Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Community structure of deep-water decapod crustaceans below the oxygen minimum zone in the south-east Gulf of California and analysis of environmental drivers

Vanesa Papiol A B and Michel E. Hendrickx A
+ Author Affiliations
- Author Affiliations

A Unidad Académica Mazatlán, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, PO Box 811, Mazatlán, Sinaloa 82000, Mexico.

B Corresponding author. Email: vpapioln@gmail.com

Marine and Freshwater Research 67(12) 1862-1879 https://doi.org/10.1071/MF15040
Submitted: 30 January 2015  Accepted: 7 August 2015   Published: 10 December 2015

Abstract

Despite the ecological importance of decapod crustaceans in energy transfer in marine ecosystems, little is known on their distribution below oxygen minimum zones (OMZs). To understand the spatio-temporal dynamics of benthic and benthopelagic decapod crustaceans living below the OMZ cores, four seasonal oceanographic and sledge surveys were performed in the south-east Gulf of California at depths between 730 and 2250 m. Multivariate analyses indicate the existence of three major depth-related assemblages at: 800–1000, 1000–1200 and >1200 m (mean trawl depth). Benthic detritivores dominated between 800 and 1000 m and benthopelagic (i.e. swimming) predators dominated deeper, where dissolved oxygen (DO) values were higher. Assemblages comprised the same species throughout the year, but aggregations of smaller organisms were observed in June. DO significantly controlled the distribution of decapod crustaceans, likely through physiological exclusion of swimming species from hypoxic waters. Besides, the combined effects of DO and temperature contributed to defining the depth ranges occupied by each species. Food derived from surface-water production modulated changes in community parameters with different time lags in the different depth-related assemblages. These findings demonstrate the vulnerability of bathyal communities to the global pattern of OMZ expansion.

Additional keywords: benthos, deep sea, eastern tropical Pacific.


References

Allen, C. E., Tyler, P. A., and Varney, M. S. (2000). Lipid profiles of Nematocarcinus gracilis a deep-sea shrimp from below the Arabian Sea oxygen minimum zone. Hydrobiologia 440, 273–279.
Lipid profiles of Nematocarcinus gracilis a deep-sea shrimp from below the Arabian Sea oxygen minimum zone.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjtVyisLs%3D&md5=8bb73553f187f8d48fe9d6d6a589aa39CAS |

Álvarez-Borrego, S. (2010). Physical, chemical, and biological oceanography of the Gulf of California. In ‘The Gulf of California. Biodiversity and Conservation’. (Ed. R. C. Brusca.) pp. 24–48. (The University of Arizona Press: Tucson, AZ.)

Álvarez-Borrego, S., and Lara-Lara, J. R. (1991). The physical environment and primary productivity of the Gulf of California. In ‘The Gulf and Peninsular Province of the Californias. Memoir – American Association of Petroleum Geologists 47’. (Eds. J. P. Dauphin and B. R. T. Simoneit.) pp. 555–567.

Álvarez-Borrego, S., and Schwartzlose, R. A. (1979). Water masses of the Gulf of California. Ciencias Marinas 6, 43–63.

Anderson, M. J. (2001). A new method for non-parametric multivariate analysis of variance. Austral Ecology 26, 32–46.

Anderson, M. J., Gorley, R. N., and Clarke, K. R. (2008). ‘PERMANOVA+ for PRIMER: Guide to Software and Statistical Methods.’ (PRIMER-E: Plymouth.)

Andrade, H., and Baez, P. (1980). Crustáceos decápodos asociados a la pesquería de Heterocarpus reedi Bahamonde 1955 en la zona central de Chile. Boletín del Museo Nacional de Historia Natural de Chile 37, 261–267.

Ashjian, C. J., Smith, S. L., Flagg, C. N., and Idrisi, N. (2002). Distribution, annual cycle, and vertical migration of acoustically derived biomass in the Arabian Sea during 1994–1995. Deep-sea Research. Part II, Topical Studies in Oceanography 49, 2377–2402.
Distribution, annual cycle, and vertical migration of acoustically derived biomass in the Arabian Sea during 1994–1995.Crossref | GoogleScholarGoogle Scholar |

Beaulieu, S. E. (2002). Accumulation and fate of phytodetritus on the sea floor. Oceanography and Marine Biology 40, 171–232.
Accumulation and fate of phytodetritus on the sea floor.Crossref | GoogleScholarGoogle Scholar |

