Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
REVIEW

An introduction to the ‘micronet’ of cyanobacterial harmful algal blooms (CyanoHABs): cyanobacteria, zooplankton and microorganisms: a review

Elżbieta Wilk-Woźniak https://orcid.org/0000-0002-4929-6733
+ Author Affiliations
- Author Affiliations

Institute of Nature Conservation, Polish Academy of Sciences, Avenue Adama Mickiewicza 33, 31-120 Krakow, Poland. Email: wilk@iop.krakow.pl

Marine and Freshwater Research 71(5) 636-643 https://doi.org/10.1071/MF18378
Submitted: 29 September 2018  Accepted: 1 April 2019   Published: 28 May 2019

Abstract

Cyanobacterial harmful algal blooms are known all around the world. Climate change (temperature increase) and human activity (eutrophication) are factors that promote the proliferation of cyanobacteria, leading to the development of blooms and the release of toxins. Abiotic and biotic factors are responsible for the development of blooms and how long they last. Although the abiotic factors controlling blooms are well known, knowledge of biotic factors and their interactions is still lacking. This paper reviews five levels of biotic interactions, namely cyanobacteria–zooplankton, cyanobacteria–ciliates, cyanobacteria–bacteria, cyanobacteria–viruses and cyanobacteria–fungi, showing a more complex food web network than was previously thought. New findings published recently, such as the relationships between cyanobacteria and viruses or cyanobacteria and fungi, indicate that cyanobacterial blooms are not the end of the cycle of events taking place in water habitats, but rather the middle of them. As such, a new approach needs to consider mutual connections, genetic response, horizontal gene transfer and non-linear flow of carbon.

Additional keywords: bacteria, ciliata, fungi, microbial loop, mycoloop, viruses.


References

Burns, C. W., and Xu, Z. (1990). Calanoid copepods feeding on algae and filamentous cyanobacteria: rates of ingestion, defaecation and effects on trichome length. Journal of Plankton Research 12, 201–213.
Calanoid copepods feeding on algae and filamentous cyanobacteria: rates of ingestion, defaecation and effects on trichome length.Crossref | GoogleScholarGoogle Scholar |

Caron, D. A. (1994). Inorganic nutrients, bacteria, and the microbial loop. Microbial Ecology 28, 295–298.
Inorganic nutrients, bacteria, and the microbial loop.Crossref | GoogleScholarGoogle Scholar | 24186457PubMed |

Cerbin, S., Wejnerowski, Ł., and Dziuba, M. (2013). Aphanizomenon gracile increases in width in the presence of Daphnia. A defence mechanism against grazing? Journal of Limnology 72, 41.
Aphanizomenon gracile increases in width in the presence of Daphnia. A defence mechanism against grazing?Crossref | GoogleScholarGoogle Scholar |

Christoffersen, K., Riemann, B., Hansen, L. R., Klysner, A., and Sørensen, H. B. (1990). Qualitative importance of the microbial loop and plankton community structure in a eutrophic lake during a bloom of cyanobacteria. Microbial Ecology 20, 253–272.
Qualitative importance of the microbial loop and plankton community structure in a eutrophic lake during a bloom of cyanobacteria.Crossref | GoogleScholarGoogle Scholar | 24193978PubMed |

Combes, A., Dellinger, M., Cadel-six, S., Amand, S., and Comte, K. (2013). Ciliate Nassula sp. grazing on a microcystin-producing cyanobacterium (Planktothrix agardhii): impact on cell growth and in the microcystin fractions. Aquatic Toxicology 126, 435–441.
Ciliate Nassula sp. grazing on a microcystin-producing cyanobacterium (Planktothrix agardhii): impact on cell growth and in the microcystin fractions.Crossref | GoogleScholarGoogle Scholar | 23010390PubMed |

Cox, P. A., Banack, S. A., and Murch, S. J. (2003). Biomagnification of cyanobacterial neurotoxins and neurodegenerative disease among the Chamorro people of Guam. Proceedings of the National Academy of Sciences of the United States of America 100, 13380–13383.
Biomagnification of cyanobacterial neurotoxins and neurodegenerative disease among the Chamorro people of Guam.Crossref | GoogleScholarGoogle Scholar | 14612559PubMed |

de Kluijver, A., Yu, J., Houtekamer, M., Middelburg, J. J., and Liu, Z. (2012). Cyanobacteria as a carbon source for zooplankton in eutrophic Lake Taihu, China, measured by 13C labeling and fatty acid biomarkers. Limnology and Oceanography 57, 1245–1254.
Cyanobacteria as a carbon source for zooplankton in eutrophic Lake Taihu, China, measured by 13C labeling and fatty acid biomarkers.Crossref | GoogleScholarGoogle Scholar |

