Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH FRONT

Water temperature correlates with baleen whale foraging behaviour at multiple scales in the Antarctic

Kylie Owen A B G , K. Curt S. Jenner C , Micheline-Nicole M. Jenner C , Robert D. McCauley D and Russel D. Andrews A E F
+ Author Affiliations
- Author Affiliations

A Alaska SeaLife Center, Seward, AK 99664, USA.

B Cetacean Research Unit, School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA 6150, Australia.

C Centre for Whale Research (WA) Inc., PO Box 1622, Fremantle, WA 6959, Australia.

D Centre for Marine Science and Technology, Curtin University, Perth, WA 6845, Australia.

E College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Fairbanks, AK 99775, USA.

F Present address: Foundation for Marine Ecology and Telemetry Research, 2468 Camp McKenzie Trail NW, Seabeck, WA 98380, USA.

G Corresponding author: kylie.owen@uqconnect.edu.au

Marine and Freshwater Research 70(1) 19-32 https://doi.org/10.1071/MF17288
Submitted: 26 September 2017  Accepted: 6 March 2018   Published: 18 June 2018

Abstract

How baleen whales locate prey and how environmental change may influence whale foraging success are not well understood. Baleen whale foraging habitat has largely been described at a population level, yet population responses to change are the result of individual strategies across multiple scales. This study aimed to determine how the foraging behaviour of individual whales varied relative to environmental conditions along their movement path. Biotelemetry devices provided information on humpback whale (Megaptera novaeangliae) movement at two spatial scales in East Antarctica, and a mixed modelling approach was used at a medium scale (tens of kilometres) to determine which environmental factors correlated with a change in foraging behaviour. Water temperature was linked to a change in foraging behaviour at both spatial scales. At the medium scale, warmer water was associated with the resident state, commonly assumed to represent periods of foraging behaviour. However, fine-scale analyses suggested that cooler water was associated with a higher feeding rate. Variation in whale foraging behaviour with changes in water temperature adds support to the hypothesis that whales may be able to track environmental conditions to find prey. Future research should investigate this pattern further, given the predicted rise in water temperatures under climate-change scenarios.

Additional keywords: archival tag, bio-logging, satellite tag, sea surface temperature, state space model.


References

Andrews, R. D., Pitman, R. L., and Balance, L. T. (2008). Satellite tracking reveals distinct movement patterns for Type B and Type C killer whales in the southern Ross Sea, Antarctica. Polar Biology 31, 1461–1468.
Satellite tracking reveals distinct movement patterns for Type B and Type C killer whales in the southern Ross Sea, Antarctica.Crossref | GoogleScholarGoogle Scholar |

Baumgartner, M. F., and Mate, B. R. (2003). Summertime foraging ecology of North Atlantic right whales. Marine Ecology Progress Series 264, 123–135.
Summertime foraging ecology of North Atlantic right whales.Crossref | GoogleScholarGoogle Scholar |

Bestley, S., Jonsen, I. D., Hindell, M. A., Guinet, C., and Charrassin, J. (2013). Integrative modelling of animal movement: incorporating in situ habitat and behavioural information for a migratory marine predator. Proceedings of the Royal Society of London – B. Biological Sciences 280, 20122262.
Integrative modelling of animal movement: incorporating in situ habitat and behavioural information for a migratory marine predator.Crossref | GoogleScholarGoogle Scholar |

Bindoff, N. L., Rosenberg, M. A., and Warner, M. J. (2000). On the circulation and water masses over the Antarctic continental slope and rise between 80 and 150°E. Deep-sea Research – II. Topical Studies in Oceanography 47, 2299–2326.
On the circulation and water masses over the Antarctic continental slope and rise between 80 and 150°E.Crossref | GoogleScholarGoogle Scholar |

Bombosch, A., Zitterbart, D. P., Opzeeland, I. V., Frickenhaus, S., Burkhardt, E., Wiss, M. S., and Boebel, O. (2014). Predictive habitat modelling of humpback (Megaptera novaeangliae) and Antarctic minke (Balaenoptera bonaerensis) whales in the Southern Ocean as a planning tool for seismic surveys. Deep-sea Research – I. Oceanographic Research Papers 91, 101–114.
Predictive habitat modelling of humpback (Megaptera novaeangliae) and Antarctic minke (Balaenoptera bonaerensis) whales in the Southern Ocean as a planning tool for seismic surveys.Crossref | GoogleScholarGoogle Scholar |

