Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Effects of Pleistocene glaciation on the phylogeographic and demographic histories of chub mackerel Scomber japonicus in the north-western Pacific

Jiao Cheng A , Zhiqiang Han B , Na Song C , Tianxiang Gao B F , Takashi Yanagimoto D F and Carlos A. Strüssmann E
+ Author Affiliations
- Author Affiliations

A Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, P.R. China.

B Fishery College, Zhejiang Ocean University, 1 Haida South Road, Zhoushan, 316000, P.R. China.

C Fisheries College, Ocean University of China, 5 Yushan Road, Qingdao, 266003, P.R. China.

D National Research Institute of Fisheries Science, Japan Fisheries Research and Education Agency, 2-12-4 Fukuura, Yokohama, 236-8648, Japan.

E Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 konan Minato-ku, Tokyo, 108-8477, Japan.

F Corresponding authors. Email: gaotianxiang0611@163.com; yanagimo@fra.affrc.go.jp

Marine and Freshwater Research 69(4) 514-524 https://doi.org/10.1071/MF17099
Submitted: 12 April 2017  Accepted: 9 October 2017   Published: 16 January 2018

Abstract

Pleistocene glacial cycles associated with geological and climatic changes have been suggested to affect the distribution and abundance of marine organisms in the north-western Pacific. In addition to historical processes, several contemporary forces are associated with spatial distributions and genetic structuring of marine species. Herein, we gathered partial mitochondrial control region sequences of chub mackerel Scomber japonicus from 14 localities over most of its geographical range in the north-western Pacific to infer the effect of Pleistocene climatic fluctuations on its historical demography, and to assess the role of historical process and contemporary factors in shaping present-day patterns of genetic differentiation within this species. Phylogeographic patterns revealed two distinct lineages that originated in vicariance during the Middle Pleistocene. However, there was no evidence of phylogeographic partitioning of haplotypes over the sampled range. Population structure analyses indicated a high degree of genetic homogeneity among chub mackerel populations. Demographic analyses indicated both lineages experienced Late Pleistocene population expansion. The observed genetic pattern of chub mackerel is consistent with a scenario of the survival of this species in at least two allopatric glacial refugia during the glacial maxima of the Pleistocene followed by massive dispersals throughout the north-western Pacific and species-specific ecological processes facilitating contemporary gene flow.

Additional keywords: genetic variation, mitochondrial DNA, secondary contact.


References

Alvarado Bremer, J. R., Mejuto, J., Greig, T. W., and Ely, B. (1996). Global population structure of the swordfish (Xiphias gladius L.) as revealed by analysis of the mitochondrial DNA control region. Journal of Experimental Marine Biology and Ecology 197, 295–310.
Global population structure of the swordfish (Xiphias gladius L.) as revealed by analysis of the mitochondrial DNA control region.Crossref | GoogleScholarGoogle Scholar |

Alvarado Bremer, J. R., Vinas, J., Mejuto, J., Ely, B., and Pla, C. (2005). Comparative phylogeography of Atlantic bluefin tuna and swordfish: the combined effects of vicariance, secondary contact, introgression, and population expansion on the regional phylogenies of two highly migratory pelagic fishes. Molecular Phylogenetics and Evolution 36, 169–187.
Comparative phylogeography of Atlantic bluefin tuna and swordfish: the combined effects of vicariance, secondary contact, introgression, and population expansion on the regional phylogenies of two highly migratory pelagic fishes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXkt1Oiurc%3D&md5=d37e2c0003c8189084304335cac085fdCAS |

Avise, J. C. (2000). ‘Phylogeography: The History and Formation of Species.’ (Harvard University Press: Cambridge, MA, USA.)

Avise, J. C. (2004). ‘Molecular Markers, Natural History, and Evolution.’ 2nd edn. (Sinauer Associates: Sunderland, MA, USA.)

Ayala, F. J. (1997). Vagaries of the molecular clock. Proceedings of the National Academy of Sciences of the United States of America 94, 7776–7783.
Vagaries of the molecular clock.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXksl2nsb0%3D&md5=b5b106a2448c3ea913081138e924a0d8CAS |

Bermingham, E. S., McCaverty, A., and Martin, P. (1997). Fish biogeography and molecular clocks: perspectives from the Panamanian Isthmus. In ‘Molecular Systematics of Fishes’. (Eds T. Kocher and C. Stepien.) pp. 113–126. (Academic Press: New York, NY, USA.)