DeMott, W. R., Zhang, Q. X., and Carmichael, W. W. (1991). Effects of toxic cyanobacteria and purified toxins on the survival and feeding of a copepod and three species of Daphnia. Limnology and Oceanography 36, 1346–1357.
Effects of toxic cyanobacteria and purified toxins on the survival and feeding of a copepod and three species of Daphnia.Crossref | GoogleScholarGoogle Scholar |

Elert, E. V., Martin-Creuzburg, D., and Le Coz, J. R. (2003). Absence of sterols constrains carbon transfer between cyanobacteria and a freshwater herbivore (Daphnia galeata). Proceedings of the Royal Society of London – B. Biological Sciences 270, 1209–1214.
Absence of sterols constrains carbon transfer between cyanobacteria and a freshwater herbivore (Daphnia galeata).Crossref | GoogleScholarGoogle Scholar |

Elser, J. J. (1999). The pathway to noxious cyanobacteria blooms in lakes: the food web as the final turn. Freshwater Biology 42, 537–543.
The pathway to noxious cyanobacteria blooms in lakes: the food web as the final turn.Crossref | GoogleScholarGoogle Scholar |

Engström, J., Koski, M., Viitasalo, M., Reinikainen, M., Repka, S., and Sivonen, K. (2000). Feeding interactions of the copepods Eurytemora affinis and Acartia bifilosa with the cyanobacteria Nodularia sp. Journal of Plankton Research 22, 1403–1409.
Feeding interactions of the copepods Eurytemora affinis and Acartia bifilosa with the cyanobacteria Nodularia sp.Crossref | GoogleScholarGoogle Scholar |

Engström-Öst, J., Autio, R., Setälä, O., Sopanen, S., and Suikkanen, S. (2013). Plankton community dynamics during decay of a cyanobacteria bloom: a mesocosm experiment. Hydrobiologia 701, 25–35.
Plankton community dynamics during decay of a cyanobacteria bloom: a mesocosm experiment.Crossref | GoogleScholarGoogle Scholar |

Fabbro, L., Baker, M., Duivenvoorden, L., Pegg, G., and Shiel, R. (2001). The effects of the ciliate Paramecium cf. caudatum Ehrenberg on toxin producing Cylindrospermopsis isolated from the Fitzroy River, Australia. Environmental Toxicology 16, 489–497.
The effects of the ciliate Paramecium cf. caudatum Ehrenberg on toxin producing Cylindrospermopsis isolated from the Fitzroy River, Australia.Crossref | GoogleScholarGoogle Scholar | 11769246PubMed |

Ferrão-Filho, A. D. S., Kozlowsky-Suzuki, B., and Azevedo, S. M. (2002). Accumulation of microcystins by a tropical zooplankton community. Aquatic Toxicology 59, 201–208.
Accumulation of microcystins by a tropical zooplankton community.Crossref | GoogleScholarGoogle Scholar |

Frenken, T., Velthuis, M., de Senerpont Domis, L. N., Stephan, S., Aben, R., Kosten, S., van Donk, E., and Van de Waal, D. B. (2016). Warming accelerates termination of a phytoplankton spring bloom by fungal parasites. Global Change Biology 22, 299–309.
Warming accelerates termination of a phytoplankton spring bloom by fungal parasites.Crossref | GoogleScholarGoogle Scholar | 26488235PubMed |

Frenken, T., Wierenga, J., van Donk, E., Declerck, S. A., de Senerpont Domis, L. N., Rohrlack, T., and Van de Waal, D. B. (2018). Fungal parasites of a toxic inedible cyanobacterium provide food to zooplankton. Limnology and Oceanography 63, 2384–2393.
Fungal parasites of a toxic inedible cyanobacterium provide food to zooplankton.Crossref | GoogleScholarGoogle Scholar |