Birkely, S. R., and Gulliksen, B. (2003). Feeding ecology in five shrimp species (Decapoda, Caridea) from the arctic fjord (Isfjorden, Svalbard), with emphasis on Sclerocrangon boreas (Phipps, 1774). Crustaceana 76, 699–715.
Feeding ecology in five shrimp species (Decapoda, Caridea) from the arctic fjord (Isfjorden, Svalbard), with emphasis on Sclerocrangon boreas (Phipps, 1774).Crossref | GoogleScholarGoogle Scholar |

Bray, J. R., and Curtis, J. T. (1957). An ordination of upland forest communities of southern Wisconsin. Ecological Monographs 27, 325–349.
An ordination of upland forest communities of southern Wisconsin.Crossref | GoogleScholarGoogle Scholar |

Cadien, D. B. (1992). Thalassinidea of the temperate Northeast Pacific. SCAMIT Newsletter 10, 1–8.

Calvert, S. E. (1966). Accumulation of diatomaceous silica in the sediments of the Gulf of California. Geological Society of America Bulletin 77, 569–596.
Accumulation of diatomaceous silica in the sediments of the Gulf of California.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF28Xkslags7c%3D&md5=0148f9705de58b402912c6ff4e09d1aaCAS |

Carney, R. S. (2005). Zonation of deep biota on continental margins. Oceanography and Marine Biology 43, 211–278.
Zonation of deep biota on continental margins.Crossref | GoogleScholarGoogle Scholar |

Cartes, J. E. (1993a). Feeding habits of oplophorid shrimps in the deep Western Mediterranean. Journal of the Marine Biological Association of the United Kingdom 73, 193–206.
Feeding habits of oplophorid shrimps in the deep Western Mediterranean.Crossref | GoogleScholarGoogle Scholar |

Cartes, J. E. (1993b). Diets of two deep-sea decapods: Nematocarcinus exilis (Caridea: Nematocarcinidae) and Munida tenuimana (Anomura: Galatheidae) on the Western Mediterranean slope. Ophelia 37, 213–229.
Diets of two deep-sea decapods: Nematocarcinus exilis (Caridea: Nematocarcinidae) and Munida tenuimana (Anomura: Galatheidae) on the Western Mediterranean slope.Crossref | GoogleScholarGoogle Scholar |

Cartes, J. E. (1993c). Diets of deep-water pandalid shrimps on the Western Mediterranean slope. Marine Ecology Progress Series 96, 49–61.
Diets of deep-water pandalid shrimps on the Western Mediterranean slope.Crossref | GoogleScholarGoogle Scholar |

Cartes, J. E., and Abelló, P. (1992). Comparative feeding habits of polychelid lobsters in the Western Mediterranean deep-sea communities. Marine Ecology Progress Series 84, 139–150.
Comparative feeding habits of polychelid lobsters in the Western Mediterranean deep-sea communities.Crossref | GoogleScholarGoogle Scholar |

Cartes, J. E., and Carrassón, M. (2004). Influence of trophic variables on the depth-range distributions and zonation rates of deep-sea megafauna: the case of the Western Mediterranean assemblages. Deep-sea Research. Part I, Oceanographic Research Papers 51, 263–279.
Influence of trophic variables on the depth-range distributions and zonation rates of deep-sea megafauna: the case of the Western Mediterranean assemblages.Crossref | GoogleScholarGoogle Scholar |

Cartes, J. E., Grémare, A., Maynou, F., Villora-Moreno, S., and Dinet, A. (2002). Bathymetric changes in the distributions of particulate organic matter and associated fauna along a deep-sea transect down the Catalan sea slope (Northwestern Mediterranean). Progress in Oceanography 53, 29–56.
Bathymetric changes in the distributions of particulate organic matter and associated fauna along a deep-sea transect down the Catalan sea slope (Northwestern Mediterranean).Crossref | GoogleScholarGoogle Scholar |

Cartes, J. E., Maynou, F., Moranta, J., Massutí, E., Lloris, D., and Morales-Nin, B. (2004). Patterns of bathymetric distribution among deep-sea fauna at local spatial scale: comparison of mainland vs. insular areas. Progress in Oceanography 60, 29–45.
Patterns of bathymetric distribution among deep-sea fauna at local spatial scale: comparison of mainland vs. insular areas.Crossref | GoogleScholarGoogle Scholar |

