Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Trophic positions and predator–prey mass ratio of the pelagic food web in the East China Sea and Sea of Japan

Seiji Ohshimo A D , Hiroshige Tanaka B , Koh Nishiuchi C and Tohya Yasuda C
+ Author Affiliations
- Author Affiliations

A National Fisheries Research Institute of the Far Seas Fisheries, 5-7-1 Orido Shimizu, Shizuoka 424-8633, Japan.

B Hokkaido National Fisheries Research Institute; 116 Katsura-koi Kushiro, Hokkaido, 085-0802, Japan.

C Seikai National Fisheries Research Institute; 1551-8 Taira-machi, Nagasaki, 851-2213, Japan.

D Corresponding author. Email: oshimo@affrc.go.jp

Marine and Freshwater Research 67(11) 1692-1699 https://doi.org/10.1071/MF15115
Submitted: 17 March 2015  Accepted: 25 August 2015   Published: 4 November 2015

Abstract

Size-based food webs analysis is essential for understanding food web structure and evaluating the effects of human exploitation on food webs. We estimated the predator–prey mass ratio (PPMR) of the pelagic food web in the East China Sea and Sea of Japan by using the relationships between body mass and trophic position. Trophic position was calculated by additive and scaled models based on nitrogen stable isotope ratios (δ15N). The PPMRs based on additive and scaled models were 5032 (95% confidence interval (CI) 2066–15 506) and 3430 (95% CI 1463–10 083) respectively. The comparatively high PPMRs could reflect low ecosystem transfer efficiency and high metabolic rate.

Additional keywords: metabolic rate, stable isotope ratio.


References

Al-Habsi, S. H., Sweeting, C. J., Polunin, N. V. C., and Graham, N. A. J. (2008). δ15N and δ13C elucidation of size-structured food webs in a Western Arabian Sea demersal trawl assemblage. Marine Ecology Progress Series 353, 55–63.
δ15N and δ13C elucidation of size-structured food webs in a Western Arabian Sea demersal trawl assemblage.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXivVSnt7s%3D&md5=d6deda70431c8d6d9867582ebd35dbcbCAS |

Barnes, C., Maxwell, D., Reuman, D. C., and Jennings, S. (2010). Global patterns in predator–prey size relationships reveal size dependency of trophic transfer efficiency. Ecology 91, 222–232.
Global patterns in predator–prey size relationships reveal size dependency of trophic transfer efficiency.Crossref | GoogleScholarGoogle Scholar | 20380211PubMed |

Bode, A., Alvarez-Ossorio, M. T., Cunha, M. E., Garrido, S., Peleteiro, J. B., Porteiro, C., Valdés, L., and Varela, M. (2007). Stable nitrogen isotope studies of the pelagic food web on the Atlantic shelf of the Iberian Peninsula. Progress in Oceanography 74, 115–131.
Stable nitrogen isotope studies of the pelagic food web on the Atlantic shelf of the Iberian Peninsula.Crossref | GoogleScholarGoogle Scholar |

Childress, J. J. (1995). Are there physiological and biochemical adaptations of metabolism in deep-sea animals? Trends in Ecology & Evolution 10, 30–36.
Are there physiological and biochemical adaptations of metabolism in deep-sea animals?Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3M7itFWltQ%3D%3D&md5=50360df6579fb08721da1634b1293329CAS |

Clarke, A., and Johnston, N. M. (1999). Scaling of metabolic rate with body mass and temperature in teleost fish. Journal of Animal Ecology 68, 893–905.
Scaling of metabolic rate with body mass and temperature in teleost fish.Crossref | GoogleScholarGoogle Scholar |

Cohen, J. E., Pimm, S. L., Yodzis, P., and Saldaña, J. (1993). Body sizes of animal predators and animal prey in food webs. Journal of Animal Ecology 62, 67–78.
Body sizes of animal predators and animal prey in food webs.Crossref | GoogleScholarGoogle Scholar |

Estrada, J. A., Rice, A. N., Lutcavage, M. E., and Skomal, G. B. (2003). Predicting trophic position in sharks of the north-west Atlantic Ocean using stable isotope analysis. Journal of the Marine Biological Association of the United Kingdom 83, 1347–1350.
Predicting trophic position in sharks of the north-west Atlantic Ocean using stable isotope analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpslWjurg%3D&md5=c2e3b83f5f380438d991c63c00bfe23eCAS |

Hertz, E., Robinson, J. P. W., Trudel, M., Mazumder, A., and Baum, J. K. (2014). Estimation of predator–prey mass ratios using stable isotopes: sources of errors. Marine Ecology Progress Series 516, 1–6.
Estimation of predator–prey mass ratios using stable isotopes: sources of errors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXisFaqtL0%3D&md5=79a5745c128bd237abb320291a9fca46CAS |

Hirakawa, K., and Gotoh, T. (1996). Diet of larval sardine, Sardinops melanostictus in Toyoma Bay, southern Japan Sea. Bulletin of Japan Sea National Research Institute 46, 65–75.

