crossref | GoogleScholarGoogle Scholar |

Richards, G. C., Spencer, H. J., and Fox, S. (2008). Spectacled flying-fox Pteropus conspicillatus. In ‘The Mammals of Australia’. (Eds S. Van Dyck and R. Strahan.) pp. 438–440. (Reed New Holland: Sydney.)

Rogers, T., Hogg, C., and Irvine, A. (2005). Spatial movement of adult leopard seals (Hydrurga leptonyx) in Prydz Bay, eastern Antarctica. Polar Biology 28, 456–463.
Spatial movement of adult leopard seals (Hydrurga leptonyx) in Prydz Bay, eastern Antarctica.Crossref | GoogleScholarGoogle Scholar |

Rolland, R. M., Hunt, K. E., Kraus, S. D., and Wasser, S. K. (2005). Assessing reproductive status of right whales (Eubalaena glacialis) using fecal hormone metabolites. General and Comparative Endocrinology 142, 308–317.
Assessing reproductive status of right whales (Eubalaena glacialis) using fecal hormone metabolites.Crossref | GoogleScholarGoogle Scholar |

Siddle, H. V., Kreiss, A., Eldridge, M. D. B., Noonan, E., Clarke, C. J., Pyecroft, S., Woods, G. M., and Belov, K. (2007). Transmission of a fatal clonal tumor by biting occurs due to depleted MHC diversity in a threatened carnivorous marsupial. Proceedings of the National Academy of Sciences of the United States of America 104, 16221–16226.
Transmission of a fatal clonal tumor by biting occurs due to depleted MHC diversity in a threatened carnivorous marsupial.Crossref | GoogleScholarGoogle Scholar |

Siddle, H. V., Kreiss, A., Tovar, C., Yuen, C. K., Cheng, Y., Belov, K., Swift, K., Pearse, A.-M., Hamede, R., Jones, M. E., Skjødt, K., Woods, G. M., and Kaufman, J. (2013). Reversible epigenetic down-regulation of MHC molecules by Devil Facial Tumour Disease illustrates immune escape by a contagious cancer. Proceedings of the National Academy of Sciences of the United States of America 110, 5103–5108.
Reversible epigenetic down-regulation of MHC molecules by Devil Facial Tumour Disease illustrates immune escape by a contagious cancer.Crossref | GoogleScholarGoogle Scholar |

Thalmann, S., Peck, S., Wise, P., Potts, J. M., Clarke, J., and Richley, J. (2016). Translocation of a top-order carnivore: tracking the initial survival, spatial movement, home-range establishment and habitat use of Tasmanian devils on Maria Island. Australian Mammalogy 38, 68–79.
Translocation of a top-order carnivore: tracking the initial survival, spatial movement, home-range establishment and habitat use of Tasmanian devils on Maria Island.Crossref | GoogleScholarGoogle Scholar |

Tripovich, J., Purdy, S., Hogg, C., and Rogers, T. (2011). Toneburst-evoked auditory brainstem response in a leopard seal, Hydrurga leptonyx. The Journal of the Acoustical Society of America 129, 483–487.
Toneburst-evoked auditory brainstem response in a leopard seal, Hydrurga leptonyx.Crossref | GoogleScholarGoogle Scholar |

Ujvari, B., Pearse, A.-M., Taylor, R., Pyecroft, S., Flanagan, C., Gombert, S., Papenfuss, A. T., Madsen, T., and Belov, K. (2012). Telomere dynamics and homeostasis in a transmissible cancer. PLoS One 7, e44085.
Telomere dynamics and homeostasis in a transmissible cancer.Crossref | GoogleScholarGoogle Scholar |

Ujvari, B., Pearse, A.-M., Swift, K., Hodson, P., Hua, B., Pyecroft, S., Taylor, R., Hamede, R., Jones, M., Belov, K., and Madsen, T. (2014). Anthropogenic selection enhances cancer evolution in Tasmanian devil tumours. Evolutionary Applications 7, 260–265.
Anthropogenic selection enhances cancer evolution in Tasmanian devil tumours.Crossref | GoogleScholarGoogle Scholar |