Bohonak, A. J. (1999). Dispersal, gene flow and population structure. The Quarterly Review of Biology 74, 21–45.
Dispersal, gene flow and population structure.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1M7otFKltw%3D%3D&md5=c581cac797b8bd8b6eca6738c0eea876CAS |

Bowen, B. W., Bass, A. L., Rocha, L. A., Grant, W. S., and Robertson, D. R. (2001). Phylogeography of the trumpetfishes (Aulostomus): ring species complex on a global scale. Evolution 55, 1029–1039.
Phylogeography of the trumpetfishes (Aulostomus): ring species complex on a global scale.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXltFeksr8%3D&md5=3baf2e24a68de7e4ac91463729db4236CAS |

Cheng, J., Yanagimoto, T., Song, N., and Gao, T. (2015). Population genetic structure of chub mackerel Scomber japonicus in the Northwestern Pacific inferred from microsatellite analysis. Molecular Biology Reports 42, 373–382.
Population genetic structure of chub mackerel Scomber japonicus in the Northwestern Pacific inferred from microsatellite analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvVKls7%2FO&md5=4dea946edc7a23a33ecbccf9cbfe51a9CAS |

Collette, B. B., and Nauen, C. E. (1983). Scombrids of the world: an annotated and illustrated catalogue of tunas, mackerels, bonitos and related species known to date. FAO species catalogue, vol. 2. FAO Fisheries Synopsis 125, 1–137.

Comes, H. P., and Kadereit, J. W. (1998). The effect of Quaternary climatic changes on plant distribution and evolution. Trends in Plant Science 3, 432–438.
The effect of Quaternary climatic changes on plant distribution and evolution.Crossref | GoogleScholarGoogle Scholar |

D’Arcy, J., Mirimin, L., and FitzGerald, R. (2013). Phylogeographic structure of a protogynous hermaphrodite species, the Ballan wrasse Labrus bergylta, in Ireland, Scotland, and Norway, using mitochondrial DNA sequence data. ICES Journal of Marine Science 70, 685–693.
Phylogeographic structure of a protogynous hermaphrodite species, the Ballan wrasse Labrus bergylta, in Ireland, Scotland, and Norway, using mitochondrial DNA sequence data.Crossref | GoogleScholarGoogle Scholar |

Drummond, A. J., Suchard, M. A., Xie, D., and Rambaut, A. (2012). Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution 29, 1969–1973.
Bayesian phylogenetics with BEAUti and the BEAST 1.7.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFagu7fO&md5=b52e03ce183204e60a50da1ea6693285CAS |

Durand, J. D., Collet, A., Chow, S., Guinand, B., and Borsa, P. (2005). Nuclear and mitochondrial DNA markers indicate unidirectional gene flow of Indo-Pacific to Atlantic bigeye tuna (Thunnus obesus) populations, and their admixture off southern Africa. Marine Biology 147, 313–322.
Nuclear and mitochondrial DNA markers indicate unidirectional gene flow of Indo-Pacific to Atlantic bigeye tuna (Thunnus obesus) populations, and their admixture off southern Africa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXkvVClu70%3D&md5=34a79228d7c6af9637e53220c86d8f16CAS |

Excoffier, L., Laval, G., and Schneider, S. (2005). Arlequin version 3.0: an integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online 1, 47–50.
Arlequin version 3.0: an integrated software package for population genetics data analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjsFSltg%3D%3D&md5=7e86e90392265936d8aa25dc407748d3CAS |

Fauvelot, C., and Planes, S. (2002). Understanding origins of present day genetic structure in marine fish: biologically or historically driven patterns? Marine Biology 141, 773–788.
Understanding origins of present day genetic structure in marine fish: biologically or historically driven patterns?Crossref | GoogleScholarGoogle Scholar |

Felsenstein, J. (1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.
Confidence limits on phylogenies: an approach using the bootstrap.Crossref | GoogleScholarGoogle Scholar |

Frankham, R., Ballou, J. D., and Briscoe, D. A. (2002). ‘Introduction to Conservation Genetics.’ (Cambridge University Press: Cambridge, MA, USA.)