Breed, G. A., Jonsen, I. D., Myers, R. A., Bowen, W. D., and Leonard, M. L. (2009). Sex-specific, seasonal foraging tactics of adult grey seals (Halichoerus grypus) revealed by state-space analysis. Ecology 90, 3209–3221.
Sex-specific, seasonal foraging tactics of adult grey seals (Halichoerus grypus) revealed by state-space analysis.Crossref | GoogleScholarGoogle Scholar |

Burnham, K. P., Anderson, D. R., and Huyvaert, K. P. (2011). AIC model selection and multimodel inference in behavioural ecology: some background, observations, and comparisons. Behavioral Ecology and Sociobiology 65, 23–35.
AIC model selection and multimodel inference in behavioural ecology: some background, observations, and comparisons.Crossref | GoogleScholarGoogle Scholar |

Chittleborough, R. G. (1965). Dynamics of two populations of the humpback whale, Megaptera novaeangliae (Borowski). Marine and Freshwater Research 16, 33–128.
Dynamics of two populations of the humpback whale, Megaptera novaeangliae (Borowski).Crossref | GoogleScholarGoogle Scholar |

Clapham, P. J., and Mead, J. G. (1999). Megaptera novaeangliae. Mammalian Species 604, 1–9.
Megaptera novaeangliae.Crossref | GoogleScholarGoogle Scholar |

Dodge, S., Bohrer, G., Weinzierl, R., Davidson, S. C., Kays, R., Douglas, D., Cruz, S., Han, J., Brandes, D., and Wikelski, M. (2013). The environmental-data automated track annotation (Env-DATA) system: linking animal tracks with environmental data. Movement Ecology 1, 3.
The environmental-data automated track annotation (Env-DATA) system: linking animal tracks with environmental data.Crossref | GoogleScholarGoogle Scholar |

Douglas, D. C., Weinzierl, R., Davidson, S. C., Kays, R., Wikelski, M., and Bohrer, G. (2012). Moderating Argos location errors in animal tracking data. Methods in Ecology and Evolution 3, 999–1007.
Moderating Argos location errors in animal tracking data.Crossref | GoogleScholarGoogle Scholar |

Fauchald, P., and Tveraa, T. (2003). Using first-passage time in the analysis of area-restricted search and habitat selection. Ecology 84, 282–288.
Using first-passage time in the analysis of area-restricted search and habitat selection.Crossref | GoogleScholarGoogle Scholar |

Flores, H., Atkinson, A., Kawaguchi, S., Krafft, B. A., Milinevsky, G., Nicol, S., Reiss, C., Tarling, G. A., Werner, R., Bravo Rebolledo, E., Cirelli, V., Cuzin-Roudy, J., Fielding, S., Groeneveld, J. J., Haraldsson, M., Lombana, A., Marschoff, E., Meyer, B., Pakhomov, E. A., Rombolá, E., Schmidt, K., Siegel, V., Teschke, M., Tonkes, H., Toullec, J. Y., Trathan, P. N., Tremblay, N., Van de Putte, A. P., van Franeker, J. A., and Werner, T. (2012). Impact of climate change on Antarctic krill. Marine Ecology Progress Series 458, 1–19.
Impact of climate change on Antarctic krill.Crossref | GoogleScholarGoogle Scholar |

Forester, J. D., Ives, A. R., Turner, M. G., Anderson, D. P., Fortin, D., Beyer, H. L., Smith, D. W., and Boyce, M. S. (2007). State-space models link elk movement patterns to landscape characteristics in Yellowstone National Park. Ecological Monographs 77, 285–299.
State-space models link elk movement patterns to landscape characteristics in Yellowstone National Park.Crossref | GoogleScholarGoogle Scholar |

Fox, J., and Weisberg, S. (2011). ‘An R Companion to Applied Regression’, 2nd edn. (Sage: Thousand Oaks, CA, USA.)

