Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Dynamics of nitrogen-fixing cyanobacteria with heterocysts: a stoichiometric model

James P. Grover A G , J. Thad Scott B C , Daniel L. Roelke D E and Bryan W. Brooks B F
+ Author Affiliations
- Author Affiliations

A University of Texas at Arlington, Biology Department, Box 19498, Arlington, TX 76019, USA.

B Baylor University, Center for Reservoir and Aquatic Systems Research, One Bear Place 97178, Waco, TX 76798, USA.

C Baylor University, Biology Department, One Bear Place 97388, Waco, TX 76798, USA.

D Texas A&M University—Galveston, Marine Biology Department, PO Box 1675, Galveston, TX 77553, USA.

E Texas A&M University, Oceanography Department, College Station, TX 77843, USA.

F Baylor University, Environmental Science Department, One Bear Place 97266, Waco, TX 76798, USA.

G Corresponding author. Email: grover@uta.edu

Marine and Freshwater Research 71(5) 644-658 https://doi.org/10.1071/MF18361
Submitted: 18 September 2018  Accepted: 15 April 2019   Published: 6 August 2019

Abstract

A simulation model for nitrogen-fixing cyanobacteria was formulated to predict population and nutrient dynamics in water quality studies. The model tracks population biomasses of nitrogen and phosphorus, which potentially limit population growth. Lack of intracellular nitrogen cues the differentiation of specialised heterocysts for nitrogen fixation. Ecoevolutionary analysis presented here predicts that natural selection optimises heterocyst differentiation in relation to external supplies of nitrogen and phosphorus. Modelling the production of N-rich toxins (e.g. anatoxins, saxitoxins) suggests that both total biomass and the biomass N : P ratio can predict concentrations of toxins. The results suggest hypotheses that major taxa of nitrogen-fixing, nuisance cyanobacteria are differentially adapted to varying nitrogen and phosphorus supplies, and that biomass stoichiometry is related to toxins production in this major group of harmful algae. This approach can be extended into models of community and ecosystem dynamics to explore implications of nitrogen fixation for cyanobacterial biomass and toxins production.

Additional keywords: algal blooms, blue–green algae, cyanotoxins, Droop model, eutrophication, nutrient limitation, variable internal stores model.


References

Adams, D. G., and Duggan, P. S. (1999). Heterocyst and akinete differentiation in cyanobacteria. New Phytologist 144, 3–33.
Heterocyst and akinete differentiation in cyanobacteria.Crossref | GoogleScholarGoogle Scholar |

Andersen, T. (1997). ‘Pelagic Nutrient Cycles. Herbivores as Sources and Sinks.’ (Springer: Berlin, Germany.)

Beversdorf, L. J., Miller, T. R., and McMahon, K. D. (2013). The role of nitrogen fixation in cyanobacterial bloom toxicity in a temperate, eutrophic lake. PLoS One 8, e56103.
The role of nitrogen fixation in cyanobacterial bloom toxicity in a temperate, eutrophic lake.Crossref | GoogleScholarGoogle Scholar | 23405255PubMed |

Bolius, S., Weidner, C., and Weithoff, G. (2017). High local trait variability in a globally invasive cyanobacterium. Freshwater Biology 62, 1879–1890.
High local trait variability in a globally invasive cyanobacterium.Crossref | GoogleScholarGoogle Scholar |

Branco, P., Egas, M., Elser, J. J., and Huisman, J. (2018). Eco-evolutionary dynamics of ecological stoichiometry in plankton communities. American Naturalist 192, E1–E20.
Eco-evolutionary dynamics of ecological stoichiometry in plankton communities.Crossref | GoogleScholarGoogle Scholar | 29897797PubMed |

Brännström, A., Johansson, J., and von Festerberg, N. (2013). The hitchhiker’s guide to adaptive dynamics. Games 4, 304–328.
The hitchhiker’s guide to adaptive dynamics.Crossref | GoogleScholarGoogle Scholar |

