Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Unresolved diversity and monthly dynamics of eukaryotic phytoplankton in a temperate freshwater reservoir explored by pyrosequencing

Thangavelu Boopathi A and Jang-Seu Ki A B C
+ Author Affiliations
- Author Affiliations

A Institute of Natural Sciences, Sangmyung University, Seoul 03016, South Korea.

B Department of Life Science, Sangmyung University, Seoul 03016, South Korea.

C Corresponding author. Email: kijs@smu.ac.kr

Marine and Freshwater Research 67(11) 1680-1691 https://doi.org/10.1071/MF15136
Submitted: 6 April 2015  Accepted: 3 August 2015   Published: 27 October 2015

Abstract

Environmental monitoring of the succession of phytoplankton communities in freshwater ecosystems is critical in efficient water quality management. In the present study we analysed the monthly dynamics of eukaryotic phytoplankton diversity and community structure in a freshwater reservoir (Paldang Reservoir, South Korea) using small subunit (SSU) rRNA pyrosequencing. We analysed physicochemical and biological parameters of water samples collected at monthly intervals from March 2012 to February 2013. The occurrence of phytoplankton exhibited a monthly variation: low in September (13.2%) and February (9.7%) and high in May (75.5%), July (76.5%), August (86.3%) and November (70.6%). We observed greater phytoplankton diversity predominantly represented by diatoms (37.4%), dinoflagellates (29%), cryptophytes (16%) and chlorophytes (10.4%). In early and mid-spring, diatoms, particularly Stephanodiscus spp., were dominant; however, in late spring and early summer the cryptophyte Cryptomonas spp. was dominant; the dinoflagellate Peridionopsis sp. was dominant in late summer and late autumn. Overall, the molecular results of the present study represent a typical pattern of seasonal phytoplankton succession in temperate regions. Pyrosequencing detected more phytoplankton taxa that were unresolved under microscopy, suggesting the usefulness of this method in continuous monitoring of phytoplankton communities in freshwater ecosystems.

Additional keywords: Paldang Reservoir, small subunit rRNA, SSU.


References

Acinas, S. G., Sarma-Rupavtarm, R., Klepac-Ceraj, V., and Polz, M. F. (2005). PCR-induced sequence artifacts and bias: insights from comparison of two 16S rRNA clone libraries constructed from the same sample. Applied and Environmental Microbiology 71, 8966–8969.
PCR-induced sequence artifacts and bias: insights from comparison of two 16S rRNA clone libraries constructed from the same sample.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlehur7K&md5=36cf64c34d8eef0a20a50afecbae2c0cCAS | 16332901PubMed |

Alverson, A. J., Jansen, R. K., and Theriot, E. C. (2007). Bridging the rubicon: phylogenetic analysis reveals repeated colonizations of marine and fresh waters by Thalassiosiroid diatoms. Molecular Phylogenetics and Evolution 45, 193–210.
Bridging the rubicon: phylogenetic analysis reveals repeated colonizations of marine and fresh waters by Thalassiosiroid diatoms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVCmt7%2FE&md5=ff94e316b6c3263d85e3557cf0d75f88CAS | 17553708PubMed |

Anderson, D., Glibert, P., and Burkholder, J. (2002). Harmful algal blooms and eutrophication: nutrient sources, composition, and consequences. Estuaries 25, 704–726.
Harmful algal blooms and eutrophication: nutrient sources, composition, and consequences.Crossref | GoogleScholarGoogle Scholar |

Boopathi, T., Faria, D. G., Lee, M.-D., Lee, J., Chang, M., and Ki, J.-S. (2015). A molecular survey of freshwater microeukaryotes in an Arctic reservoir (Svalbard, 79°N) in summer by using next-generation sequencing. Polar Biology 38, 179–187.
A molecular survey of freshwater microeukaryotes in an Arctic reservoir (Svalbard, 79°N) in summer by using next-generation sequencing.Crossref | GoogleScholarGoogle Scholar |