Cartes, J. E., Huguet, C., Parra, S., and Sánchez, F. (2007). Trophic relationships in deep-water decapods of Le Danois bank (Cantabrian Sea, NE Atlantic): trends related with depth and seasonal changes in food quality and availability. Deep-sea Research. Part I, Oceanographic Research Papers 54, 1091–1110.
Trophic relationships in deep-water decapods of Le Danois bank (Cantabrian Sea, NE Atlantic): trends related with depth and seasonal changes in food quality and availability.Crossref | GoogleScholarGoogle Scholar |

Cartes, J. E., Papiol, V., and Guijarro, B. (2008). The feeding and diet of the deep-sea shrimp Aristeus antennatus off the Balearic Islands (Western Mediterranean): influence of environmental factors and relationship with the biological cycle. Progress in Oceanography 79, 37–54.
The feeding and diet of the deep-sea shrimp Aristeus antennatus off the Balearic Islands (Western Mediterranean): influence of environmental factors and relationship with the biological cycle.Crossref | GoogleScholarGoogle Scholar |

Cartes, J. E., Maynou, F., Abelló, P., Emelianov, M., de Sola, L. G., and Solé, M. (2011). Long-term changes in the abundance and deepening of the deep-sea shrimp Aristaeomorpha foliacea in the Balearic Basin: relationships with hydrographic changes at the Levantine Intermediate Water. Journal of Marine Systems 88, 516–525.
Long-term changes in the abundance and deepening of the deep-sea shrimp Aristaeomorpha foliacea in the Balearic Basin: relationships with hydrographic changes at the Levantine Intermediate Water.Crossref | GoogleScholarGoogle Scholar |

Cartes, J. E., Fanelli, E., López-Pérez, C., and Lebrato, M. (2013). Deep-sea macroplankton distribution (at 400 to 2300 m) in the northwestern Mediterranean in relation to environmental factors. Journal of Marine Systems 113–114, 75–87.
Deep-sea macroplankton distribution (at 400 to 2300 m) in the northwestern Mediterranean in relation to environmental factors.Crossref | GoogleScholarGoogle Scholar |

Childress, J. J., and Seibel, B. A. (1998). Life at stable low oxygen: adaptations of animals to oceanic oxygen minimum layers. The Journal of Experimental Biology 201, 1223–1232.
| 1:STN:280:DyaK1c7nvFWmtA%3D%3D&md5=94c05702aae5be4b7ea199e28a805511CAS | 9510533PubMed |

Childress, J. J., Cowles, D. L., Favuzzi, J. A., and Mickel, T. J. (1990). Metabolic rates of benthic deep-sea decapod crustaceans decline with increasing depth primarily due to the decline in temperature. Deep-sea Research. Part I, Oceanographic Research Papers 37, 929–949.
Metabolic rates of benthic deep-sea decapod crustaceans decline with increasing depth primarily due to the decline in temperature.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXmt1yhsLc%3D&md5=23cf8a417a172faad4bfa53b5d58e6afCAS |

Clarke, K. R. (1993). Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology 18, 117–143.
Non-parametric multivariate analyses of changes in community structure.Crossref | GoogleScholarGoogle Scholar |

Clarke, K. R., and Warwick, R. M. (2001). ‘Change in Marine Communities, An Approach to Statistical Analysis and Interpretation’, 2nd edn. (PRIMER-E: Plymouth.)

Clarke, K. R., Somerfield, P. J., and Chapman, M. G. (2006). On resemblance measures for ecological studies, including taxonomic dissimilarities and a zero-adjusted Bray–Curtis coefficient for denuded assemblages. Journal of Experimental Marine Biology and Ecology 330, 55–80.
On resemblance measures for ecological studies, including taxonomic dissimilarities and a zero-adjusted Bray–Curtis coefficient for denuded assemblages.Crossref | GoogleScholarGoogle Scholar |

Cowie, G. L., Calvert, S. E., Pedersen, T. F., Schulz, H., and von Rad, U. (1999). Organic content and preservational controls in surficial shelf and slope sediments from the Arabian Sea (Pakistan margin). Marine Geology 161, 23–38.
Organic content and preservational controls in surficial shelf and slope sediments from the Arabian Sea (Pakistan margin).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXms1Kgsbo%3D&md5=4ec7fe19455c329a2254e8f9801787d4CAS |

Devol, A. H., and Hartnett, H. E. (2001). Role of the oxygen-deficient zone in transfer of organic carbon to the deep ocean. Limnology and Oceanography 46, 1684–1690.
Role of the oxygen-deficient zone in transfer of organic carbon to the deep ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXovVGntrg%3D&md5=228a7b1f36798a072715e64e81103b86CAS |

Diaz, R. J., and Rosenberg, R. (1995). Marine benthic hypoxia: a review of its ecological effects and the behavioural responses of benthic macrofauna. Oceanography and Marine Biology 33, 245–303.