Brooks, B. W., Lazorchak, J. M., Howard, M. D. A., Johnson, M. V., Morton, S. L., Perkins, D. A. K., Reavie, E. D., Scott, G. I., Smith, S. A., and Steevens, J. A. (2016). Are harmful algal blooms becoming the greatest inland water quality threat to public health and aquatic ecosystems? Environmental Toxicology and Chemistry 35, 6–13.
Are harmful algal blooms becoming the greatest inland water quality threat to public health and aquatic ecosystems?Crossref | GoogleScholarGoogle Scholar | 26771345PubMed |

Brooks, B. W., Lazorchak, J. M., Howard, M. D. A., Johnson, M. V., Morton, S. L., Perkins, D. A. K., Reavie, E. D., Scott, G. I., Smith, S. A., and Steevens, J. A. (2017). In some places, in some cases and at some times, harmful algal blooms are the greatest threat to inland water quality. Environmental Toxicology and Chemistry 36, 1125–1127.
In some places, in some cases and at some times, harmful algal blooms are the greatest threat to inland water quality.Crossref | GoogleScholarGoogle Scholar | 28423202PubMed |

Brown, A. I., and Rutenberg, A. D. (2014). A storage-based model of heterocyst commitment and patterning in cyanobacteria. Physical Biology 11, 016001.
A storage-based model of heterocyst commitment and patterning in cyanobacteria.Crossref | GoogleScholarGoogle Scholar | 25154305PubMed |

Casero, M. C., Ballot, A., Agha, R., Quesada, A., and Cirés, S. (2014). Characterization of saxitoxin production and release and phylogeny of sxt genes in paralytic shellfish poisoning toxin-producing Aphanizomenon gracile. Harmful Algae 37, 28–37.
Characterization of saxitoxin production and release and phylogeny of sxt genes in paralytic shellfish poisoning toxin-producing Aphanizomenon gracile.Crossref | GoogleScholarGoogle Scholar |

Chapra, S. C. (1997). ‘Surface Water-Quality Modeling.’ (McGraw-Hill: New York, NY, USA.)

Dittmann, E., Fewer, D. P., and Neilan, B. A. (2013). Cyanobacterial toxins: biosynthetic routes and evolutionary roots. FEMS Microbiology Reviews 37, 23–43.
Cyanobacterial toxins: biosynthetic routes and evolutionary roots.Crossref | GoogleScholarGoogle Scholar | 23051004PubMed |

Dolman, A. M., Rücker, J., Pick, F. R., Fastner, J., Rohrlack, T., Mischke, U., and Weidner, C. (2012). Cyanobacteria and cyanotoxins: the influence of nitrogen versus phosphorus. PLoS One 7, e38757.
Cyanobacteria and cyanotoxins: the influence of nitrogen versus phosphorus.Crossref | GoogleScholarGoogle Scholar | 22719937PubMed |

Droop, M. R. (1974). The nutrient status of algal cells in continuous culture. Journal of the Marine Biological Association of the United Kingdom 54, 825–855.
The nutrient status of algal cells in continuous culture.Crossref | GoogleScholarGoogle Scholar |

Flynn, K. J. (2002). How critical is the N : P ratio? Journal of Phycology 38, 961–970.
How critical is the N : P ratio?Crossref | GoogleScholarGoogle Scholar |

Flynn, K. J. (2008). The importance of the form of the quota curve and control of non-limiting nutrient transport in phytoplankton models. Journal of Plankton Research 30, 423–438.
The importance of the form of the quota curve and control of non-limiting nutrient transport in phytoplankton models.Crossref | GoogleScholarGoogle Scholar |

Flynn, K. J., and Gallon, J. R. (1990). Changes in intracellular and extracellular α-amino acids in Gloeothece during N2-fixation and following addition of ammonium. Archives of Microbiology 153, 574–579.
Changes in intracellular and extracellular α-amino acids in Gloeothece during N2-fixation and following addition of ammonium.Crossref | GoogleScholarGoogle Scholar |