Bradford, T. M., Morgan, M. J., Lorenz, Z., Hartley, D. M., Hardy, C. M., and Oliver, R. L. (2013). Microeukaryote community composition assessed by pyrosequencing is associated with light availability and phytoplankton primary production along a lowland river. Freshwater Biology 58, 2401–2413.
| 1:CAS:528:DC%2BC3sXhsF2gs7bK&md5=e608bee374aa8f389af98195ad8dc777CAS |

Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., and Madden, T. L. (2009). BLAST+: architecture and applications. BMC Bioinformatics 10, 421.
BLAST+: architecture and applications.Crossref | GoogleScholarGoogle Scholar | 20003500PubMed |

Cavalier-Smith, T., Lewis, R., Chao, E. E., Oates, B., and Bass, D. (2009). Helkesimastix marina n. sp. (Cercozoa: Sainouroidea superfam. n.) a gliding zooflagellate of novel ultrastructure and unusual ciliary behaviour. Protist 160, 452–479.
Helkesimastix marina n. sp. (Cercozoa: Sainouroidea superfam. n.) a gliding zooflagellate of novel ultrastructure and unusual ciliary behaviour.Crossref | GoogleScholarGoogle Scholar | 19523874PubMed |

Chang, Y.-K., and Jeon, S.-L. (1996). A study on the phytoplankton in the Paldang dam reservoir II. The changes of phytoplankton species composition. Algae – Korean Phycological Society 11, 217–229.

Chung, Y., and Lee, K. (1978). A study on the microflora of the Han River. IX. Taxonomy of phytoplankton and environmental conditions in Paldang Dam Reservoir. Proceedings of College of Natural Sciences Seoul National University 3, 97–129.

Díaz-Pardo, E., Vazquez, G., and López-López, E. (1998). The phytoplankton community as a bioindicator of health conditions of Atezca Lake, Mexico. Aquatic Ecosystem Health & Management 1, 257–266.

Ebenezer, V., Medlin, L. K., and Ki, J.-S. (2012). Molecular detection, quantification, and diversity evaluation of microalgae. Marine Biotechnology 14, 129–142.
Molecular detection, quantification, and diversity evaluation of microalgae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XisVylsLg%3D&md5=61905293e3d31882956450778183511eCAS | 22200918PubMed |

Eiler, A., Drakare, S., Bertilsson, S., Pernthaler, J., Peura, S., Rofner, C., Simek, K., Yang, Y., Znachor, P., and Lindstrãm, E. S. (2013). Unveiling distribution patterns of freshwater phytoplankton by a next generation sequencing based approach. PLoS One 8, e53516.
Unveiling distribution patterns of freshwater phytoplankton by a next generation sequencing based approach.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXitVyhsL0%3D&md5=5de56eb32f7348a132e9dad11644bd07CAS | 23349714PubMed |

Elliott, J. A. (2010). The seasonal sensitivity of Cyanobacteria and other phytoplankton to changes in flushing rate and water temperature. Global Change Biology 16, 864–876.
The seasonal sensitivity of Cyanobacteria and other phytoplankton to changes in flushing rate and water temperature.Crossref | GoogleScholarGoogle Scholar |

Faria, D., Lee, M.-D., Lee, J.-B., Lee, J., Chang, M., Youn, S., Suh, Y., and Ki, J.-S. (2014). Molecular diversity of phytoplankton in the East China Sea around Jeju Island (Korea), unraveled by pyrosequencing. Journal of Oceanography 70, 11–23.
Molecular diversity of phytoplankton in the East China Sea around Jeju Island (Korea), unraveled by pyrosequencing.Crossref | GoogleScholarGoogle Scholar |