Drazen, J. C., and Seibel, B. A. (2007). Depth-related trends in metabolism of benthic and benthopelagic deep-sea fishes. Limnology and Oceanography 52, 2306–2316.
Depth-related trends in metabolism of benthic and benthopelagic deep-sea fishes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1ahsLbI&md5=1b73d0e16adf7ec1f4a33766ba622e53CAS |

Ekau, W., Auel, H., Pörtner, H. O., and Gilbert, D. (2010). Impacts of hypoxia on the structure and processes in pelagic communities (zooplankton, macro-invertebrates and fish). Biogeosciences 7, 1669–1699.
Impacts of hypoxia on the structure and processes in pelagic communities (zooplankton, macro-invertebrates and fish).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtV2rtLjO&md5=c026ae8c16cc7daa4b08835d17ef8df0CAS |

Escobar-Briones, E., Morales, P., Cienfuegos, E., and González, M. (2002). Carbon sources and trophic position of two abyssal species of Anomura, Munidopsis alvisca (Galatheidae) and Neolithodes diomedeae (Lithodidae). In ‘Contributions to the Study of East Pacific Crustaceans’. [Contribuciones al Estudio de los Crustáceos del Pacífico Este.] (Ed. M. E. Hendrickx.) pp. 37–43. (Instituto de Ciencias del Mar y Limnología, UNAM: Mexico City.)

Fanelli, E., and Cartes, J. E. (2004). Feeding habits of pandalid shrimps in the Alboran Sea (SW Mediterranean): influence of biological and environmental factors. Marine Ecology Progress Series 280, 227–238.
Feeding habits of pandalid shrimps in the Alboran Sea (SW Mediterranean): influence of biological and environmental factors.Crossref | GoogleScholarGoogle Scholar |

Fanelli, E., Cartes, J. E., Papiol, V., and López-Pérez, C. (2013). Environmental drivers of megafaunal assemblage composition and biomass distribution over mainland and insular slopes of the Balearic Basin. Deep-sea Research. Part I, Oceanographic Research Papers 78, 79–94.
Environmental drivers of megafaunal assemblage composition and biomass distribution over mainland and insular slopes of the Balearic Basin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVaitLnO&md5=79dd5bc9e91ef9725d10771f8404a324CAS |

Follesa, M. C., Porcu, C., Gastoni, A., Mulas, A., Sabatini, A., and Cau, A. (2009). Community structure of bathyal decapod crustaceans off south-eastern Sardinian deep-waters (central-western Mediterranean). Marine Ecology 30, 188–199.
Community structure of bathyal decapod crustaceans off south-eastern Sardinian deep-waters (central-western Mediterranean).Crossref | GoogleScholarGoogle Scholar |

Follesa, M. C., Porcu, C., Cabiddu, S., Mulas, A., Deiana, A. M., and Cau, A. (2011). Deep-water fish assemblages in the central-western Mediterranean (south Sardinian deep-waters). Journal of Applied Ichthyology 27, 129–135.
Deep-water fish assemblages in the central-western Mediterranean (south Sardinian deep-waters).Crossref | GoogleScholarGoogle Scholar |

Frederich, M., and Pörtner, H. O. (2000). Oxygen limitation of thermal tolerance defined by cardiac and ventilatory performance in spider crab, Maja squinado. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology 279, 1531–1538.

Gage, J. D. (1994). Recruitment ecology and age structure of deep-sea invertebrates. In ‘Reproduction, Larval Biology, and Recruitment of the Deep-Sea Benthos’. (Eds C. M. Young, and K. J. Eckelbarger.) pp. 223–242. (Columbia University Press: New York.)

Galéron, J., Sibuet, M., Vanreusel, A., Mackenzie, K., Gooday, A. J., Dinet, A., and Wolff, G. A. (2001). Temporal patterns among meiofauna and macrofauna taxa related to changes in sediment geochemistry at an abyssal NE Atlantic site. Progress in Oceanography 50, 303–324.
Temporal patterns among meiofauna and macrofauna taxa related to changes in sediment geochemistry at an abyssal NE Atlantic site.Crossref | GoogleScholarGoogle Scholar |

Gauch, H. G. Jr (1982). ‘Multivariate Analysis in Community Structure.’ (Cambridge University Press: Cambridge, UK.)