Friedlaender, A. S., Halpin, P. N., Qian, S. S., Lawson, G. L., Wiebe, P. H., Thiele, D., and Read, A. J. (2006). Whale distribution in relation to prey abundance and oceanographic processes in shelf waters of the western Antarctic Peninsula. Marine Ecology Progress Series 317, 297–310.
Whale distribution in relation to prey abundance and oceanographic processes in shelf waters of the western Antarctic Peninsula.Crossref | GoogleScholarGoogle Scholar |

Friedlaender, A. S., Lawson, G. L., and Halpin, P. N. (2009). Evidence of resource partitioning between humpback and minke whales around the western Antarctic Peninsula. Marine Mammal Science 25, 402–415.
Evidence of resource partitioning between humpback and minke whales around the western Antarctic Peninsula.Crossref | GoogleScholarGoogle Scholar |

Friedlaender, A. S., Tyson, R. B., Stimpert, A. K., Read, A. J., and Nowacek, D. P. (2013). Extreme diel variation in the feeding behaviour of humpback whales along the western Antarctic Peninsula during autumn. Marine Ecology Progress Series 494, 281–289.
Extreme diel variation in the feeding behaviour of humpback whales along the western Antarctic Peninsula during autumn.Crossref | GoogleScholarGoogle Scholar |

Friedlaender, A. S., Johnston, D. W., Tyson, R. B., Kaltenberg, A., Goldbogen, J. A., Stimpert, A. K., Curtice, C., Hazen, E. L., Halpin, P. N., Read, A. J., and Nowacek, D. P. (2016). Multiple-stage decisions in a marine central-place forager. Royal Society Open Science 3, 160043.
Multiple-stage decisions in a marine central-place forager.Crossref | GoogleScholarGoogle Scholar |

Goldbogen, J. A., Calambokidis, J., Shadwick, R. E., Oleson, E. M., McDonald, M. A., and Hildebrand, J. A. (2006). Kinematics of foraging dives and lunge-feeding in fin whales. The Journal of Experimental Biology 209, 1231–1244.
Kinematics of foraging dives and lunge-feeding in fin whales.Crossref | GoogleScholarGoogle Scholar |

Grueber, C. E., Nakagawa, S., Laws, R. J., and Jamieson, I. G. (2011). Multimodel inference in ecology and evolution: challenges and solutions. Journal of Evolutionary Biology 24, 699–711.
Multimodel inference in ecology and evolution: challenges and solutions.Crossref | GoogleScholarGoogle Scholar |

Hamner, W. M., Hamner, P. P., Strand, S. W., and Gilmer, R. W. (1983). Behaviour of Antarctic krill, Euphausia superba: chemoreception, feeding, schooling and molting. Science 220, 433–435.
Behaviour of Antarctic krill, Euphausia superba: chemoreception, feeding, schooling and molting.Crossref | GoogleScholarGoogle Scholar |

Hazen, E. L., Friedlaender, A. S., Thompson, M. A., Ware, C. R., Weinrich, M. T., Halpin, P. N., and Wiley, D. N. (2009). Fine-scale prey aggregations and foraging ecology of humpback whales Megaptera novaeangliae. Marine Ecology Progress Series 395, 75–89.
Fine-scale prey aggregations and foraging ecology of humpback whales Megaptera novaeangliae.Crossref | GoogleScholarGoogle Scholar |

Herr, H., Viquerat, S., Siegel, V., Kock, K., Dorschel, B., Huneke, W. G. C., Bracher, A., Schroder, M., and Gutt, J. (2016). Horizontal niche partitioning of humpback and fin whales around the West Antarctic Peninsula: evidence from a concurrent whale and krill survey. Polar Biology 39, 799–818.
Horizontal niche partitioning of humpback and fin whales around the West Antarctic Peninsula: evidence from a concurrent whale and krill survey.Crossref | GoogleScholarGoogle Scholar |

Hertel, H. (1966). ‘Structure, Form, Movement.’ (Reinhold Publishing Co: New York, NY, USA.)

Huber, E. (1930). Evolution of the facial musculature and cutaneous field of trigeminus, Part I. The Quarterly Review of Biology 5, 133–188.
Evolution of the facial musculature and cutaneous field of trigeminus, Part I.Crossref | GoogleScholarGoogle Scholar |

Johnson, D. H. (1980). The comparison of usage and availability measurements for evaluating resource preference. Ecology 61, 65–71.
The comparison of usage and availability measurements for evaluating resource preference.Crossref | GoogleScholarGoogle Scholar |

Jonsen, I. D., Mills Flemming, J., and Myers, R. A. (2005). Robust state space modeling of animal movement data. Ecology 86, 2874–2880.
Robust state space modeling of animal movement data.Crossref | GoogleScholarGoogle Scholar |