Galluzzi, L., Penna, A., Bertozzini, E., Vila, M., Garces, E., and Magnani, M. (2004). Development of a real-time PCR assay for rapid detection and quantification of Alexandrium minutum (a Dinoflagellate). Applied and Environmental Microbiology 70, 1199–1206.
Development of a real-time PCR assay for rapid detection and quantification of Alexandrium minutum (a Dinoflagellate).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhs1Cgsbw%3D&md5=c5b5c72a0b4b4263ecca0275996ae019CAS | 14766606PubMed |

Grover, J. P., and Chrzanowski, T. H. (2005). Seasonal dynamics of phytoplankton in two warm temperate reservoirs: association of taxonomic composition with temperature. Journal of Plankton Research 28, 1–17.
Seasonal dynamics of phytoplankton in two warm temperate reservoirs: association of taxonomic composition with temperature.Crossref | GoogleScholarGoogle Scholar |

Gugger, M., Lyra, C., Henriksen, P., Couté, A., Humbert, J. F., and Sivonen, K. (2002). Phylogenetic comparison of the cyanobacterial genera Anabaena and Aphanizomenon. International Journal of Systematic and Evolutionary Microbiology 52, 1867–1880.
Phylogenetic comparison of the cyanobacterial genera Anabaena and Aphanizomenon.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XnvFyhsLk%3D&md5=e12544daeb1dda8ddd1796b4f56aaa01CAS | 12361299PubMed |

Ha, K., Kim, H.-W., and Joo, G.-J. (1998). The phytoplankton succession in the lower part of hypertrophic Nakdong River (Mulgum), South Korea. Hydrobiologia 369/370, 217–227.
The phytoplankton succession in the lower part of hypertrophic Nakdong River (Mulgum), South Korea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmsF2gsL4%3D&md5=b8983309400f710b346d86b25f1443b1CAS |

Hammer, Ø., Harper, D. A. T., and Ryan, P. D. (2001). PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4, art. 4.

Han, M., Auh, Y., Ryu, J., Yoo, K., and Choi, Y. (1995). Ecological studies on Pal’tang River–Reservoir system in Korea 2. Changes in phytoplankton community structure. Korean Journal of Limnology 28, 335–344.

Harder, T., Lau, S. C., Dobretsov, S., Fang, T. K., and Qian, P. Y. (2003). A distinctive epibiotic bacterial community on the soft coral Dendronephthya sp. and antibacterial activity of coral tissue extracts suggest a chemical mechanism against bacterial epibiosis. FEMS Microbiology Ecology 43, 337–347.
A distinctive epibiotic bacterial community on the soft coral Dendronephthya sp. and antibacterial activity of coral tissue extracts suggest a chemical mechanism against bacterial epibiosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhvFeqtrg%3D&md5=c65b12c3a22075a8cb51714ed66b3877CAS | 19719665PubMed |

Hasle, G. R., and Lange, C. B. (1989). Freshwater and brackish water Thalassiosira (Bacillariophyceae): taxa with tangentially undulated valves. Phycologia 28, 120–135.
Freshwater and brackish water Thalassiosira (Bacillariophyceae): taxa with tangentially undulated valves.Crossref | GoogleScholarGoogle Scholar |

Huse, S., Huber, J., Morrison, H., Sogin, M., and Welch, D. (2007). Accuracy and quality of massively parallel DNA pyrosequencing. Genome Biology 8, R143.
Accuracy and quality of massively parallel DNA pyrosequencing.Crossref | GoogleScholarGoogle Scholar | 17659080PubMed |

Hwang, S.-J., Kwun, S.-K., and Yoon, C.-G. (2003). Water quality and limnology of Korean reservoirs. Paddy and Water Environment 1, 43–52.
Water quality and limnology of Korean reservoirs.Crossref | GoogleScholarGoogle Scholar |

İnceoğlu, Ö., Al-Soud, W. A., Salles, J. F., Semenov, A. V., and van Elsas, J. D. (2011). Comparative analysis of bacterial communities in a potato field as determined by pyrosequencing. PLoS One 6, e23321.
Comparative analysis of bacterial communities in a potato field as determined by pyrosequencing.Crossref | GoogleScholarGoogle Scholar | 21886785PubMed |