Gooday, A. J., Levin, L. A., Aranda da Silva, A., Bett, B. J., Cowie, G. L., Dissard, D., Gage, J. D., Hughes, D. J., Jeffreys, R., Lamont, P. A., Larkin, K. E., Murty, S. J., Schumacher, S., Whitcraft, C., and Woulds, C. (2009). Faunal responses to oxygen gradients on the Pakistan margin: a comparison of foraminiferans, macrofauna and megafauna. Deep-sea Research. Part II, Topical Studies in Oceanography 56, 488–502.
Faunal responses to oxygen gradients on the Pakistan margin: a comparison of foraminiferans, macrofauna and megafauna.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXntVKns78%3D&md5=7d2777c2c745c8e65888a7b379fffd72CAS |

Gordon, J. D. M. (1986). The fish populations of the Rockall Trough. Proceedings of the Royal Society of Edinburgh – B. Biological Sciences 88, 191–20410.1017/S0269727000004553

Gordon, J. D. M., and Duncan, J. A. R. (1985). The ecology of the deep-sea benthic and benthopelagic fish of the slopes of the Rockall Trough, northeastern Atlantic. Progress in Oceanography 15, 37–69.
The ecology of the deep-sea benthic and benthopelagic fish of the slopes of the Rockall Trough, northeastern Atlantic.Crossref | GoogleScholarGoogle Scholar |

Grassle, J. F., and Sanders, H. L. (1973). Life histories and the role of disturbance. Deep-Sea Research 20, 643–659.

Helly, J. J., and Levin, L. A. (2004). Global distribution of naturally occurring marine hypoxia on continental margins. Deep-sea Research. Part I, Oceanographic Research Papers 51, 1159–1168.
Global distribution of naturally occurring marine hypoxia on continental margins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmtlSjs78%3D&md5=52087d961c66dfb0c37c639deae46995CAS |

Hendrickx, M. E. (2001). Occurrence of a continental slope decapod crustacean community along the edge of the minimum oxygen zone in the southeastern Gulf of California, Mexico. Belgian Journal of Zoology 131, 95–109.

Hendrickx, M. E. (2003). Size and abundance of deep water shrimps on the continental slope of the SE Gulf of California, Mexico. In ‘Contributions to the Study of East Pacific Crustaceans 2’. [Contribuciones al Estudio de los Crustáceos del Pacífico Este 2.] (Ed. M. E. Hendrickx.) pp. 227–234. (Instituto de Ciencias del Mar y Limnología, UNAM: Mexico City, Mexico.)

Hendrickx, M. E., and Serrano, D. (2010). Impacto de la zona de mínimo de oxígeno sobre los corredores pesqueros en el Pacífico mexicano. Interciencia 35, 12–18.

Hendrickx, M. E., and Serrano, D. (2013). Effects of the oxygen minimum zone on squat lobsters distribution in the Gulf of California, Mexico. Central European Journal of Biology 9, 92–103.
| 1:CAS:528:DC%2BC3sXhs1Gku7jK&md5=b9cce208ea4fd288160611cac51e0767CAS |

Honjo, S., Manganini, S. J., Krishfield, R. A., and Francois, R. (2008). Particulate organic carbon fluxes to the ocean interior and factors controlling the biological pump: a synthesis of global sediment trap programs since 1983. Progress in Oceanography 76, 217–285.
Particulate organic carbon fluxes to the ocean interior and factors controlling the biological pump: a synthesis of global sediment trap programs since 1983.Crossref | GoogleScholarGoogle Scholar |

Hoyoux, C., Zbinden, M., Samadi, S., Gaill, F., and Compère, Ph. (2012). Diet and gut microorganisms of Munidopsis squat lobsters associated with natural woods and mesh enclosed substrates in the deep South Pacific. Marine Biology Research 8, 28–47.
Diet and gut microorganisms of Munidopsis squat lobsters associated with natural woods and mesh enclosed substrates in the deep South Pacific.Crossref | GoogleScholarGoogle Scholar |

Hughes, D. J., Lamont, P. A., Levin, L. A., Packer, M., Feeley, K., and Gage, J. D. (2009). Macrofaunal communities and sediment structure across the Pakistan margin Oxygen Minimum Zone, north-east Arabian Sea. Deep-sea Research. Part II, Topical Studies in Oceanography 56, 434–448.
Macrofaunal communities and sediment structure across the Pakistan margin Oxygen Minimum Zone, north-east Arabian Sea.Crossref | GoogleScholarGoogle Scholar |