Hirakawa, K., Gotoh, T., and Hirai, M. (1997). Diet composition and prey size of larval anchovy, Engraulis japonicus, in Toyama Bay, southern Japan Sea. Bulletin of Japan Sea National Research Institute 47, 67–78.

Hunt, B. P. V., Allain, V., Menkes, C., Lorrain, A., Graham, B., Rodier, M., Pagano, M., and Corlotti, F. (2015). A coupled stable isotope–size spectrum approach to understanding pelagic food-web dynamics: a case study from the southwest sub-tropical Pacific. Deep-sea Research. Part II, Topical Studies in Oceanography 113, 208–224.
A coupled stable isotope–size spectrum approach to understanding pelagic food-web dynamics: a case study from the southwest sub-tropical Pacific.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvFGku7fM&md5=91a1128dcf06616e9d1aacd4af71511fCAS |

Hussey, N. E., MacNeil, M. A., McMeans, B. C., Olin, J. A., Dudley, S. F. J., Cliff, G., Wintner, S. P., Fennessy, S. T., and Fisk, A. T. (2014). Rescaling the trophic structure of marine food webs. Ecology Letters 17, 239–250.
Rescaling the trophic structure of marine food webs.Crossref | GoogleScholarGoogle Scholar | 24308860PubMed |

Jennings, S. (2005). Size-based analyses of aquatic food webs. In ‘Aquatic Food Webs’. (Eds A. Belgrano, U. M. Scharler, J. Dunne and R. E. Ulanowicz.) pp. 86–97. (Oxford University Press: Oxford, UK.)

Jennings, S., and Warr, K. J. (2003). Smaller predator–prey body size ratios in longer food chains. Proceedings of the Royal Society of Biological Science 270, 1413–1417.
Smaller predator–prey body size ratios in longer food chains.Crossref | GoogleScholarGoogle Scholar |

Jennings, S., Pinnegar, J. K., Polunin, N. C., and Boon, T. W. (2001). Weak cross-species relationships between body size and trophic level belie powerful size-based trophic structuring in fish communities. Journal of Animal Ecology 70, 934–944.
Weak cross-species relationships between body size and trophic level belie powerful size-based trophic structuring in fish communities.Crossref | GoogleScholarGoogle Scholar |

Last, P. R., and Stevens, J. D. (1994). ‘Sharks and Rays of Australia.’ (CSIRO Publishing: Melbourne.)

Lindeman, R. L. (1942). The trophic–dynamic aspect of ecology. Ecology 23, 399–417.
The trophic–dynamic aspect of ecology.Crossref | GoogleScholarGoogle Scholar |

Liu, K. K., Chao, S. Y., Lee, H. J., Gong, G. C., and Teng, Y. C. (2010). Seasonal variation of primary productivity in the East China Sea: a numerical study based on coupled physical–biogeochemical model. Deep-sea Research. Part II, Topical Studies in Oceanography 57, 1762–1782.
Seasonal variation of primary productivity in the East China Sea: a numerical study based on coupled physical–biogeochemical model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1Onu7%2FO&md5=f8d80976979b68f4ab31f352be60590aCAS |

McMahon, K. W., Hamady, L. L., and Thorrold, S. R. (2013). A review of ecogeochemistry approaches to estimating movements of marine animals. Limnology and Oceanography 58, 697–714.
A review of ecogeochemistry approaches to estimating movements of marine animals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXlvFyksLo%3D&md5=7fe8d27100a0994ac5548564985c43d1CAS |

Milessi, A. C., Arancibia, H., Neira, S., and Defeo, O. (2005). The mean trophic level of Uruguayan landings during the period 1990–2001. Fisheries Research 74, 223–231.
The mean trophic level of Uruguayan landings during the period 1990–2001.Crossref | GoogleScholarGoogle Scholar |

Minagawa, M., and Wada, E. (1984). Stepwise enrichment of 15N along food chains: further evidence and the relation between δ15N and animal age. Geochimica et Cosmochimica Acta 48, 1135–1140.
Stepwise enrichment of 15N along food chains: further evidence and the relation between δ15N and animal age.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXktlOms7w%3D&md5=505e0a6b9465f4c0fba1a89e3cd6a85cCAS |

Nakano, H., and Stevens, J. D. (2008). The biology and ecology of the blue shark, Prionace glauca, In ‘Sharks of the Open Ocean’. (Eds M. D. Camhi, E. K. Pikitch and E.A. Babcock.) pp. 140–151. (Blackwell Publishing: Oxford, UK.)