Gentile, J. H., and Maloney, T. E. (1969). Toxicity and environmental requirements of a strain of Aphanizomenon flos-aquae (L.) Ralfs. Canadian Journal of Microbiology 15, 165–173.
Toxicity and environmental requirements of a strain of Aphanizomenon flos-aquae (L.) Ralfs.Crossref | GoogleScholarGoogle Scholar | 5764275PubMed |

Ger, K. A., Hansson, L. A., and Lürling, M. (2014). Understanding cyanobacteria–zooplankton interactions in a more eutrophic world. Freshwater Biology 59, 1783–1798.
Understanding cyanobacteria–zooplankton interactions in a more eutrophic world.Crossref | GoogleScholarGoogle Scholar |

Ger, K. A., Urrutia-Cordero, P., Frost, P. C., Hansson, L. A., Sarnelle, O., Wilson, A. E., and Lürling, M. (2016). The interaction between cyanobacteria and zooplankton in a more eutrophic world. Harmful Algae 54, 128–144.
The interaction between cyanobacteria and zooplankton in a more eutrophic world.Crossref | GoogleScholarGoogle Scholar | 28073472PubMed |

Gerphagnon, M., Macarthur, D. J., Latour, D., Gachon, C. M., Van Ogtrop, F., Gleason, F. H., and Sime-Ngando, T. (2015). Microbial players involved in the decline of filamentous and colonial cyanobacterial blooms with a focus on fungal parasitism. Environmental Microbiology 17, 2573–2587.
Microbial players involved in the decline of filamentous and colonial cyanobacterial blooms with a focus on fungal parasitism.Crossref | GoogleScholarGoogle Scholar | 25818470PubMed |

Gerritsen, J., Sanders, R. W., Bradley, S. W., and Porter, K. G. (1987). Individual feeding variability of protozoan and crustacean zooplankton analyzed with flow cytometry. Limnology and Oceanography 32, 691–699.
Individual feeding variability of protozoan and crustacean zooplankton analyzed with flow cytometry.Crossref | GoogleScholarGoogle Scholar |

Gliwicz, Z. M. (1990). Why do cladocerans fail to control algal blooms? Hydrobiologia 200–201, 83–97.
Why do cladocerans fail to control algal blooms?Crossref | GoogleScholarGoogle Scholar |

Gołdyn, R., Podsiadłowski, S., Kowalczewska-Madura, K., Dondajewska, R., Szeląg-Wasielewska, E., Budzyńska, A., Domek, P., and Romanowicz-Brzozowska, W. (2010). Functioning of the Lake Rusałka ecosystem in Poznań (western Poland). Oceanological and Hydrobiological Studies 39, 65–80.
Functioning of the Lake Rusałka ecosystem in Poznań (western Poland).Crossref | GoogleScholarGoogle Scholar |

Gumbo, R. J., Ross, G., and Cloete, E. T. (2008). Biological control of Microcystis dominated harmful algal blooms. African Journal of Biotechnology 7, 4765–4773.

Gustafsson, S., and Hansson, L. A. (2004). Development of tolerance against toxic cyanobacteria in Daphnia. Aquatic Ecology 38, 37–44.
Development of tolerance against toxic cyanobacteria in Daphnia.Crossref | GoogleScholarGoogle Scholar |

Haraldsson, M., Gerphagnon, M., Bazin, P., Colombet, J., Tecchio, S., Sime-Ngando, T., and Niquil, N. (2018). Microbial parasites make cyanobacteria blooms less of a trophic dead end than commonly assumed. The ISME Journal 12, 1008.
Microbial parasites make cyanobacteria blooms less of a trophic dead end than commonly assumed.Crossref | GoogleScholarGoogle Scholar | 29416126PubMed |

Hietala, J., Reinikainen, M., and Walls, M. (1995). Variation in life history responses of Daphnia to toxic Microcystis aeruginosa. Journal of Plankton Research 17, 2307–2318.
Variation in life history responses of Daphnia to toxic Microcystis aeruginosa.Crossref | GoogleScholarGoogle Scholar |

Hietala, J., Laurén-Määttä, C., and Walls, M. (1997). Sensitivity of Daphnia to toxic cyanobacteria: effects of genotype and temperature. Freshwater Biology 37, 299–306.
Sensitivity of Daphnia to toxic cyanobacteria: effects of genotype and temperature.Crossref | GoogleScholarGoogle Scholar |