Fu, Y. X. (1997). Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 14, 915–925.

Grant, W. S., and Bowen, B. W. (1998). Shallow population histories in deep evolutionary lineages of marine fishes: insights from sardines and anchovies and lessons for conservation. The Journal of Heredity 89, 415–426.
Shallow population histories in deep evolutionary lineages of marine fishes: insights from sardines and anchovies and lessons for conservation.Crossref | GoogleScholarGoogle Scholar |

Haig, J. A., Connolly, R. M., and Hughes, J. M. (2010). Little shrimp left on the shelf: the roles that sea-level change, ocean currents and continental shelf width play in the genetic connectivity of a seagrass-associated species. Journal of Biogeography 37, 1570–1583.

He, L., Zhang, A., Weese, D., Li, S., Li, J., and Zhang, J. (2014). Demographic response of cutlassfish (Trichiurus japonicus and T. nanhaiensis) to fluctuating palaeo-climate and regional oceanographic conditions in the China seas. Scientific Reports 4, 6380.
Demographic response of cutlassfish (Trichiurus japonicus and T. nanhaiensis) to fluctuating palaeo-climate and regional oceanographic conditions in the China seas.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXksVWgtr0%3D&md5=6bc63f5b33b62ccfb3014885a77daf0aCAS |

Ho, S. Y. M., Tong, K. J., Foster, C. S., Ritchie, A. M., Lo, N., and Crisp, M. D. (2015). Biogeographic calibrations for the molecular clock. Biology Letters 11, 20150194.
Biogeographic calibrations for the molecular clock.Crossref | GoogleScholarGoogle Scholar |

Hsueh, Y., Wang, J., and Chern, C. S. (1992). The intrusion of the Kuroshio across the continental shelf northeast of Taiwan. Journal of Geophysical Research 97, 14323–14330.
The intrusion of the Kuroshio across the continental shelf northeast of Taiwan.Crossref | GoogleScholarGoogle Scholar |

Hu, Z. M., Li, W., Li, J. J., and Duan, D. L. (2011). Post-Pleistocene demographic history of the North Atlantic endemic Irish moss Chondrus crispus: glacial survival, spatial expansion and gene flow. Journal of Evolutionary Biology 24, 505–517.
Post-Pleistocene demographic history of the North Atlantic endemic Irish moss Chondrus crispus: glacial survival, spatial expansion and gene flow.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3M3gtFehtQ%3D%3D&md5=c7187af26a64630f05bc2ba745354909CAS |

Hu, Z. M., Li, J. J., Sun, Z. M., Oak, J. H., Zhang, J., Fresia, P., Grant, W. S., and Duan, D. L. (2015). Phylogeographic structure and deep lineage diversification of the red alga Chondrus ocellatus Holmes in the Northwest Pacific. Molecular Ecology 24, 5020–5033.
Phylogeographic structure and deep lineage diversification of the red alga Chondrus ocellatus Holmes in the Northwest Pacific.Crossref | GoogleScholarGoogle Scholar |

Imbrie, J., Boyle, E. A., Clemens, S. C., Duffy, A., Howard, W. R., Kukla, G., Kutzbach, J., Martinson, D. G., McIntyre, A., Mix, A. C., Molfino, B., Morley, J. J., Peterson, L. C., Pisias, N. G., Prell, W. L., Raymo, M. E., Shackleton, N. J., and Toggweiler, J. R. (1992). On the structure and origin of major glaciation cycles. I. Linear responses to Milankovich forcing. Paleoceanography 7, 701–738.
On the structure and origin of major glaciation cycles. I. Linear responses to Milankovich forcing.Crossref | GoogleScholarGoogle Scholar |

Je Lee, H., and Boulding, E. G. (2009). Spatial and temporal population genetic structure of four northeastern Pacific littorinid gastropods: the effect of mode of larval development on variation at one mitochondrial and two nuclear DNA markers. Molecular Ecology 18, 2165–2184.
Spatial and temporal population genetic structure of four northeastern Pacific littorinid gastropods: the effect of mode of larval development on variation at one mitochondrial and two nuclear DNA markers.Crossref | GoogleScholarGoogle Scholar |