Flynn, K. J., Fasham, M. J. R., and Hipkin, C. R. (1997). Modelling the interactions between ammonium and nitrate uptake in marine phytoplankton. Philosophical Transactions of the Royal Society of London – B. Biological Sciences 352, 1625–1645.
Modelling the interactions between ammonium and nitrate uptake in marine phytoplankton.Crossref | GoogleScholarGoogle Scholar |

Fogg, G. E. (1949). Growth and heterocyst production in Anabaena cylindrica Lemm. II. In relation to carbon and nitrogen metabolism. Annals of Botany 13, 241–259.
Growth and heterocyst production in Anabaena cylindrica Lemm. II. In relation to carbon and nitrogen metabolism.Crossref | GoogleScholarGoogle Scholar |

Fogg, G. E. (1969). The physiology of an algal nuisance. Proceedings of the Royal Society of London – B. Biological Sciences 173, 175–189.

Gehringer, M. M., and Wannicke, N. (2014). Climate change and regulation of hepatotoxin production in cyanobacteria. FEMS Microbiology Ecology 88, 1–25.
Climate change and regulation of hepatotoxin production in cyanobacteria.Crossref | GoogleScholarGoogle Scholar | 24490596PubMed |

Geider, R. J., and LaRoche, J. (2002). Redfield revisited: variability of C : N : P in marine microalgae and its biochemical basis. European Journal of Phycology 37, 1–17.
Redfield revisited: variability of C : N : P in marine microalgae and its biochemical basis.Crossref | GoogleScholarGoogle Scholar |

Ger, K. A., Urrutia-Cordero, P., Frost, P. C., Hansson, L.-A., Sarnelle, O., Wilson, A. E., and Lürling, M. (2016). The interaction between cyanobacteria and zooplankton in a more eutrophic world. Harmful Algae 54, 128–144.
The interaction between cyanobacteria and zooplankton in a more eutrophic world.Crossref | GoogleScholarGoogle Scholar | 28073472PubMed |

Geritz, S. A. H., Metz, J. A. J., Kisdi, É., and Meszéna, G. (1997). Dynamics of adaptation and evolutionary branching. Physical Review Letters 78, 2024–2027.
Dynamics of adaptation and evolutionary branching.Crossref | GoogleScholarGoogle Scholar |

Gobler, C. J., Burkholder, J. M., Davis, T. W., Harke, M. J., Johengen, T., Stow, C. A., and Van de Waal, D. B. (2016). The dual role of nitrogen supply in controlling the growth and toxicity of cyanobacterial blooms. Harmful Algae 54, 87–97.
The dual role of nitrogen supply in controlling the growth and toxicity of cyanobacterial blooms.Crossref | GoogleScholarGoogle Scholar | 28073483PubMed |

Gotham, I. J., and Rhee, G.-Y. (1981). Comparative kinetic studies of phosphate-limited growth and phosphate uptake in phytoplankton in continuous culture. Journal of Phycology 17, 257–265.
Comparative kinetic studies of phosphate-limited growth and phosphate uptake in phytoplankton in continuous culture.Crossref | GoogleScholarGoogle Scholar |

Grover, J. P. (1997). ‘Resource Competition.’ (Chapman and Hall: London, UK.)

Grover, J. P. (2002). Stoichiometry, herbivory and competition for nutrients: simple models based on planktonic ecosystems. Journal of Theoretical Biology 214, 599–618.
Stoichiometry, herbivory and competition for nutrients: simple models based on planktonic ecosystems.Crossref | GoogleScholarGoogle Scholar | 11851370PubMed |

Grover, J. P. (2011). Resource storage and competition with spatial and temporal variation in resource availability. American Naturalist 178, E124–E148.
Resource storage and competition with spatial and temporal variation in resource availability.Crossref | GoogleScholarGoogle Scholar | 22030738PubMed |

Grover, J. P. (2017). Sink or swim? Vertical movement and nutrient storage in phytoplankton. Journal of Theoretical Biology 432, 38–48.
Sink or swim? Vertical movement and nutrient storage in phytoplankton.Crossref | GoogleScholarGoogle Scholar | 28818466PubMed |