Ionescu, D., Siebert, C., Polerecky, L., Munwes, Y. Y., Lott, C., Hausler, S., Bizic-Ionescu, M., Quast, C., Peplies, J., Glockner, F. O., Ramette, A., Rodiger, T., Dittmar, T., Oren, A., Geyer, S., Stark, H. J., Sauter, M., Licha, T., Laronne, J. B., and de Beer, D. (2012). Microbial and chemical characterization of underwater fresh water springs in the Dead Sea. PLoS One 7, e38319.
Microbial and chemical characterization of underwater fresh water springs in the Dead Sea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xos1Kgsrc%3D&md5=791956177af1b2d2d9e3aea7f1638f13CAS | 22679498PubMed |

Johnson, Z. I., and Martiny, A. C. (2015). Techniques for quantifying phytoplankton biodiversity. Annual Review of Marine Science 7, 299–324.
Techniques for quantifying phytoplankton biodiversity.Crossref | GoogleScholarGoogle Scholar | 25251272PubMed |

Joo, S., Lee, S. R., and Park, S. (2010). Monitoring of phytoplankton community structure using terminal restriction fragment length polymorphism (T-RFLP). Journal of Microbiological Methods 81, 61–68.
Monitoring of phytoplankton community structure using terminal restriction fragment length polymorphism (T-RFLP).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXivFaisLo%3D&md5=0588f8f63140fb09d026bf410fa81f94CAS | 20138925PubMed |

Jung, S. W., Kwon, O. Y., Lee, J. H., and Han, M.-S. (2009). Effects of water temperature and silicate on the winter blooming diatom Stephanodiscus hantzschii (Bacillariophyceae) growing in eutrophic conditions in the lower Han River, South Korea. Journal of Freshwater Ecology 24, 219–226.
Effects of water temperature and silicate on the winter blooming diatom Stephanodiscus hantzschii (Bacillariophyceae) growing in eutrophic conditions in the lower Han River, South Korea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmt1GrsLc%3D&md5=02dbcaf0cd24b558b555c96b66b3ed54CAS |

Jung, S. W., Kwon, O. Y., Yun, S. M., Joo, H. M., Kang, J.-H., and Lee, J. H. (2014). Impacts of dam discharge on river environments and phytoplankton communities in a regulated river system, the lower Han River of South Korea. Journal of Ecology and Environment 37, 1–11.
Impacts of dam discharge on river environments and phytoplankton communities in a regulated river system, the lower Han River of South Korea.Crossref | GoogleScholarGoogle Scholar |

Kaczmarska, I., Beaton, M., Benoit, A. C., and Medlin, L. K. (2006). Molecular phylogeny of selected members of the order Thalassiosirales (Bacillariophyta) and evolution of the fultoportula. Journal of Phycology 42, 121–138.
Molecular phylogeny of selected members of the order Thalassiosirales (Bacillariophyta) and evolution of the fultoportula.Crossref | GoogleScholarGoogle Scholar |

Ki, J.-S. (2012). Hypervariable regions (V1–V9) of the dinoflagellate 18S rRNA using a large dataset for marker considerations. Journal of Applied Phycology 24, 1035–1043.
Hypervariable regions (V1–V9) of the dinoflagellate 18S rRNA using a large dataset for marker considerations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtleiurrM&md5=856b73d89f38bc4a36ae2fe3b3b42bbeCAS |

Kim, B., Park, J. H., Hwang, G., Jun, M. S., and Choi, K. (2001). Eutrophication of reservoirs in South Korea. Limnology 2, 223–229.
Eutrophication of reservoirs in South Korea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XitlSgurY%3D&md5=0f2ccaf86e03c4807769b5c5c612b6deCAS |