Jonsen, I. D., Basson, M., Bestley, S., Bravington, M. V., Patterson, T. A., Pedersen, M. W., Thomson, R., Thygesen, U. H., and Wotherspoon, S. J. (2013). State-space models for bio loggers: a methodological road map. Deep-sea Research – II. Topical Studies in Oceanography 88–89, 34–46.
State-space models for bio loggers: a methodological road map.Crossref | GoogleScholarGoogle Scholar |

Jourdain, E., and Vongraven, D. (2017). Humpback whale (Megaptera novaeangliae) and killer whale (Orcinus orca) feeding aggregations for foraging on herring (Clupea harengus) in northern Norway. Mammalian Biology 86, 27–32.
Humpback whale (Megaptera novaeangliae) and killer whale (Orcinus orca) feeding aggregations for foraging on herring (Clupea harengus) in northern Norway.Crossref | GoogleScholarGoogle Scholar |

Kang, M., Furusawa, M., and Miyashita, K. (2002). Effective and accurate use of difference in mean volume backscattering strength to identify fish and plankton. ICES Journal of Marine Science 59, 794–804.
Effective and accurate use of difference in mean volume backscattering strength to identify fish and plankton.Crossref | GoogleScholarGoogle Scholar |

Kasamatsu, F., Ensor, P., Joyce, G. G., and Kimura, N. (2000). Distribution of minke whales in the Bellingshausen and Amundsen Seas (60°W–120°W), with special reference to environmental/physiographic variables. Fisheries Oceanography 9, 214–223.
Distribution of minke whales in the Bellingshausen and Amundsen Seas (60°W–120°W), with special reference to environmental/physiographic variables.Crossref | GoogleScholarGoogle Scholar |

Kenney, R. D., Mayo, C. A., and Winn, H. E. (2001). Migration and foraging strategies at varying spatial scales in western North Atlantic right whales: a review of hypotheses. Journal of Cetacean Research and Management 2, 251–260.

Kranstauber, B., Cameron, A., Weinzerl, R., Fountain, T., Tilak, S., Wikelski, M., and Kays, R. (2011). The Movebank data model for animal tracking. Environmental Modelling & Software 26, 834–835.
The Movebank data model for animal tracking.Crossref | GoogleScholarGoogle Scholar |

Ling, J. K. (1977). Vibrissae of marine mammals. In ‘Functional Anatomy of Marine Animals’. (R. J. Harrison.) pp. 387–415. (Academic Press: London, UK.)

Mackintosh, N. A. (1972). Life cycle of Antarctic krill in relation to ice and water conditions. Discovery Reports 36, 1–94.

McNamara, J. M., and Houston, A. I. (1985). Optimal foraging and learning. Journal of Theoretical Biology 117, 231–249.
Optimal foraging and learning.Crossref | GoogleScholarGoogle Scholar |

Murase, H., Matsuoka, K., Ichii, T., and Nishiwaki, S. (2002). Relationship between the distribution of euphausiids and baleen whales in the Antarctic (35°E–145°W). Polar Biology 25, 135–145.
Relationship between the distribution of euphausiids and baleen whales in the Antarctic (35°E–145°W).Crossref | GoogleScholarGoogle Scholar |

Nevitt, G. A., Veit, R. R., and Kareiva, P. (1995). Dimethyl sulphide as a foraging cue for Antarctic procellariiform seabirds. Letters to Nature 376, 680–682.
Dimethyl sulphide as a foraging cue for Antarctic procellariiform seabirds.Crossref | GoogleScholarGoogle Scholar |

Nicol, S., Pauly, T., Bindoff, N. L., and Strutton, P. G. (2000). ’BROKE’: a biological/oceanographic survey off the coast of East Antarctica (80–150°E) carried out in January–March 1996. Deep-sea Research – II. Topical Studies in Oceanography 47, 2281–2297.
’BROKE’: a biological/oceanographic survey off the coast of East Antarctica (80–150°E) carried out in January–March 1996.Crossref | GoogleScholarGoogle Scholar |

Norris, K. S. (1967). Some observations on the migration and orientation of marine mammals. In. ‘Animal Orientation and Navigation’. (Ed. R. M. Storm.) pp. 101–125. (Oregon State University Press: Corvallis, OR, USA.)