Guildford, S. J., and Hecky, R. E. (2000). Total nitrogen, total phosphorus, and nutrient limitation in lakes and oceans: is there a common relationship? Limnology and Oceanography 45, 1213–1223.
Total nitrogen, total phosphorus, and nutrient limitation in lakes and oceans: is there a common relationship?Crossref | GoogleScholarGoogle Scholar |

Haddad, S. P., Bobbitt, J. M., Taylor, R. B., Lovin, L. M., Conkle, J. L., Chambliss, C. K., and Brooks, B. W. (2019). Determination of microcystins, nodularin, anatoxin-a, cylindrospermopsin, and saxitoxin in water and fish tissue using isotope dilution liquid chromatography tandem mass spectrometry. Journal of Chromatography – A 1599, 66–74.
Determination of microcystins, nodularin, anatoxin-a, cylindrospermopsin, and saxitoxin in water and fish tissue using isotope dilution liquid chromatography tandem mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 30961962PubMed |

Halinen, K., Jokela, J., Fewer, D. P., Wahlsten, M., and Sivonen, K. (2007). Direct evidence for production of microcystins by Anabaena strains from the Baltic Sea. Applied and Environmental Microbiology 73, 6543–6550.
Direct evidence for production of microcystins by Anabaena strains from the Baltic Sea.Crossref | GoogleScholarGoogle Scholar | 17766456PubMed |

Hellweger, F. L., and Bucci, V. (2009). A bunch of tiny individuals – individual-based modeling for microbes. Ecological Modelling 220, 8–22.
A bunch of tiny individuals – individual-based modeling for microbes.Crossref | GoogleScholarGoogle Scholar |

Hellweger, F. L., and Kianirad, E. (2007). Accounting for intrapopulation variability in biogeochemical models using agent-based models. Environmental Science & Technology 41, 2855–2860.
Accounting for intrapopulation variability in biogeochemical models using agent-based models.Crossref | GoogleScholarGoogle Scholar |

Hense, I., and Beckmann, A. (2006). Towards a model of cyanobacteria life cycle – effects of growing and resting stages on bloom formation of N2-fixing species. Ecological Modelling 195, 205–218.
Towards a model of cyanobacteria life cycle – effects of growing and resting stages on bloom formation of N2-fixing species.Crossref | GoogleScholarGoogle Scholar |

Hense, I., and Burchard, H. (2010). Modelling cyanobacteria in shallow coastal seas. Ecological Modelling 221, 238–244.
Modelling cyanobacteria in shallow coastal seas.Crossref | GoogleScholarGoogle Scholar |

Herrero, A., Stavans, J., and Flores, E. (2016). The multicellular nature of filamentous heterocyst-forming cyanobacteria. FEMS Microbiology Reviews 40, 831–854.
The multicellular nature of filamentous heterocyst-forming cyanobacteria.Crossref | GoogleScholarGoogle Scholar | 28204529PubMed |

Horne, A. J., and Goldman, C. R. (1972). Nitrogen fixation in Clear Lake, California. I. Seasonal variation and the role of heterocysts. Limnology and Oceanography 17, 678–692.
Nitrogen fixation in Clear Lake, California. I. Seasonal variation and the role of heterocysts.Crossref | GoogleScholarGoogle Scholar |

Horne, A. J., Dillard, J. E., and Goldman, C. R. (1972). Nitrogen fixation in Clear Lake, California. II. Synoptic studies on the autumn Anabaena bloom. Limnology and Oceanography 17, 693–703.
Nitrogen fixation in Clear Lake, California. II. Synoptic studies on the autumn Anabaena bloom.Crossref | GoogleScholarGoogle Scholar |

Huisman, J., and Hulot, F. D. (2005). Population dynamics of harmful cyanobacteria: factors affecting species composition. In ‘Harmful Cyanobacteria’. (Eds J. Huisman, H. C. P. Mathijs, and P. M. Visser.). pp. 143–176. (Springer: Dordrecht, Netherlands.)