Hunter, W. R., Oguri, K., Kitazato, H., Ansari, Z. A., and Witte, U. (2011). Epi-benthic megafaunal zonation across an oxygen minimum zone at the Indian continental margin. Deep-sea Research. Part I, Oceanographic Research Papers 58, 699–710.
Epi-benthic megafaunal zonation across an oxygen minimum zone at the Indian continental margin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmsVClurY%3D&md5=e59a8606bb64a236d2aa55d6bc921553CAS |

Hurlbert, S. H. (1971). The non-concept of species diversity: a critique and alternative parameters. Ecology 52, 577–586.
The non-concept of species diversity: a critique and alternative parameters.Crossref | GoogleScholarGoogle Scholar |

Ingole, B. S., Sautya, S., Sivadas, S., Singh, R., and Nanajkar, M. (2010). Macrofaunal community structure in the western Indian continental margin including the oxygen minimum zone. Marine Ecology 31, 148–166.
Macrofaunal community structure in the western Indian continental margin including the oxygen minimum zone.Crossref | GoogleScholarGoogle Scholar |

Jeffreys, R. M., Wolff, G. A., and Murty, S. J. (2009a). The trophic ecology of key megafaunal species at the Pakistan Margin: evidence from stable isotopes and lipid biomarkers. Deep-sea Research. Part I, Oceanographic Research Papers 56, 1816–1833.
The trophic ecology of key megafaunal species at the Pakistan Margin: evidence from stable isotopes and lipid biomarkers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXps1Chs7c%3D&md5=85281889f465970895af5384e6c824e7CAS |

Jeffreys, R. M., Wolff, G. A., and Cowie, G. L. (2009b). Influence of oxygen on heterotrophic reworking of sedimentary lipids at the Pakistan margin. Deep-sea Research. Part II, Topical Studies in Oceanography 56, 358–375.
Influence of oxygen on heterotrophic reworking of sedimentary lipids at the Pakistan margin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXntVKnsrk%3D&md5=9cab42fadc131cf0d9024fbf8f181077CAS |

Jeffreys, R. M., Levin, L. A., Lamont, P. A., Woulds, C., Whitcraft, Ch. R., Mendoza, G. F., Wolff, G. A., and Cowie, G. L. (2012). Living on the edge: single-species dominance at the Pakistan oxygen minimum zone boundary. Marine Ecology Progress Series 470, 79–99.
Living on the edge: single-species dominance at the Pakistan oxygen minimum zone boundary.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXisVSis78%3D&md5=8fc3f5e2ee188902b39036f9ab1ab4b1CAS |

Jumars, P. A., and Eckman, J. A. (1983). Spatial structure within deep-sea benthic communities. In ‘The Sea’. (Ed. G. T. Rowe.) pp. 399–451. (Wiley: New York.)

Kamykowski, D., and Zentara, S. J. (1990). Hypoxia in the world ocean as recorded in the historical dataset. Deep-Sea Research. Part I, Oceanographic Research Papers 37, 1861–1874.
Hypoxia in the world ocean as recorded in the historical dataset.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXktlGit7g%3D&md5=2c71f6d6ebf4dd1a687cf4ecac50cb2aCAS |

Kennedy, F. S., Crane, J. J., Schlieder, R. A., and Barber, D. G. (1977). Studies of the rock shrimp, Sicyonia brevirostris, a new fishery resource on Florida’s Atlantic shelf. Florida Marine Research Publications number 27. Florida Department of Natural Resources, Marine Research Laboratory.

Levin, L. A. (2003). Oxygen minimum zone benthos: adaptation and community response to hypoxia. Oceanography and Marine Biology 41, 1–45.

Levin, L. A., and Gage, J. D. (1998). Relationships between oxygen, organic matter and diversity of bathyal macrofauna. Deep-sea Research. Part II, Topical Studies in Oceanography 45, 129–163.
Relationships between oxygen, organic matter and diversity of bathyal macrofauna.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXltFOru7k%3D&md5=b085ebe1bb2e47d5cbaa72f8edcb342bCAS |

Levin, L. A., Gage, J. D., Martin, C., and Lamont, P. (2000). Macrobenthic community structure within and beneath the oxygen minimum zone, NW Arabian Sea. Deep-sea Research. Part II, Topical Studies in Oceanography 47, 189–226.
Macrobenthic community structure within and beneath the oxygen minimum zone, NW Arabian Sea.Crossref | GoogleScholarGoogle Scholar |