Nowacek, D. P., Friedlander, A. S., Halpin, P. N., Hazen, E. L., Johnston, D. W., Read, A. J., Espinasse, B., Zhou, M., and Zhu, Y. (2011). Super-aggregations of krill and humpback whales in Wilhelmina Bay, Antarctic Peninsula. PLoS One 6, e19173.
Super-aggregations of krill and humpback whales in Wilhelmina Bay, Antarctic Peninsula.Crossref | GoogleScholarGoogle Scholar |

Ogawa, T., and Shida, T. (1950). On the sensory tubercles of lips and oral cavity in the sei and fin whale. Scientific Reports of the Whales Research Institute 3, 1–16.

Owen, K., Jenner, C. S., Jenner, M. M., and Andrews, R. D. (2016a). A week in the life of a pygmy blue whale: migratory dive depth overlaps with large vessel drafts. Animal Biotelemetry 4, 17.
A week in the life of a pygmy blue whale: migratory dive depth overlaps with large vessel drafts.Crossref | GoogleScholarGoogle Scholar |

Owen, K., Dunlop, R. A., Monty, J. P., Chung, D., Noad, M. J., Donnelly, D., Goldizen, A. W., and Mackenzie, T. (2016b). Detecting surface-feeding behaviour by rorqual whales in accelerometer data. Marine Mammal Science 32, 327–348.
Detecting surface-feeding behaviour by rorqual whales in accelerometer data.Crossref | GoogleScholarGoogle Scholar |

Pauly, T., Nicol, S., Higginbottom, I., Hosie, G., and Kitchener, J. (2000). Distribution and abundance of Antarctic krill (Euphausia superba) off East Antarctica (80–150°E) during the Austral summer of 1995/1996. Deep-sea Research – II. Topical Studies in Oceanography 47, 2465–2488.
Distribution and abundance of Antarctic krill (Euphausia superba) off East Antarctica (80–150°E) during the Austral summer of 1995/1996.Crossref | GoogleScholarGoogle Scholar |

Pike, G. C. (1962). Migration and feeding of the gray whale (Eschrichtius gibbosus). Journal of the Fisheries Research Board of Canada 19, 815–838.
Migration and feeding of the gray whale (Eschrichtius gibbosus).Crossref | GoogleScholarGoogle Scholar |

Pinaud, D., and Weimerskirch, H. (2007). At-sea distribution and scale-dependent foraging behaviour of petrels and albatrosses: a comparative study. Journal of Animal Ecology 76, 9–19.
At-sea distribution and scale-dependent foraging behaviour of petrels and albatrosses: a comparative study.Crossref | GoogleScholarGoogle Scholar |

Plummer, M. (2003). JAGS: a program for analysis of Bayesian graphical models using Gibbs sampling. In ‘Proceedings of the 3rd International Workshop on Distributed Statistical Computing’. (DSC 2003) pp. 1–10. Available at https://www.r-project.org/conferences/DSC-2003/Proceedings/Plummer.pdf [Verified 29 April 2018].

Reid, K., Brierley, A. S., and Nevitt, G. A. (2000). An initial examination of relationships between the distribution of whales and Antarctic krill Euphausia superba at South Georgia. The Journal of Cetacean Research and Management 2, 143–149.

Robinson, P. W., Costa, D. P., Crocker, D. E., Gallo-Reynoso, J. P., Champagne, C. D., Fowler, M. A., Goetsch, C., Goetz, K. T., Hassrick, J. L., Huckstadt, L. A., Kuhn, C. E., Maresh, J. L., Maxwell, S. M., McDonald, B. I., Peterson, S. H., Simmons, S. E., Teutschel, N. M., Villegas-Amtmann, S., and Yoda, K. (2012). Foraging behaviour and success of a mesopelagic predator in the Northeast Pacific Ocean: insights from a data-rich species, the northern elephant seal. PLoS One 7, e36728.
Foraging behaviour and success of a mesopelagic predator in the Northeast Pacific Ocean: insights from a data-rich species, the northern elephant seal.Crossref | GoogleScholarGoogle Scholar |

Simon, M., Johnson, M., and Madsen, P. T. (2012). Keeping momentum with a mouthful of water: behavior and kinematics of humpback whale lunge feeding. The Journal of Experimental Biology 215, 3786–3798.
Keeping momentum with a mouthful of water: behavior and kinematics of humpback whale lunge feeding.Crossref | GoogleScholarGoogle Scholar |

Steele, J. H. (1978). ‘Spatial Pattern in Plankton Communities. NATO Conference Series, Marine Sciences IV, Volume 3.’ (Plenum Press: New York, NY, USA.)