Huisman, J., Matthijs, H. C. P., Visser, P. M., Balke, H., Sigon, C. A. M., Passarge, J., Weissing, F. R., and Mur, L. R. (2002). Principles of the light-limited chemostat: theory and ecological applications. Antonie van Leeuwenhoek 81, 117–133.
Principles of the light-limited chemostat: theory and ecological applications.Crossref | GoogleScholarGoogle Scholar | 12448711PubMed |

John, E. H., and Flynn, K. J. (2002). Modelling changes in paralytic shellfish toxin content of dinflagellates in response to nitrogen and phosphorus supply. Marine Ecology Progress Series 225, 147–160.
Modelling changes in paralytic shellfish toxin content of dinflagellates in response to nitrogen and phosphorus supply.Crossref | GoogleScholarGoogle Scholar |

Klemer, A. R. (1985). Nutrient-induced migrations of blue-green algae (cyanobacteria). In ‘Migration: Mechanisms and Adaptive Significance’. (Eds M. A. Rankin, D. Checkley, J. Cullen, C. Kitting, and P. Thomas.) Contributions in Marine Science number 27, pp. 154–165. (University of Texas Marine Science Institute: Port Aransas, TX, USA.)

Koffel, T., Boudsocq, S., Loeuille, N., and Daufresne, T. (2018). Facilitation- vs. competition-driven succession: the key role of resource-ratio. Ecology Letters 21, 1010–1021.
Facilitation- vs. competition-driven succession: the key role of resource-ratio.Crossref | GoogleScholarGoogle Scholar | 29722180PubMed |

Laamanen, M., and Kuosa, H. (2005). Annual variability of biomass and heterocysts of the N2-fixing cyanobacterium Aphanizomenon flos-aquae in the Baltic Sea with reference to Anabaena spp. and Nodularia spumigenia. Boreal Environment Research 10, 19–30.

Li, X., Dreher, T. W., and Li, R. (2016). An overview of diversity, occurrence, genetics, and toxin production of bloom-forming Dolichospermum (Anabaena) species. Harmful Algae 54, 54–68.
An overview of diversity, occurrence, genetics, and toxin production of bloom-forming Dolichospermum (Anabaena) species.Crossref | GoogleScholarGoogle Scholar | 28073482PubMed |

Lovin, L. M., and Brooks, B. W. (2020). Global scanning of anatoxin in aquatic systems: environment and health hazards, and research needs. Marine and Freshwater Research 71, 689–700.
Global scanning of anatoxin in aquatic systems: environment and health hazards, and research needs.Crossref | GoogleScholarGoogle Scholar |

Malatinszky, D., Steuer, R., and Jones, P. R. (2017). A comprehensively curated genome-scale two-cell model for the heterocystous cyanobacterium Anabaena sp. PCC 7120. Plant Physiology 173, 509–523.
A comprehensively curated genome-scale two-cell model for the heterocystous cyanobacterium Anabaena sp. PCC 7120.Crossref | GoogleScholarGoogle Scholar | 27899536PubMed |

Muñoz-García, J., and Ares, S. (2016). Formation and maintenance of nitrogen-fixing cell patterns in filamentous cyanobacteria. Proceedings of the National Academy of Sciences of the United States of America 113, 6218–6223.
Formation and maintenance of nitrogen-fixing cell patterns in filamentous cyanobacteria.Crossref | GoogleScholarGoogle Scholar | 27162328PubMed |

Negri, A. P., Jones, G. J., Blackburn, S. I., Oshima, Y., and Onodera, H. (1997). Effect of culture and bloom development and of sample storage on paralytic shellfish poisons in the cyanobacterium Anabaena circinalis. Journal of Phycology 33, 26–35.
Effect of culture and bloom development and of sample storage on paralytic shellfish poisons in the cyanobacterium Anabaena circinalis.Crossref | GoogleScholarGoogle Scholar |

Neilan, B. A., Pearson, L. A., Muenchhoff, J., Moffitt, M. C., and Dittmann, E. (2013). Environmental conditions that influence toxin biosynthesis in cyanobacteria. Environmental Microbiology 15, 1239–1253.
Environmental conditions that influence toxin biosynthesis in cyanobacteria.Crossref | GoogleScholarGoogle Scholar | 22429476PubMed |