Jørgensen, H. B., Hansen, M. M., Bekkevold, D., Ruzzante, D. E., and Loeschcke, V. (2005). Marine landscapes and population genetic structure of herring (Clupea harengus L.) in the Baltic Sea. Molecular Ecology 14, 3219–3234.
Marine landscapes and population genetic structure of herring (Clupea harengus L.) in the Baltic Sea.Crossref | GoogleScholarGoogle Scholar |

Keeney, D. B., Heupel, M. R., Hueter, R. E., and Heist, E. J. (2005). Microsatellite and mitochondrial DNA analyses of the genetic structure of blacktip shark (Carcharhinus limbatus) nurseries in the northwestern Atlantic, Gulf of Mexico, and Caribbean Sea. Molecular Ecology 14, 1911–1923.
Microsatellite and mitochondrial DNA analyses of the genetic structure of blacktip shark (Carcharhinus limbatus) nurseries in the northwestern Atlantic, Gulf of Mexico, and Caribbean Sea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlslemsb8%3D&md5=0447e0c60e2d43b6735ee6248be3a991CAS |

Li, C. S., Li, Y. Z., Li, G. F., Chen, W. Z., Chen, G. B., Chen, C. H., Jin, X. S., Yu, L. F., and Lin, L. Y. (2006). Pelagic fishes. In ‘Marine Biology Resources and Habitat Environments in the EEZ of China.’ (Ed. Q. S. Tang.) pp. 599–608. (Science Press: Beijing, China.) [In Chinese].

Liu, J. X., Gao, T. X., Zhuang, Z. M., Jin, X. S., Yokogawa, K., and Zhang, Y. P. (2006). Late Pleistocene divergence and subsequent population expansion of two closely related fish species, Japanese anchovy (Engraulis japonicus) and Australian anchovy (Engraulis australis). Molecular Phylogenetics and Evolution 40, 712–723.
Late Pleistocene divergence and subsequent population expansion of two closely related fish species, Japanese anchovy (Engraulis japonicus) and Australian anchovy (Engraulis australis).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XotFWktLc%3D&md5=0d5f535f1443b0da2d3bdcb516305500CAS |

Liu, J. X., Gao, T. X., Wu, S. F., and Zhang, Y. P. (2007). Pleistocene isolation in the Northwestern Pacific marginal seas and limited dispersal in a marine fish, Chelon haematocheilus (Temminck & Schlegel, 1845). Molecular Ecology 16, 275–288.
Pleistocene isolation in the Northwestern Pacific marginal seas and limited dispersal in a marine fish, Chelon haematocheilus (Temminck & Schlegel, 1845).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXks1yru7w%3D&md5=f18aaa25d400f97f19f4f159853d678bCAS |

Liu, J. X., Tatarenkov, A., Beacham, T. D., Gorbachev, V., Wildes, S., and Avise, J. C. (2011). Effects of Pleistocene climatic fluctuations on the phylogeographic and demographic histories of Pacific herring (Clupea pallasii). Molecular Ecology 20, 3879–3893.
Effects of Pleistocene climatic fluctuations on the phylogeographic and demographic histories of Pacific herring (Clupea pallasii).Crossref | GoogleScholarGoogle Scholar |

Maggs, C. A., Castilho, R., Foltz, D., Henzler, C., Jolly, M. T., Kelly, J., Olsen, J., Perez, K. E., Stam, W., Väinölä, R., Viard, F., and Wares, J. (2008). Evaluating signatures of glacial refugia for North Atlantic benthic marine taxa. Ecology 89, S108–S122.
Evaluating signatures of glacial refugia for North Atlantic benthic marine taxa.Crossref | GoogleScholarGoogle Scholar |

Martínez, P., Gonzalez, E. G., Castilho, R., and Zardoya, R. (2006). Genetic diversity and historical demography of Atlantic bigeye tuna (Thunnus obesus). Molecular Phylogenetics and Evolution 39, 404–416.
Genetic diversity and historical demography of Atlantic bigeye tuna (Thunnus obesus).Crossref | GoogleScholarGoogle Scholar |