Sutherland, W. J. (1996). ‘From Individual Behaviour to Population Ecology.’ (Oxford University Press: Oxford, UK.)

Therrien, J., Pinaud, D., Gauthier, G., Lecomte, N., Bildstein, K. L., and Bety, J. (2015). Is pre-breeding prospecting behaviour affected by snow cover in the irruptive snowy owl? A test using state-space modelling and environmental data annotated via Movebank. Movement Ecology 3, 1.
Is pre-breeding prospecting behaviour affected by snow cover in the irruptive snowy owl? A test using state-space modelling and environmental data annotated via Movebank.Crossref | GoogleScholarGoogle Scholar |

Thewissen, J. G. M., George, J., Rosa, C., and Kishida, T. (2011). Olfaction and brain size in the bowhead whale (Balaena mysticetus). Marine Mammal Science 27, 282–294.
Olfaction and brain size in the bowhead whale (Balaena mysticetus).Crossref | GoogleScholarGoogle Scholar |

Thiele, D., Chester, E. T., and Gill, P. C. (2000). Cetacean distribution off Eastern Antarctica (80–150°E) during the Austral summer of 1995/1996. Deep-sea Research – II. Topical Studies in Oceanography 47, 2543–2572.
Cetacean distribution off Eastern Antarctica (80–150°E) during the Austral summer of 1995/1996.Crossref | GoogleScholarGoogle Scholar |

Thiele, D., Asmus, K., Dolman, S., Falkenburg, C. D., Glasgow, D., Hodda, P., McDonald, M., McKay, S., Oleson, E., Sirovic, A., Souter, A., Moore, S., and Hildebrand, J. (2004). International Whaling Commission – Southern Ocean GLOBEC/CCAMLR collaboration. Cruise report 2003–2004. Paper SC/56/E24 presented to the IWC Scientific Committee, June 2004, Sorrento, Italy. Available at http://cetus.ucsd.edu/Publications/Reports/ThieleIWCSC-56-E24-2004.pdf [Verified 13 June 2018].

Torres, L. G. (2017). A sense of scale: foraging cetaceans’ use of scale-dependent multimodal sensory systems. Marine Mammal Science 33, 1170–1193.
A sense of scale: foraging cetaceans’ use of scale-dependent multimodal sensory systems.Crossref | GoogleScholarGoogle Scholar |

Trathan, P. N., Brierley, A. S., Brandon, M. A., Bone, D. G., Goss, C., Grant, S. A., Murphy, E. J., and Watkins, J. L. (2003). Oceanographic variability and changes in Antarctic krill (Euphausia superba) abundance at South Georgia. Fisheries Oceanography 12, 569–583.
Oceanographic variability and changes in Antarctic krill (Euphausia superba) abundance at South Georgia.Crossref | GoogleScholarGoogle Scholar |

Tynan, C. T. (1997). Cetacean distributions and oceanographic features near the Kerguelen Plateau. Geophysical Research Letters 24, 2793–2796.
Cetacean distributions and oceanographic features near the Kerguelen Plateau.Crossref | GoogleScholarGoogle Scholar |

Uda, M. (1954). Studies of the relation between the whaling grounds and the hydrographical conditions. Scientific Reports of the Whales Research Institute 9, 179–187.

Walbridge, S., Slocum, N., Pobuda, M., and Wright, D. J. (2018). Unified geomorphological analysis workflows with benthic terrain modeler. Geosciences 8, 94.
Unified geomorphological analysis workflows with benthic terrain modeler.Crossref | GoogleScholarGoogle Scholar |

Witt, M. J., Åkesson, S., Broderick, A. C., Coyne, M. S., Ellick, J., Formia, A., Hays, G. C., Luschi, P., Stroud, S., and Godley, B. J. (2010). Assessing accuracy and utility of satellite-tracking data using Argos-linked Fastloc-GPS. Animal Behaviour 80, 571–581.
Assessing accuracy and utility of satellite-tracking data using Argos-linked Fastloc-GPS.Crossref | GoogleScholarGoogle Scholar |