O’Neil, J. M., Davis, T. W., Burford, M. A., and Gobler, C. J. (2012). The rise of harmful algal blooms: the potential roles of eutrophication and climate change. Harmful Algae 14, 313–334.
The rise of harmful algal blooms: the potential roles of eutrophication and climate change.Crossref | GoogleScholarGoogle Scholar |

Ogawa, R. E., and Carr, J. F. (1969). The influence of nitrogen on heterocyst production in blue-green algae. Limnology and Oceanography 14, 342–351.
The influence of nitrogen on heterocyst production in blue-green algae.Crossref | GoogleScholarGoogle Scholar |

Ohlendieck, U., Gunderson, K., Meyerhöfer, M., Fritsche, P., and Bergmann, B. (2007). The significance of nitrogen fixation to new production during summer in the Baltic Sea. Biogeosciences 4, 63–73.
The significance of nitrogen fixation to new production during summer in the Baltic Sea.Crossref | GoogleScholarGoogle Scholar |

Paerl, H. W., and Otten, T. G. (2013). Harmful cyanobacterial blooms: causes, consequences, and controls. Microbial Ecology 65, 995–1010.
Harmful cyanobacterial blooms: causes, consequences, and controls.Crossref | GoogleScholarGoogle Scholar | 23314096PubMed |

Paerl, H. W., Hall, N. S., and Calandrino, E. S. (2011). Controlling harmful cyanobacterial blooms in a world experiencing anthropogenic climatic-induced change. The Science of the Total Environment 409, 1739–1745.
Controlling harmful cyanobacterial blooms in a world experiencing anthropogenic climatic-induced change.Crossref | GoogleScholarGoogle Scholar | 21345482PubMed |

Pinzon, N. M., and Ju, L.-K. (2006). Modeling culture profiles of the heterocystous N2-fixing cyanobacterium Anabaena flos-aquae. Biotechnology Progress 22, 1532–1540.
Modeling culture profiles of the heterocystous N2-fixing cyanobacterium Anabaena flos-aquae.Crossref | GoogleScholarGoogle Scholar | 17137298PubMed |

Plominsky, A. M., Larsson, J., Bergman, B., Delherbe, N., Osses, I., and Vásquez, M. (2013). Dinitrogen fixation is restricted to the terminal heterocysts in the invasive cyanobacterium Cylindrospermopsis raciborskii CS-505. PLoS One 8, e51682.
Dinitrogen fixation is restricted to the terminal heterocysts in the invasive cyanobacterium Cylindrospermopsis raciborskii CS-505.Crossref | GoogleScholarGoogle Scholar | 23405062PubMed |

Plominsky, A. M., Delherbe, N., Mandakovic, D., Riquelme, B., González, K., Bergman, B., Mariscal, V., and Vásquez, M. (2015). Intercellular transfer along the trichomes of the invasive terminal heterocyst forming cyanobacterium Cylindrospermopsis raciborskii CS-505. FEMS Microbiology Letters 362, fnu009.
Intercellular transfer along the trichomes of the invasive terminal heterocyst forming cyanobacterium Cylindrospermopsis raciborskii CS-505.Crossref | GoogleScholarGoogle Scholar | 25757729PubMed |

Ploug, H., Musat, N., Adam, B., Moraru, C. L., Lavik, G., Vagner, T., Bergman, B., and Kuypers, M. M. M. (2010). Carbon and nitrogen fluxes associated with the cyanobacterium Aphanizomenon sp. in the Baltic Sea. The ISME Journal 4, 1215–1223.
Carbon and nitrogen fluxes associated with the cyanobacterium Aphanizomenon sp. in the Baltic Sea.Crossref | GoogleScholarGoogle Scholar | 20428225PubMed |

Rabouille, S., Staal, M., Stal, L. J., and Soetart, K. (2006). Modeling the dynamic regulation of nitrogen fixation in the cyanobacterium Trichodesmium sp. Applied and Environmental Microbiology 72, 3217–3227.
Modeling the dynamic regulation of nitrogen fixation in the cyanobacterium Trichodesmium sp.Crossref | GoogleScholarGoogle Scholar | 16672460PubMed |

Rapala, J., Sivonen, K., Lyra, C., and Niemalä, S. I. (1997). Variation of microcystins, cyanobacterial hepatotoxins, in Anabaena spp. as a function of growth stimuli. Applied and Environmental Microbiology 63, 2206–2212.
| 9172340PubMed |

Redfield, A. C. (1958). The biological control of chemical factors in the environment. American Scientist 46, 205–221.