Wang, J., Wong, E. S., Whitley, J. C., Li, J., Stringer, J. M., Short, K. R., Renfree, M. B., Belov, K., and Cocks, B. G. (2011). Ancient antimicrobial peptides kill antibiotic-resistant pathogens: Australian mammals provide new options. PLoS One 6, e24030.
Ancient antimicrobial peptides kill antibiotic-resistant pathogens: Australian mammals provide new options.Crossref | GoogleScholarGoogle Scholar |

Warren, W. C., Hillier, L. W., Graves, J. A. M., Birney, E., Ponting, C. P., Grützner, F., Belov, K., Miller, W., Clarke, L., and Chinwalla, A. T. (2008). Genome analysis of the platypus reveals unique signatures of evolution. Nature 453, 175.
Genome analysis of the platypus reveals unique signatures of evolution.Crossref | GoogleScholarGoogle Scholar |

Weiser, E. L., Grueber, C. E., and Jamieson, I. G. (2013). Simulating retention of rare alleles in small populations to assess management options for species with different life histories. Conservation Biology 27, 335–344.
Simulating retention of rare alleles in small populations to assess management options for species with different life histories.Crossref | GoogleScholarGoogle Scholar |

Williams, S. E., Bolitho, E. E., and Fox, S. (2003). Climate change in Australian tropical rainforests: an impending environmental catastrophe. Proceedings of the Royal Society of London. Series B, Biological Sciences 270, 1887–1892.
Climate change in Australian tropical rainforests: an impending environmental catastrophe.Crossref | GoogleScholarGoogle Scholar |

Williams, S., VanDerWal, J., Isaac, J., Shoo, L., Storlie, C., Fox, S., Bolitho, E., Moritz, C., Hoskin, C., and Williams, Y. (2010). Distributions, life‐history specialization, and phylogeny of the rain forest vertebrates in the Australian Wet Tropics. Ecology 91, 2493.
Distributions, life‐history specialization, and phylogeny of the rain forest vertebrates in the Australian Wet Tropics.Crossref | GoogleScholarGoogle Scholar |

Wong, E. S., Young, L. J., Papenfuss, A. T., and Belov, K. (2006). In silico identification of opossum cytokine genes suggests the complexity of the marsupial immune system rivals that of eutherian mammals. Immunome Research 2, 4.
In silico identification of opossum cytokine genes suggests the complexity of the marsupial immune system rivals that of eutherian mammals.Crossref | GoogleScholarGoogle Scholar |

Wong, E. S., Papenfuss, A. T., and Belov, K. (2011). Genomic identification of chemokines and cytokines in opossum. Journal of Interferon & Cytokine Research 31, 317–330.
Genomic identification of chemokines and cytokines in opossum.Crossref | GoogleScholarGoogle Scholar |

Woods, G. M., Kreiss, A., Belov, K., Siddle, H. V., Obendorf, D. L., and Muller, H. K. (2007). The immune response of the Tasmanian devil (Sarcophilus harrisii) and Devil Facial Tumour Disease. EcoHealth 4, 338–345.
The immune response of the Tasmanian devil (Sarcophilus harrisii) and Devil Facial Tumour Disease.Crossref | GoogleScholarGoogle Scholar |

Woods, G. M., Howson, L. J., Brown, G. K., Tovar, C., Kreiss, A., Corcoran, L. M., and Lyons, A. B. (2015). Immunology of a transmissible cancer spreading among Tasmanian devils. Journal of Immunology (Baltimore, Md.: 1950) 195, 23–29.
Immunology of a transmissible cancer spreading among Tasmanian devils.Crossref | GoogleScholarGoogle Scholar |

Wright, B., Morris, K., Grueber, C. E., Willet, C. E., Gooley, R., Hogg, C. J., O’Meally, D., Hamede, R., Jones, M., and Wade, C. (2015). Development of a SNP-based assay for measuring genetic diversity in the Tasmanian devil insurance population. BMC Genomics 16, 791.
Development of a SNP-based assay for measuring genetic diversity in the Tasmanian devil insurance population.Crossref | GoogleScholarGoogle Scholar |