Klindworth, A., Pruesse, E., Schweer, T., Peplies, J., Quast, C., Horn, M., and Glockner, F. O. (2013). Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Research 41, e1.
Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsFagtQ%3D%3D&md5=25d147b7af38fa6f9b678d006c6dac5bCAS | 22933715PubMed |

Krienitz, L., and Bock, C. (2012). Present state of the systematics of planktonic coccoid green algae of inland waters. Hydrobiologia 698, 295–326.
Present state of the systematics of planktonic coccoid green algae of inland waters.Crossref | GoogleScholarGoogle Scholar |

Lee, K., and Yoon, S.-K. (1996). A study on the phytoplankton in the Paldang Dam Reservoir. III. The changes of diatom community structure. Algae – Korean Phycological Society 11, 277–283.

Li, W., and Godzik, A. (2006). Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22, 1658–1659.
Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmsVent7s%3D&md5=8fcf96455910bcd59ffb5e4d3b4c2bb4CAS | 16731699PubMed |

Liu, Z., DeSantis, T. Z., Andersen, G. L., and Knight, R. (2008). Accurate taxonomy assignments from 16S rRNA sequences produced by highly parallel pyrosequencers. Nucleic Acids Research 36, e120.
Accurate taxonomy assignments from 16S rRNA sequences produced by highly parallel pyrosequencers.Crossref | GoogleScholarGoogle Scholar | 18723574PubMed |

Lopes, V. R., Ramos, V., Martins, A. N., Sousa, M., Welker, M., Antunes, A., and Vasconcelos, V. M. (2012). Phylogenetic, chemical and morphological diversity of cyanobacteria from Portuguese temperate estuaries. Marine Environmental Research 73, 7–16.
Phylogenetic, chemical and morphological diversity of cyanobacteria from Portuguese temperate estuaries.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1Oqs7bM&md5=aa200a1936d13d54322b25b3077a79efCAS | 22093261PubMed |

Ludwig, T. A. V., Tremarin, P. I., Becker, V., and Torga, L. C. (2008). Thalassiosira rudis sp. Nov. (coscinodiscophyceae): a new freshwater species. Diatom Research 23, 389–399.
Thalassiosira rudis sp. Nov. (coscinodiscophyceae): a new freshwater species.Crossref | GoogleScholarGoogle Scholar |

Martin-Laurent, F., Philippot, L., Hallet, S., Chaussod, R., Germon, J. C., Soulas, G., and Catroux, G. (2001). DNA extraction from soils: old bias for new microbial diversity analysis methods. Applied and Environmental Microbiology 67, 2354–2359.
DNA extraction from soils: old bias for new microbial diversity analysis methods.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjtlGmsLg%3D&md5=eefaad89752df4d190dd43af1292bc26CAS | 11319122PubMed |

Medlin, L. K., Metfies, K., Mehl, H., Wiltshire, K., and Valentin, K. (2006). Picoeukaryotic plankton diversity at the Helgoland time series site as assessed by three molecular methods. Microbial Ecology 52, 53–71.
Picoeukaryotic plankton diversity at the Helgoland time series site as assessed by three molecular methods.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XnslSisLo%3D&md5=5fab633ade0a6f959e337061bf4f4810CAS | 16703447PubMed |

Nagai, S., Urushizaki, S., Yasuike, M., Nakamura, Y., Fujiwara, A., Takano, Y., Tanabe, A., Hongo, Y., and Katakura, S. (2015) Plankton metagenomics in Okhotsk Sea. In ‘The Proceedings of the 30th International Symposium on Okhotsk Sea & Sea Ice’, 15–19 February 2015, Mombetsu, Hokkaido, Japan. pp. 31–34. (The Okhotsk Sea & Cold Ocean Research Association: Mombetsu, Japan.)