Nakajima, Y., Matsuki, Y., Lian, C., Fortes, M. D., Uy, W. H., Campos, W. L., Nakaoka, M., and Nadaoka, K. (2014). The Kuroshio Current influences genetic diversity and population genetic structure of a tropical seagrass, Enhalus acoroides. Molecular Ecology 23, 6029–6044.
The Kuroshio Current influences genetic diversity and population genetic structure of a tropical seagrass, Enhalus acoroides.Crossref | GoogleScholarGoogle Scholar |

Ni, G., Li, Q., Kong, L., and Zheng, X. (2012). Phylogeography of bivalve Cyclina sinensis: testing the historical glaciations and Changjiang river outflow hypotheses in northwestern Pacific. PLoS One 7, e49487.
Phylogeography of bivalve Cyclina sinensis: testing the historical glaciations and Changjiang river outflow hypotheses in northwestern Pacific.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslehsLbF&md5=3b49ff96e83208f45fe3a6701496af4bCAS |

Ni, G., Li, Q., Kong, L., and Yu, H. (2014). Comparative phylogeography in marginal seas of the northwestern Pacific. Molecular Ecology 23, 534–548.
Comparative phylogeography in marginal seas of the northwestern Pacific.Crossref | GoogleScholarGoogle Scholar |

Nielsen, E. E., Hansen, M. M., Schmidt, C., Meldrup, D., and Grønkjaer, P. (2001). Population of origin of Atlantic cod. Nature 413, 272.
Population of origin of Atlantic cod.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnt1KjtbY%3D&md5=d918e1ef8d2832509d859ef57eea005aCAS |

Palumbi, S. R. (2003). Population genetics, demographic connectivity, and the design of marine reserves. Ecological Applications 13, 146–158.
Population genetics, demographic connectivity, and the design of marine reserves.Crossref | GoogleScholarGoogle Scholar |

Posada, D. (2008). jModelTest: phylogenetic model averaging. Molecular Biology and Evolution 25, 1253–1256.
jModelTest: phylogenetic model averaging.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXotlKgsb4%3D&md5=628cd04355508114bafe3d36e17c81b4CAS |

Raymond, M., and Rousset, F. (1995). An exact test for population differentiation. Evolution 49, 1280–1283.
An exact test for population differentiation.Crossref | GoogleScholarGoogle Scholar |

Rice, W. R. (1989). Analysing tables of statistical tests. Evolution 43, 223–225.
Analysing tables of statistical tests.Crossref | GoogleScholarGoogle Scholar |

Ruzzante, D. E., Mariani, S., Bekkevold, D., Andre, C., Mosegaard, H., Clausen, L. A. W., Dahlgren, T. G., Hutchinson, W. F., Hatfield, E. M. C., Torstensen, E., Brigham, J., Simmonds, E. J., Laikre, L., Larsson, L. C., Stet, R. J. M., Ryman, N., and Carvalho, G. R. (2006). Biocomplexity in a highly migratory pelagic marine fish, Atlantic herring. Proceedings of the National Academy of Sciences of the United States of America 273, 1459–1464.

Sambrook, J., and Russell, D. W. (2001). ‘Molecular Cloning: A Laboratory Manual.’ (Cold Spring Harbor Laboratory Press: New York, NY, USA.)

Scoles, D. R., Collette, B. B., and Graves, J. E. (1998). Global phylogeography of mackerels of the genus Scomber. Fishery Bulletin 96, 823–842.

Shen, K. N., Jamandre, B. W., Hsu, C. C., Tzeng, W. N., and Durand, J. (2011). Plio–Pleistocene sea level and temperature fluctuations in the northwestern Pacific promoted speciation in the globally-distributed flathead mullet Mugil cephalus. BMC Evolutionary Biology 11, 83.
Plio–Pleistocene sea level and temperature fluctuations in the northwestern Pacific promoted speciation in the globally-distributed flathead mullet Mugil cephalus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXltV2hu7c%3D&md5=d2a85021896e86f84b9e931962c06422CAS |

Shulman, M. J., and Bermingham, E. (1995). Early life histories, ocean currents, and the population genetics of Caribbean reef fishes. Evolution 49, 897–910.
Early life histories, ocean currents, and the population genetics of Caribbean reef fishes.Crossref | GoogleScholarGoogle Scholar |