Ibelings, B. W., Bruning, K., De Jonge, J., Wolfstein, K., Pires, L. D., Postma, J., and Burger, T. (2005). Distribution of microcystins in a lake foodweb: no evidence for biomagnification. Microbial Ecology 49, 487–500.
Distribution of microcystins in a lake foodweb: no evidence for biomagnification.Crossref | GoogleScholarGoogle Scholar | 16052377PubMed |

Jiang, X., Yang, W., Zhao, S., Liang, H., Zhao, Y., Chen, L., and Li, R. (2013). Maternal effects of inducible tolerance against the toxic cyanobacterium Microcystis aeruginosa in the grazer Daphnia carinata. Environmental Pollution 178, 142–146.
Maternal effects of inducible tolerance against the toxic cyanobacterium Microcystis aeruginosa in the grazer Daphnia carinata.Crossref | GoogleScholarGoogle Scholar | 23570781PubMed |

Kagami, M., Von Elert, E., Ibelings, B. W., de Bruin, A., and Van Donk, E. (2007). The parasitic chytrid, Zygorhizidium, facilitates the growth of the cladoceran zooplankter, Daphnia, in cultures of the inedible alga, Asterionella. Proceedings. Biological Sciences 274, 1561–1566.
The parasitic chytrid, Zygorhizidium, facilitates the growth of the cladoceran zooplankter, Daphnia, in cultures of the inedible alga, Asterionella.Crossref | GoogleScholarGoogle Scholar | 17439852PubMed |

Kaplan, A. (2016). Cyanophages: starving the host to recruit resources. Current Biology 26, R511–R513.
Cyanophages: starving the host to recruit resources.Crossref | GoogleScholarGoogle Scholar | 27326715PubMed |

Koonin, E. V. (2016). Viruses and mobile elements as drivers of evolutionary transitions. Philosophical Transactions of the Royal Society of London – B. Biological Sciences 371, 20150442.
Viruses and mobile elements as drivers of evolutionary transitions.Crossref | GoogleScholarGoogle Scholar | 27431520PubMed |

Kosiba, J., Krztoń, W., and Wilk-Woźniak, E. (2018). Effect of microcystins on proto- and metazooplankton is more evident in artificial than in natural waterbodies. Microbial Ecology 75, 293–302.
Effect of microcystins on proto- and metazooplankton is more evident in artificial than in natural waterbodies.Crossref | GoogleScholarGoogle Scholar | 28866755PubMed |

Kosiba, J., Krztoń, W., and Wilk-Woźniak, E. (2019). The effect of potentially toxic cyanobacteria on ciliates (Ciliophora). Hydrobiologia 827, 325–335.
The effect of potentially toxic cyanobacteria on ciliates (Ciliophora).Crossref | GoogleScholarGoogle Scholar |

Krztoń, W., Pudaś, K., Pociecha, A., Strzesak, M., Kosiba, J., Walusiak, E., Szarek-Gwiazda, E., and Wilk-Woźniak, E. (2017). Microcystins affect zooplankton biodiversity in oxbow lakes. Environmental Toxicology and Chemistry 36, 165–174.
Microcystins affect zooplankton biodiversity in oxbow lakes.Crossref | GoogleScholarGoogle Scholar | 27283258PubMed |

Kurmayer, R., and Juttner, F. (1999). Strategies for the co-existence of zooplankton with the toxic cyanobacterium Planktothrix rubescens in Lake Zurich. Journal of Plankton Research 21, 659–683.
Strategies for the co-existence of zooplankton with the toxic cyanobacterium Planktothrix rubescens in Lake Zurich.Crossref | GoogleScholarGoogle Scholar |

Lampert, W. (1987). Laboratory studies on zooplankton–cyanobacteria interactions. New Zealand Journal of Marine and Freshwater Research 21, 483–490.
Laboratory studies on zooplankton–cyanobacteria interactions.Crossref | GoogleScholarGoogle Scholar |