Ondov, B. D., Bergman, N. H., and Phillippy, A. M. (2011). Interactive metagenomic visualization in a Web browser. BMC Bioinformatics 12, 385.
Interactive metagenomic visualization in a Web browser.Crossref | GoogleScholarGoogle Scholar | 21961884PubMed |

Pachauri, R. K., and Reisinger, A. (Eds.) (2007). ‘Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change.’ (Intergovernmental Panel on Climate Change: Geneva, Switzerland.)

Paerl, H. W., and Huisman, J. (2008). Blooms like it hot. Science 320, 57–58.
Blooms like it hot.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXksFCqurk%3D&md5=35d9907ef22c30149dc971821dc0c4c8CAS | 18388279PubMed |

Paerl, H. W., and Paul, V. J. (2012). Climate change: links to global expansion of harmful cyanobacteria. Water Research 46, 1349–1363.
Climate change: links to global expansion of harmful cyanobacteria.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XitFWntrc%3D&md5=21cad736084453b8937853b1d035aefdCAS | 21893330PubMed |

Parsons, T., Maita, Y., and Lalli, C. M. (1984) ‘A Manual of Chemical and Biological Methods for Seawater Analysis.’ (Pergamon Press: Oxford, UK.)

Pruesse, E., Peplies, J., and Glockner, F. O. (2012). SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 28, 1823–1829.
SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVSgsbfO&md5=30ab5499feb16f9ee11862f3d4a52832CAS | 22556368PubMed |

Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., and Glockner, F. O. (2013). The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Research 41, D590–D596.
The SILVA ribosomal RNA gene database project: improved data processing and web-based tools.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvV2ksb%2FN&md5=46972f666318f145555563c9ba8d9697CAS | 23193283PubMed |

Rakocevic-Nedovic, J., and Hollert, H. (2005). Phytoplankton community and chlorophyll-a as trophic state indices of Lake Skadar (Montenegro, Balkan). Environmental Science and Pollution Research International 12, 146–152.
Phytoplankton community and chlorophyll-a as trophic state indices of Lake Skadar (Montenegro, Balkan).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXovV2ntbs%3D&md5=a14c8e065e147bd8d505b778ad1e3fe2CAS | 15986998PubMed |

Read, D. S., Bowes, M. J., Newbold, L. K., and Whiteley, A. S. (2014). Weekly flow cytometric analysis of riverine phytoplankton to determine seasonal bloom dynamics. Environmental Science. Processes & Impacts 16, 594–603.
Weekly flow cytometric analysis of riverine phytoplankton to determine seasonal bloom dynamics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXjt1amtb8%3D&md5=8493553388208bb7a4e708eed605eb53CAS |

Shokralla, S., Spall, J. L., Gibson, J. F., and Hajibabaei, M. (2012). Next-generation sequencing technologies for environmental DNA research. Molecular Ecology 21, 1794–1805.
Next-generation sequencing technologies for environmental DNA research.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XptVGksLo%3D&md5=baafc2c513911163895885c2ac23ddddCAS | 22486820PubMed |

Sommer, U., Adrian, R., De Senerpont Domis, L., Elser, J. J., Gaedke, U., Ibelings, B., Jeppesen, E., Lürling, M., Molinero, J. C., and Mooij, W. M. (2012). Beyond the Plankton Ecology Group (PEG) model: mechanisms driving plankton succession. Annual Review of Ecology Evolution and Systematics 43, 429–448.
Beyond the Plankton Ecology Group (PEG) model: mechanisms driving plankton succession.Crossref | GoogleScholarGoogle Scholar |

Sun, Z., Li, G., Wang, C., Jing, Y., Zhu, Y., Zhang, S., and Liu, Y. (2014). Community dynamics of prokaryotic and eukaryotic microbes in an estuary reservoir. Scientific Reports 4, 6966.
Community dynamics of prokaryotic and eukaryotic microbes in an estuary reservoir.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvFansb%2FO&md5=26917fa9b351c150dcc02f68f1276207CAS | 25382138PubMed |