Rocha, O., and Duncan, A. (1985). The relationship between cell carbon and cell volume in freshwater algal species used in zooplankton studies. Journal of Plankton Research 7, 279–294.
The relationship between cell carbon and cell volume in freshwater algal species used in zooplankton studies.Crossref | GoogleScholarGoogle Scholar |

Shampine, L. F., and Reichelt, M. W. (1997). The MATLAB ODE suite. SIAM Journal on Scientific Computing 18, 1–22.
The MATLAB ODE suite.Crossref | GoogleScholarGoogle Scholar |

Shelford, E. J., Middelboe, M., Møller, E. F., and Suttle, C. A. (2012). Virus-driven nitrogen cycling enhances phytoplankton growth. Aquatic Microbial Ecology 66, 41–46.
Virus-driven nitrogen cycling enhances phytoplankton growth.Crossref | GoogleScholarGoogle Scholar |

Smith, V. H. (1983). Low nitrogen to phosphorus ratios favor dominance by blue-green algae in lake phytoplankton. Science 221, 669–671.
Low nitrogen to phosphorus ratios favor dominance by blue-green algae in lake phytoplankton.Crossref | GoogleScholarGoogle Scholar | 17787737PubMed |

Stephens, N., Flynn, K. J., and Gallon, J. R. (2003). Interrelationships between the pathways of inorganic nitrogen assimilation in the cyanobacterium Gloeothece can be described using a mechanistic mathematical model. New Phytologist 160, 545–555.
Interrelationships between the pathways of inorganic nitrogen assimilation in the cyanobacterium Gloeothece can be described using a mechanistic mathematical model.Crossref | GoogleScholarGoogle Scholar |

Sterner, R. W., and Elser, J. J. (2002). ‘Ecological Stoichiometry.’ (Princeton University Press: Princeton, NJ, USA.)

Thingstad, T. F. (1987). Utilization of N, P, and organic C by heterotrophic bacteria. I. Outline of a chemostat theory with a consistent concept of ‘maintenance’ metabolism. Marine Ecology Progress Series 35, 99–109.
Utilization of N, P, and organic C by heterotrophic bacteria. I. Outline of a chemostat theory with a consistent concept of ‘maintenance’ metabolism.Crossref | GoogleScholarGoogle Scholar |

Thomas, M. K., and Litchman, E. (2016). Effects of temperature and nitrogen availability on the growth of invasive and native cyanobacteria. Hydrobiologia 763, 357–369.
Effects of temperature and nitrogen availability on the growth of invasive and native cyanobacteria.Crossref | GoogleScholarGoogle Scholar |

Tilman, G. D. (1982). ‘Resource Competition and Community Structure.’ (Princeton University Press: Princeton, NJ, USA.)

Tonk, L., Welker, M., Huisman, J., and Visser, P. M. (2016). Production of cyanopeptolins, anabaenopeptins, and microcystins by the harmful cyanobacteria Anabaena 90 and Microcystis PCC 7806. Harmful Algae 8, 218–224.