Lemaire, V., Brusciotti, S., van Gremberghe, I., Vyverman, W., Vanoverbeke, J., and De Meester, L. (2012). Genotype × genotype interactions between the toxic cyanobacterium Microcystis and its grazer, the waterflea Daphnia. Evolutionary Applications 5, 168–182.
Genotype × genotype interactions between the toxic cyanobacterium Microcystis and its grazer, the waterflea Daphnia.Crossref | GoogleScholarGoogle Scholar | 25568039PubMed |

Lindell, D., Sullivan, M. B., Johnson, Z. I., Tolonen, A. C., Rohwer, F., and Chisholm, S. W. (2004). Transfer of photosynthesis genes to and from Prochlorococcus viruses. Proceedings of the National Academy of Sciences of the United States of America 101, 11013–11018.
Transfer of photosynthesis genes to and from Prochlorococcus viruses.Crossref | GoogleScholarGoogle Scholar | 15256601PubMed |

Luo, X., Liu, Z., and Gulati, R. D. (2015). Cyanobacterial carbon supports the growth and reproduction of Daphnia: an experimental study. Hydrobiologia 743, 211–220.
Cyanobacterial carbon supports the growth and reproduction of Daphnia: an experimental study.Crossref | GoogleScholarGoogle Scholar |

Mantzouki, E., Lürling, M., Fastner, J., de Senerpont Domis, L., Wilk-Woźniak, E., Koreivienė, J., Seelen, L., Teurlincx, S., Verstijnen, Y., Krztoń, W., and Walusiak, E. (2018). Temperature effects explain continental scale distribution of cyanobacterial toxins. Toxins 10, 156.
Temperature effects explain continental scale distribution of cyanobacterial toxins.Crossref | GoogleScholarGoogle Scholar |

Miki, T., Takimoto, G., and Kagami, M. (2011). Roles of parasitic fungi in aquatic food webs: a theoretical approach. Freshwater Biology 56, 1173–1183.
Roles of parasitic fungi in aquatic food webs: a theoretical approach.Crossref | GoogleScholarGoogle Scholar |

Mohamed, Z. A. (2001). Accumulation of cyanobacterial hepatotoxins by Daphnia in some Egyptian irrigation canals. Ecotoxicology and Environmental Safety 50, 4–8.
Accumulation of cyanobacterial hepatotoxins by Daphnia in some Egyptian irrigation canals.Crossref | GoogleScholarGoogle Scholar | 11534946PubMed |

Mohamed, Z. A., Bakr, A. A., and Grmahm, H. A. (2018). Grazing of the copepod Cyclops vicinus on toxic Microcystis aeruginosa: potential for controlling cyanobacterial blooms and transfer of toxins. Oceanological and Hydrobiological Studies 47, 296–302.
Grazing of the copepod Cyclops vicinus on toxic Microcystis aeruginosa: potential for controlling cyanobacterial blooms and transfer of toxins.Crossref | GoogleScholarGoogle Scholar |

Moody, E. K., and Wilkinson, G. M. (2019). Functional shifts in lake zooplankton communities with hypereutrophication. Freshwater Biology 64, 608–616.
Functional shifts in lake zooplankton communities with hypereutrophication.Crossref | GoogleScholarGoogle Scholar |

Moustaka-Gouni, M., Vardaka, E., Michaloudi, E., Kormas, K. A., Tryfon, E., Mihalatou, H., Gkelis, S., and Lanaras, T. (2006). Plankton food web structure in a eutrophic polymictic lake with a history in toxic cyanobacterial blooms. Limnology and Oceanography 51, 715–727.
Plankton food web structure in a eutrophic polymictic lake with a history in toxic cyanobacterial blooms.Crossref | GoogleScholarGoogle Scholar |

Nobles, D. R. Jr, Brown, R. M. Jr, and University of Texas System (2010). Production and secretion of glucose in photosynthetic prokaryotes (cyanobacteria). US Patent number 7,803,601, 28 September 2010.