Levin, L. A., Whitcraft, Ch. R., Mendoza, G. F., Gonzalez, J. P., and Cowie, G. (2009). Oxygen and organic matter thresholds for benthic faunal activity on the Pakistan margin oxygen minimum zone (700–1100 m). Deep-sea Research. Part II, Topical Studies in Oceanography 56, 449–471.
Oxygen and organic matter thresholds for benthic faunal activity on the Pakistan margin oxygen minimum zone (700–1100 m).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXntVKns74%3D&md5=81c23a83de50efe341b7cedbc2f629e3CAS |

Lin, H. Y., Lin, P. Y., Chang, N. N., Shiao, J. C., and Kao, S. J. (2014). Trophic structure of megabenthic food webs along depth gradients in the South China Sea and off northeastern Taiwan. Marine Ecology Progress Series 501, 53–66.
Trophic structure of megabenthic food webs along depth gradients in the South China Sea and off northeastern Taiwan.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtV2jsb3I&md5=c66cd7860199ed4c5b07abd564a379feCAS |

Loring, D. H., and Rantala, R. T. T. (1992). Manual for the geochemical analyses of marine sediments and suspended particulate matter. Earth-Science Reviews 32, 235–283.
Manual for the geochemical analyses of marine sediments and suspended particulate matter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXlvFWlurY%3D&md5=017f1a2cc703bbdf2bb3b4d29e8fb53fCAS |

Luo, J., Ortner, P. B., Forcucci, D., and Cummings, S. R. (2000). Diel vertical migration of zooplankton and mesopelagic fish in the Arabian Sea. Deep-sea Research. Part II, Topical Studies in Oceanography 47, 1451–1473.
Diel vertical migration of zooplankton and mesopelagic fish in the Arabian Sea.Crossref | GoogleScholarGoogle Scholar |

Marinone, S. G. (2003). A three dimensional model of the mean and seasonal circulation of the Gulf of California. Journal of Geophysical Research 108, 3325.
A three dimensional model of the mean and seasonal circulation of the Gulf of California.Crossref | GoogleScholarGoogle Scholar |

Marshall, N. B., and Merrett, N. R. (1977). The existence of a benthopelagic fauna in the deep sea. In ‘A Voyage of Discovery’. (Ed. M. Angel.) pp. 483–497. (Pergamon Press: Oxford, UK.)

Maynou, F., and Cartes, J. E. (1998). Daily ration estimates and comparative study of food consumption in nine species of deep-water decapod crustaceans of the NW Mediterranean. Marine Ecology Progress Series 171, 221–231.
Daily ration estimates and comparative study of food consumption in nine species of deep-water decapod crustaceans of the NW Mediterranean.Crossref | GoogleScholarGoogle Scholar |

Maynou, F., Conan, G. Y., Cartes, J. E., Company, J. B., and Sardà, F. (1996). Spatial structure and seasonality of decapod crustacean populations on the northwestern Mediterranean slope. Limnology and Oceanography 41, 113–125.
Spatial structure and seasonality of decapod crustacean populations on the northwestern Mediterranean slope.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xitlalsb0%3D&md5=7b363168972337f99dfb132cdc6a4d44CAS |

McArdle, B. H., and Anderson, M. J. (2001). Fitting multivariate models to community data: a comment on distance-based redundancy analysis. Ecology 82, 290–297.
Fitting multivariate models to community data: a comment on distance-based redundancy analysis.Crossref | GoogleScholarGoogle Scholar |

Méndez, N. (2007). Relationships between deep-water polychaete fauna and environmental factors in the southeastern Gulf of California, Mexico. Scientia Marina 71, 605–622.

Méndez, N. (2013). Trophic categories of soft-bottom epibenthic deep-sea polychaetes from the southeastern Gulf of California (Mexico) in relation with environmental variables. Pan-American Journal of Aquatic Sciences 8, 299–311.