Torres-Sánchez, A., Gómez-Gardeñes, J., and Falo, F. (2015). An integrative approach for modeling and simulation of heterocyst pattern formation in cyanobacteria filaments. PLoS Computational Biology 11, e1004129.
An integrative approach for modeling and simulation of heterocyst pattern formation in cyanobacteria filaments.Crossref | GoogleScholarGoogle Scholar | 25816286PubMed |

Trolle, D., Hamilton, D. P., Hipsey, M. R., Bolding, K., Bruggeman, J., Mooij, W. M., Janse, J. H., Nielsen, A., Jeppesen, E., Elliott, J. A., Makler-Pick, V., Petzoldt, T., Rinke, K., Flindt, J. R., Arhonditsis, G. B., Gal, G., Bjerring, R., Tominaga, K., Hoen, J., Downing, A. S., Marques, D. M., Fragoso, C. R., Sondergaard, M., and Hanson, P. C. (2012). A community-based framework for aquatic ecosystem models. Hydrobiologia 683, 25–34.
A community-based framework for aquatic ecosystem models.Crossref | GoogleScholarGoogle Scholar |

Van de Waal, D. B., Verspagen, J. M. H., Finke, J. F., Vournazou, V., Immers, A. K., Kardinaal, W. E. A., Tonk, L., Becker, S., Van Donk, E., Visser, P. M., and Huisman, J. (2011). Reversal in competitive dominance of a toxic versus non-toxic cyanobacterium in response to rising CO2. The ISME Journal 5, 1438–1450.
Reversal in competitive dominance of a toxic versus non-toxic cyanobacterium in response to rising CO2.Crossref | GoogleScholarGoogle Scholar | 21390081PubMed |

Van de Waal, D. B., Smith, V. H., Declerck, S. A. J., Stam, E. C. M., and Elser, J. J. (2014). Stoichiometric regulation of phytoplankton toxins. Ecology Letters 17, 736–742.
Stoichiometric regulation of phytoplankton toxins.Crossref | GoogleScholarGoogle Scholar | 24712512PubMed |

Villareal, T. A., and Carpenter, E. J. (2003). Buoyancy regulation and the potential for vertical migration in the oceanic cyanobacterium Trichodesmium. Microbial Ecology 45, 1–10.
Buoyancy regulation and the potential for vertical migration in the oceanic cyanobacterium Trichodesmium.Crossref | GoogleScholarGoogle Scholar | 12481233PubMed |

Wilcox, M., Mitchison, G. J., and Smith, R. J. (1973). Pattern formation in the blue–green alga, Anabaena. I. Basic mechanisms. Journal of Cell Science 12, 707–723.
| 4198321PubMed |

Willis, A., Adams, M. P., Chuang, A. W., Orr, P. T., O’Brien, K. R., and Burford, M. A. (2015). Constitutive toxin production under various nitrogen and phosphorus regimes of three ecotypes of Cylindrospermopsis raciborskii ((Wołoszyńska) Seenayya et Subba Raju). Harmful Algae 47, 27–34.
Constitutive toxin production under various nitrogen and phosphorus regimes of three ecotypes of Cylindrospermopsis raciborskii ((Wołoszyńska) Seenayya et Subba Raju).Crossref | GoogleScholarGoogle Scholar |

Willis, A., Chuang, A. W., and Burford, M. A. (2016). Nitrogen fixation by the diazotroph Cylindrospermopsis raciborskii (Cyanophyceae). Journal of Phycology 52, 854–862.
Nitrogen fixation by the diazotroph Cylindrospermopsis raciborskii (Cyanophyceae).Crossref | GoogleScholarGoogle Scholar | 27440068PubMed |

Wood, S. A., Prentice, M. J., Smith, K., and Hamilton, D. P. (2010). Low dissolved inorganic nitrogen and increased heterocyte frequency: precursors to Anabaena planktonica blooms in a temperate, eutrophic reservoir. Journal of Plankton Research 32, 1315–1325.
Low dissolved inorganic nitrogen and increased heterocyte frequency: precursors to Anabaena planktonica blooms in a temperate, eutrophic reservoir.Crossref | GoogleScholarGoogle Scholar |

Yema, L., Litchman, E., and de Tezanos Pinto, P. (2016). The role of heterocytes in the physiology and ecology of bloom-forming harmful cyanobacteria. Harmful Algae 60, 131–138.
The role of heterocytes in the physiology and ecology of bloom-forming harmful cyanobacteria.Crossref | GoogleScholarGoogle Scholar | 28073556PubMed |