O’Neil, J. M., Davis, T. W., Burford, M. A., and Gobler, C. J. (2012). The rise of harmful cyanobacteria blooms: the potential roles of eutrophication and climate change. Harmful Algae 14, 313–334.
The rise of harmful cyanobacteria blooms: the potential roles of eutrophication and climate change.Crossref | GoogleScholarGoogle Scholar |

Paerl, H. W., Hall, N. S., and Calandrino, E. S. (2011). Controlling harmful cyanobacterial blooms in a world experiencing anthropogenic and climatic-induced change. The Science of the Total Environment 409, 1739–1745.
Controlling harmful cyanobacterial blooms in a world experiencing anthropogenic and climatic-induced change.Crossref | GoogleScholarGoogle Scholar | 21345482PubMed |

Pajdak-Stós, A., Fiałkowska, E., and Fyda, J. (2004). Vulnerability of Nostoc muscorum Agardh (Cyanophyceae) motile hormogonia to cilaite grazing. Journal of Phycology 40, 271–274.
Vulnerability of Nostoc muscorum Agardh (Cyanophyceae) motile hormogonia to cilaite grazing.Crossref | GoogleScholarGoogle Scholar |

Papadimitriou, T., Kagalou, I., Stalikas, C., Pilidis, G., and Leonardos, I. D. (2012). Assessment of microcystin distribution and biomagnification in tissues of aquatic food web compartments from a shallow lake and evaluation of potential risks to public health. Ecotoxicology 21, 1155–1166.
Assessment of microcystin distribution and biomagnification in tissues of aquatic food web compartments from a shallow lake and evaluation of potential risks to public health.Crossref | GoogleScholarGoogle Scholar | 22383140PubMed |

Pearman, J. K., Casas, L., Merle, T., Michell, C., and Irigoien, X. (2016). Bacterial and protist community changes during a phytoplankton bloom. Limnology and Oceanography 61, 198–213.
Bacterial and protist community changes during a phytoplankton bloom.Crossref | GoogleScholarGoogle Scholar |

Pociecha, A., and Wilk-Woźniak, E. (2008). Comments on the diet of Asplanchna priodonta (Gosse, 1850) in the Dobczycki dam reservoir on the basis of field sample observations. Oceanological and Hydrobiological Studies 37, 63–69.
Comments on the diet of Asplanchna priodonta (Gosse, 1850) in the Dobczycki dam reservoir on the basis of field sample observations.Crossref | GoogleScholarGoogle Scholar |

Polis, G. A., and Strong, D. R. (1996). Food web complexity and community dynamics. American Naturalist 147, 813–846.
Food web complexity and community dynamics.Crossref | GoogleScholarGoogle Scholar |

Pollard, P. C., and Young, L. M. (2010). Lake viruses lyse cyanobacteria, Cylindrospermopsis raciborskii, enhances filamentous-host dispersal in Australia. Acta Oecologica 36, 114–119.
Lake viruses lyse cyanobacteria, Cylindrospermopsis raciborskii, enhances filamentous-host dispersal in Australia.Crossref | GoogleScholarGoogle Scholar |

Rasconi, S., Grami, B., Niquil, N., Jobard, M., and Sime-Ngando, T. (2014). Parasitic chytrids sustain zooplankton growth during inedible algal bloom. Frontiers in Microbiology 5, 229.
Parasitic chytrids sustain zooplankton growth during inedible algal bloom.Crossref | GoogleScholarGoogle Scholar | 24904543PubMed |

Ribeiro, K. F., Duarte, L., and Crossetti, L. O. (2018). Everything is not everywhere: a tale on the biogeography of cyanobacteria. Hydrobiologia 820, 23–48.
Everything is not everywhere: a tale on the biogeography of cyanobacteria.Crossref | GoogleScholarGoogle Scholar |

Sarmento, H. (2012). New paradigms in tropical limnology: the importance of the microbial food web. Hydrobiologia 686, 1–14.
New paradigms in tropical limnology: the importance of the microbial food web.Crossref | GoogleScholarGoogle Scholar |

Sarmento, H., and Gasol, J. M. (2012). Use of phytoplankton‐derived dissolved organic carbon by different types of bacterioplankton. Environmental Microbiology 14, 2348–2360.
Use of phytoplankton‐derived dissolved organic carbon by different types of bacterioplankton.Crossref | GoogleScholarGoogle Scholar | 22639946PubMed |

Sommer, U., Gliwicz, Z. M., Lampert, W., and Duncan, A. (1986). The PEG-model of seasonal succession of planktonic events in fresh waters. Archiv für Hydrobiologie 106, 433–471.