Slatkin, M. (1993). Isolation by distance in equilibrium and nonequilibrium populations. Evolution 47, 264–279.
Isolation by distance in equilibrium and nonequilibrium populations.Crossref | GoogleScholarGoogle Scholar |

Song, N., Zhang, X. M., Sun, X. F., Yanagimoto, T., and Gao, T. X. (2010). Population genetic structure and larval dispersal potential of spottedtail goby Synechogobius ommaturus in the north-west Pacific. Journal of Fish Biology 77, 388–402.
Population genetic structure and larval dispersal potential of spottedtail goby Synechogobius ommaturus in the north-west Pacific.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3cnoslynsg%3D%3D&md5=527304c6749adfeb7eba9e2d3e7ea712CAS |

Song, N., Jia, N., Yanagimoto, T., Lin, L. S., and Gao, T. X. (2013). Genetic differentiation of Trachurus japonicus from the Northwestern Pacific based on the mitochondrial DNA control region. Mitochondrial DNA 24, 705–712.
Genetic differentiation of Trachurus japonicus from the Northwestern Pacific based on the mitochondrial DNA control region.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslCntr7O&md5=92d3e29f6b909241f8ab96081bb2dc7bCAS |

Sponaugle, S., Cowen, R. K., Shanks, A., Morgan, S. G., Leis, J. M., Pineda, J., Boehlert, G. W., Kingsford, M. J., Lindeman, K. C., Grimes, C., and Munro, J. L. (2002). Predicting self-recruitment in marine populations: biophysical correlates and mechanisms. Bulletin of Marine Science 70, 341–375.

Swofford, D. L. (2002). ‘PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4.’ (Sinauer Associates: Sunderland, MA, USA.)

Tajima, F. (1993). Statistical analysis of DNA polymorphism. Japanese Journal of Genetics 68, 567–595.
Statistical analysis of DNA polymorphism.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXitVCktQ%3D%3D&md5=9e81059462805476e76c8256cb58877eCAS |

Tamaki, K., and Honza, E. (1991). Global tectonics and formation of marginal basins: role of the western Pacific. Episodes 14, 224–230.

Tamura, K., and Nei, M. (1993). Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution 10, 512–526.
| 1:CAS:528:DyaK3sXks1CksL4%3D&md5=903ea448e1152f26772d3fb35ac9782cCAS |

Tamura, K., Stecher, G., Peterson, D., Filipski, A., and Kumar, S. (2013). MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Molecular Biology and Evolution 30, 2725–2729.
MEGA6: Molecular Evolutionary Genetics Analysis version 6.0.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVKhurzP&md5=f1a47631adfa9092d269538a047e90b2CAS |

Tzeng, T. D., Haung, H. L., Wang, D., and Yeh, S. Y. (2007). Genetic diversity and population expansion of the common mackerel (Scomber japonicus) off Taiwan. Journal of the Fisheries Society of Taiwan 34, 237–245.
| 1:CAS:528:DC%2BD1cXktVWmurY%3D&md5=fa274a639bd5978e408794616e33ddeeCAS |

Viñas, J., Pérez-Serra, A., Vidal, O., Alvarado Bremer, J. R., and Pla, C. (2010). Genetic differentiation between eastern and western Mediterranean swordfish revealed by phylogeographic analysis of the mitochondrial DNA control region. ICES Journal of Marine Science 67, 1222–1229.
Genetic differentiation between eastern and western Mediterranean swordfish revealed by phylogeographic analysis of the mitochondrial DNA control region.Crossref | GoogleScholarGoogle Scholar |

Wang, P. X. (1999). Response of Western Pacific marginal seas to glacial cycles: paleoceanographic and sedimentological features. Marine Geology 156, 5–39.
Response of Western Pacific marginal seas to glacial cycles: paleoceanographic and sedimentological features.Crossref | GoogleScholarGoogle Scholar |

Ward, R. D., Woodwark, M., and Skibinski, D. O. F. (1994). A comparison of genetic diversity levels in marine, freshwater and anadromous fishes. Journal of Fish Biology 44, 213–232.
A comparison of genetic diversity levels in marine, freshwater and anadromous fishes.Crossref | GoogleScholarGoogle Scholar |