Nakazawa, T., Ushio, M., and Kondoh, M. (2011). Scale dependence of predator–prey mass ratio: deteminants and applications. Advances in Ecological Research 45, 269–302.
Scale dependence of predator–prey mass ratio: deteminants and applications.Crossref | GoogleScholarGoogle Scholar |

Okiyama, M. (1965). On the feeding habitat of the common squid, Todarodes pacificus Steenstrup, in the off-shore region of the Japan Sea. Bulletin of Japan Sea Regional Fisheries Laboratory 14, 31–42.

Peterson, B. J., and Fry, B. (1987). Stable isotopes in ecosystem studies. Annual Review of Ecology and Systematics 18, 293–320.
Stable isotopes in ecosystem studies.Crossref | GoogleScholarGoogle Scholar |

Post, D. M. (2002). Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83, 703–718.
Using stable isotopes to estimate trophic position: models, methods, and assumptions.Crossref | GoogleScholarGoogle Scholar |

Sassa, C., Tsukamoto, Y., and Konishi, Y. (2008). Diet composition and feeding habits of Trachurus japonicus and Scomber spp. larvae in the shelf break region of the East China Sea. Bulletin of Marine Science 82, 137–153.

Shannon, L., Coll, M., Bundy, A., Gascuel, D., Heymans, J. J., Kleisner, K., Lynam, C. P., Piroddi, C., Tam, J., Travers-Trolet, M., and Shin, Y. (2014). Trophic level-based indicators to track fishing impacts across marine ecosystems. Marine Ecology Progress Series 512, 115–140.
Trophic level-based indicators to track fishing impacts across marine ecosystems.Crossref | GoogleScholarGoogle Scholar |

Sheldon, R. W., Prakash, A., and Sutcliffe, W. H. (1972). The size distribution of particles in the ocean. Limnology and Oceanography 17, 327–340.
The size distribution of particles in the ocean.Crossref | GoogleScholarGoogle Scholar |

Takai, N., Hirose, N., Osawa, T., Hagiwara, K., Kojima, T., Okazaki, Y., Kuwae, T., Taniuchi, T., and Yoshihara, K. (2007). Carbon source and trophic position of pelagic fish in coastal waters of south-eastern Izu Peninsula, Japan, identified by stable isotope analysis. Fisheries Science 73, 593–608.
Carbon source and trophic position of pelagic fish in coastal waters of south-eastern Izu Peninsula, Japan, identified by stable isotope analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXntlGit74%3D&md5=fb30405de2584f737035e7e2850aeb5fCAS |

Tanaka, H., Sassa, C., Ohshimo, S., and Aoki, I. (2013). Feeding ecology of two lanternfishes Diaphus garmani and Diaphus chrysorhynchus. Journal of Fish Biology 82, 1011–1031.
Feeding ecology of two lanternfishes Diaphus garmani and Diaphus chrysorhynchus.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3svjvFKrsw%3D%3D&md5=62f0cd2410835da4c3194874ec220d7eCAS | 23464557PubMed |

Tian, Y., Kidokoro, H., and Watanabe, T. (2006). Long-term changes in the fish community structure from the Tsushima Warm Current region of the Japan/East Sea with an emphasis on the impacts of fishing and climate regime shift over the last four decades. Progress in Oceanography 68, 217–237.
Long-term changes in the fish community structure from the Tsushima Warm Current region of the Japan/East Sea with an emphasis on the impacts of fishing and climate regime shift over the last four decades.Crossref | GoogleScholarGoogle Scholar |

Trebilco, R., Baum, J. K., Salomon, A. K., and Dulvy, N. K. (2013). Ecosystem ecology: size-based constraints on the pyramids of life. Trends in Ecology & Evolution 28, 423–431.
Ecosystem ecology: size-based constraints on the pyramids of life.Crossref | GoogleScholarGoogle Scholar |

Vander Zanden, M. J., and Rasmussen, J. B. (2001). Variation in δ15N and δ13C trophic fractionation: implications for aquatic food web studies. Limnology and Oceanography 46, 2061–2066.
Variation in δ15N and δ13C trophic fractionation: implications for aquatic food web studies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xht12ltA%3D%3D&md5=f0c785cd31b6d9ac436482b18a0d92a1CAS |

Yanagi, T., Takahashi, S., Hoshika, A., and Tanimoto, T. (1996). Seasonal variation in the transport of suspended matter in the East China Sea. Journal of Oceanography 52, 539–552.
Seasonal variation in the transport of suspended matter in the East China Sea.Crossref | GoogleScholarGoogle Scholar |