Sommer, U., Adrian, R., De Senerpont Domis, L., Elser, J. J., Gaedke, U., Ibelings, B., Jeppesen, E., Lürling, M., Molinero, J. C., Mooij, W. M., and Van Donk, E. (2012). Beyond the plankton ecology group (PEG) model: mechanisms driving plankton succession. Annual Review of Ecology Evolution and Systematics 43, 429–448.
Beyond the plankton ecology group (PEG) model: mechanisms driving plankton succession.Crossref | GoogleScholarGoogle Scholar |

Sousa, I., Gouveia, L., Batista, A. P., Raymundo, A., and Bandarra, N. M. (2008). Microalgae in novel food products. In ‘Food Chemistry Research Developments’. (Ed. K. N. Papadopoulos.) pp. 75–112. (Nova Science Publishers: New York, NY, USA.)

Starkweather, P. L., and Kellar, P. E. (1983). Utilization of cyanobacteria by Brachionus calyciflorus: Anabaena flos-aquae (NRC-44-1) as a sole or complementary food source. Hydrobiologia 104, 373–377.
Utilization of cyanobacteria by Brachionus calyciflorus: Anabaena flos-aquae (NRC-44-1) as a sole or complementary food source.Crossref | GoogleScholarGoogle Scholar |

Thajuddin, N., and Subramanian, G. (2005). Cyanobacterial biodiversity and potential applications in biotechnology. Current Science 89, 47–57.

Tirjaková, E., Krajčovičová, K., Illyová, M., and Vdačny, P. (2016). Interaction of ciliate communities with cyanobacterial water bloom in a shallow, hypertrophic reservoir. Acta Protozoologica 3, 173–188.

Wejnerowski, L., Cerbin, S., and Dziuba, M. K. (2015). Thicker filaments of Aphanizomenon gracile are more harmful to Daphnia than thinner Cylindrospermopsis raciborskii. Zoological Studies 54, 2.
Thicker filaments of Aphanizomenon gracile are more harmful to Daphnia than thinner Cylindrospermopsis raciborskii.Crossref | GoogleScholarGoogle Scholar |

Wejnerowski, L., Cerbin, S., Wojciechowicz, M. K., and Dziuba, M. K. (2016). Differences in cell wall of thin and thick filaments of cyanobacterium Aphanizomenon gracile SAG 31.79 and their implications for different resistance to Daphnia grazing. Journal of Limnology 75, 634–643.

Wejnerowski, L., Cerbin, S., Wojciechowicz, M., Jurczak, T., Glama, M., Meriluoto, J., and Dziuba, M. (2018). Effects of Daphnia exudates and sodium octyl sulphates on filament morphology and cell wall thickness of Aphanizomenon gracile (Nostocales), Cylindrospermopsis raciborskii (Nostocales) and Planktothrix agardhii (Oscillatoriales). European Journal of Phycology 53, 280–289.
Effects of Daphnia exudates and sodium octyl sulphates on filament morphology and cell wall thickness of Aphanizomenon gracile (Nostocales), Cylindrospermopsis raciborskii (Nostocales) and Planktothrix agardhii (Oscillatoriales).Crossref | GoogleScholarGoogle Scholar |

Wilk-Woźniak, E., Solarz, W., Najberek, K., and Pociecha, A. (2016). Alien cyanobacteria: an unsolved part of the ‘expansion and evolution’ jigsaw puzzle? Hydrobiologia 764, 65–79.
Alien cyanobacteria: an unsolved part of the ‘expansion and evolution’ jigsaw puzzle?Crossref | GoogleScholarGoogle Scholar |

Wojtal-Frankiewicz, A., Bernasińska, J., Frankiewicz, P., Gwoździński, K., and Jurczak, T. (2014). Response of Daphnia’s antioxidant system to spatial heterogeneity in cyanobacteria concentrations in a lowland reservoir. PLoS One 9, e112597.
Response of Daphnia’s antioxidant system to spatial heterogeneity in cyanobacteria concentrations in a lowland reservoir.Crossref | GoogleScholarGoogle Scholar | 25380273PubMed |

Work, K. A., and Havens, K. E. (2003). Zooplankton grazing on bacteria and cyanobacteria in a eutrophic lake. Journal of Plankton Research 25, 1301–1306.
Zooplankton grazing on bacteria and cyanobacteria in a eutrophic lake.Crossref | GoogleScholarGoogle Scholar |