Weir, B. S., and Cockerham, C. C. (1984). Estimating F-statistics for the analysis of population structure. Evolution 38, 1358–1370.
| 1:STN:280:DC%2BC1cnjt1SlsA%3D%3D&md5=e64a4dc62e8ec8d5d5666558fb160677CAS |

Wirth, T., and Bernatchez, L. (2001). Genetic evidence against panmixia in the European eel. Nature 409, 1037–1040.
Genetic evidence against panmixia in the European eel.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhs1Cqu7o%3D&md5=d4f20908c18a98652e6271753aa7cbbeCAS |

Wu, B. (1982). Some problems on circulation study in Taiwan Strait. Taiwan Strait 1, 1–7.
| 1:CAS:528:DyaL38XitVGktr0%3D&md5=94cccce91623fb2c7292d53f7cc8937dCAS |

Xu, X., and Oda, M. (1999). Surface-water evolution of the eastern East China Sea during the last 36,000 years. Marine Geology 156, 285–304.
Surface-water evolution of the eastern East China Sea during the last 36,000 years.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXnsFCgsQ%3D%3D&md5=37bcdbfe0616d30d3cf03824b723c8c5CAS |

Xu, J., Chan, T. Y., Tsang, L. M., and Chu, K. H. (2009). Phylogeography of the mitten crab Eriocheir sensu stricto in East Asia: Pleistocene isolation, population expansion and secondary contact. Molecular Phylogenetics and Evolution 52, 45–56.
Phylogeography of the mitten crab Eriocheir sensu stricto in East Asia: Pleistocene isolation, population expansion and secondary contact.Crossref | GoogleScholarGoogle Scholar |

Xue, D. X., Wang, H. Y., Zhang, T., and Liu, J. X. (2014). Population genetic structure and demographic history of Atrina pectinata based on mitochondrial DNA and microsatellite markers. PLoS One 9, e95436.
Population genetic structure and demographic history of Atrina pectinata based on mitochondrial DNA and microsatellite markers.Crossref | GoogleScholarGoogle Scholar |

Zardoya, R., Castilho, R., Grande, C., Favre-Krey, L., Caetano, S., Marcato, S., Krey, G., and Patarnello, T. (2004). Differential population structuring of two closely related fish species, the mackerel (Scomber scombrus) and the chub mackerel (Scomber japonicus), in the Mediterranean Sea. Molecular Ecology 13, 1785–1798.
Differential population structuring of two closely related fish species, the mackerel (Scomber scombrus) and the chub mackerel (Scomber japonicus), in the Mediterranean Sea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlvFeluro%3D&md5=5f97e1e67ff7504f3df98c540a39ca13CAS |

Zeng, L., Cheng, Q., and Chen, X. (2012). Microsatellite analysis reveals the population structure and migration patterns of Scomber japonicus (Scombridae) with continuous distribution in the East and South China Seas. Biochemical Systematics and Ecology 42, 83–93.
Microsatellite analysis reveals the population structure and migration patterns of Scomber japonicus (Scombridae) with continuous distribution in the East and South China Seas.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlvFOhtLk%3D&md5=999f4fa0268a2056c2def8ee08bcbee9CAS |

Zhang, H., Johnson, S. B., Flores, V. R., and Vrijenhoek, R. C. (2015). Intergradation between discrete lineages of Tevnia jerichonana, a deep-sea hydrothermal vent tubeworm. Deep-sea Research. Part II, Topical Studies in Oceanography 121, 53–61.
Intergradation between discrete lineages of Tevnia jerichonana, a deep-sea hydrothermal vent tubeworm.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtVKnu7zK&md5=116ee6efd759337b128dca95c0c1d262CAS |

Zhu, Y., Chen, Q., and Rogers, S. M. (2014). Genetic structure of Scomber japonicus (Perciformes: Scombridae) along the coast of China revealed by complete mitochondrial cytochrome b sequences. Mitochondrial DNA 18, 1–9.
| 1:CAS:528:DC%2BC2cXhtFSisLbN&md5=8f38ad52c7ac0fbfdc10c76b82134f34CAS |