Treusch, A. H., Demir-Hilton, E., Vergin, K. L., Worden, A. Z., Carlson, C. A., Donatz, M. G., Burton, R. M., and Giovannoni, S. J. (2012). Phytoplankton distribution patterns in the northwestern Sargasso Sea revealed by small subunit rRNA genes from plastids. The ISME Journal 6, 481–492.
Phytoplankton distribution patterns in the northwestern Sargasso Sea revealed by small subunit rRNA genes from plastids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XisVGgt70%3D&md5=858761999b9fd827a132a1e3bf28e7afCAS | 21955994PubMed |

Vörösmarty, C. J., McIntyre, P. B., Gessner, M. O., Dudgeon, D., Prusevich, A., Green, P., Glidden, S., Bunn, S. E., Sullivan, C. A., Liermann, C. R., and Davies, P. M. (2010). Global threats to human water security and river biodiversity. Nature 467, 555–561.
Global threats to human water security and river biodiversity.Crossref | GoogleScholarGoogle Scholar | 20882010PubMed |

Xiao, X., Sogge, H., Lagesen, K., Tooming-Klunderud, A., Jakobsen, K. S., and Rohrlack, T. (2014). Use of high throughput sequencing and light microscopy show contrasting results in a study of phytoplankton occurrence in a freshwater environment. PLoS One 9, e106510.
Use of high throughput sequencing and light microscopy show contrasting results in a study of phytoplankton occurrence in a freshwater environment.Crossref | GoogleScholarGoogle Scholar | 25171164PubMed |

Yu, D. W., Ji, Y., Emerson, B. C., Wang, X., Ye, C., Yang, C., and Ding, Z. (2012). Biodiversity soup: metabarcoding of arthropods for rapid biodiversity assessment and biomonitoring. Methods in Ecology and Evolution 3, 613–623.
Biodiversity soup: metabarcoding of arthropods for rapid biodiversity assessment and biomonitoring.Crossref | GoogleScholarGoogle Scholar |

Yu, Z., Yang, J., Zhou, J., Yu, X., Liu, L., and Lv, H. (2014). Water stratification affects the microeukaryotic community in a subtropical deep reservoir. The Journal of Eukaryotic Microbiology 61, 126–133.
Water stratification affects the microeukaryotic community in a subtropical deep reservoir.Crossref | GoogleScholarGoogle Scholar | 24373024PubMed |

Zapomělová, E., Jezberová, J., Hrouzek, P., Hisem, D., Řeháková, K., and Komárková, J. (2009). Polyphasic characterization of three strains of Anabaena reniformis and Aphanizomenon aphanizomenoides (cyanobacteria) and their reclassification to Sphaerospermum gen. nov. (incl. Anabaena kisseleviana)1. Journal of Phycology 45, 1363–1373.
Polyphasic characterization of three strains of Anabaena reniformis and Aphanizomenon aphanizomenoides (cyanobacteria) and their reclassification to Sphaerospermum gen. nov. (incl. Anabaena kisseleviana)1.Crossref | GoogleScholarGoogle Scholar |

Zhan, A., Hulák, M., Sylvester, F., Huang, X., Adebayo, A. A., Abbott, C. L., Adamowicz, S. J., Heath, D. D., Cristescu, M. E., and MacIsaac, H. J. (2013). High sensitivity of 454 pyrosequencing for detection of rare species in aquatic communities. Methods in Ecology and Evolution 4, 558–565.
High sensitivity of 454 pyrosequencing for detection of rare species in aquatic communities.Crossref | GoogleScholarGoogle Scholar |

Zhang, Q., Liu, G., and Hu, Z. (2011). Morphological differences and molecular phylogeny of freshwater blooming species, Peridiniopsis spp. (Dinophyceae) from China. European Journal of Protistology 47, 149–160.
Morphological differences and molecular phylogeny of freshwater blooming species, Peridiniopsis spp. (Dinophyceae) from China.Crossref | GoogleScholarGoogle Scholar | 21561747PubMed |