Moranta, J., Quetglas, A., Massutí, E., Guijarro, B., Hidalgo, M., and Diaz, P. (2008). Spatio-temporal variations in deep-sea demersal communities off the Balearic Islands (western Mediterranean). Journal of Marine Systems 71, 346–366.
Spatio-temporal variations in deep-sea demersal communities off the Balearic Islands (western Mediterranean).Crossref | GoogleScholarGoogle Scholar |

Morrison, J. M., Codispoti, L. A., Smith, S. L., Wishner, K., Flagg, C., Gardner, W. D., Gaurin, S., Naqvi, S. W. A., Manghnani, V., Prosperie, L., and Gundersen, J. S. (1999). The oxygen minimum zone in the Arabian Sea during 1995. Deep-sea Research. Part II, Topical Studies in Oceanography 46, 1903–1931.
The oxygen minimum zone in the Arabian Sea during 1995.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXlsFGntLc%3D&md5=3f533e1c29240813657f9e2e6bcebdf9CAS |

Mullins, H. T., Thompson, J. B., McDougall, K., and Vercoutere, T. L. (1985). Oxygen-minimum zone edge effects: evidence from the central California coastal upwelling system. Geology 13, 491–494.
Oxygen-minimum zone edge effects: evidence from the central California coastal upwelling system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXlvVeitLk%3D&md5=eb2f3699d75ce1e453fb0b4765b63995CAS |

Murty, S. J., Bett, B. J., and Gooday, A. J. (2009). Megafaunal responses to strong oxygen gradients on the Pakistan margin of the Arabian Sea. Deep-sea Research. Part II, Topical Studies in Oceanography 56, 472–487.
Megafaunal responses to strong oxygen gradients on the Pakistan margin of the Arabian Sea.Crossref | GoogleScholarGoogle Scholar |

Papiol, V., Cartes, J. E., Fanelli, E., and Maynou, F. (2012). Influence of environmental variables on the spatio-temporal dynamics of bentho-pelagic assemblages in the middle slope of the Balearic Basin (NW Mediterranean). Deep-sea Research. Part I, Oceanographic Research Papers 61, 84–99.
Influence of environmental variables on the spatio-temporal dynamics of bentho-pelagic assemblages in the middle slope of the Balearic Basin (NW Mediterranean).Crossref | GoogleScholarGoogle Scholar |

Papiol, V., Cartes, J. E., Fanelli, E., and Rumolo, P. (2013). Food web structure and seasonality of slope megafauna in the NW Mediterranean elucidated by stable isotopes: relationship with available food sources. Journal of Sea Research 77, 53–69.
Food web structure and seasonality of slope megafauna in the NW Mediterranean elucidated by stable isotopes: relationship with available food sources.Crossref | GoogleScholarGoogle Scholar |

Parker, R. H. (1963). Zoogeography and ecology of some macro-invertebrates, particularly mollusks, in the Gulf of California and the continental slope off Mexico. Videnskabelige Meddelelser fra Dansk naturhistorisk Forening 126, 1–178.

Paulmier, A., and Ruiz-Pino, D. (2009). Oxygen minimum zones (OMZs) in the modern ocean. Progress in Oceanography 80, 113–128.
Oxygen minimum zones (OMZs) in the modern ocean.Crossref | GoogleScholarGoogle Scholar |

Pinn, E. H., Atkinson, R. J. A., and Rogerson, A. (1998). The diet of two mud-shrimps, Calocaris macandreae and Upogebia stellate (Crustacea: Decapoda: Thalassinidea). Ophelia 48, 211–223.
The diet of two mud-shrimps, Calocaris macandreae and Upogebia stellate (Crustacea: Decapoda: Thalassinidea).Crossref | GoogleScholarGoogle Scholar |

Pörtner, H. O. (2001). Climate change and temperature-dependent biogeography: oxygen limitation of thermal tolerance in animals. Naturwissenschaften 88, 137–146.
Climate change and temperature-dependent biogeography: oxygen limitation of thermal tolerance in animals.Crossref | GoogleScholarGoogle Scholar | 11480701PubMed |

Quiroga, E., Sellanes, J., Arntz, W. E., Gerdes, D., Gallardo, V. A., and Hebbeln, D. (2009). Benthic megafaunal and demersal fish assemblages on the Chilean continental margin: the influence of the oxygen minimum zone on bathymetric distribution. Deep-sea Research. Part II, Topical Studies in Oceanography 56, 1112–1123.
Benthic megafaunal and demersal fish assemblages on the Chilean continental margin: the influence of the oxygen minimum zone on bathymetric distribution.Crossref | GoogleScholarGoogle Scholar |

Rajasree, S. R. R., and Kurup, B. M. (2011). Food and feeding habits of deep-sea pandalid prawns Heterocarpus gibbosus, Bate 1888 and Heterocarpus woodmasoni, Alcock off Kerala, south India. Indian Journal of Fisheries 58, 45–50.

Reid, W. D. K., Wigham, B. D., McGill, R. A. R., and Polunin, N. V. C. (2012). Elucidating trophic pathways in benthic deep-sea assemblages of the Mid-Atlantic Ridge north and south of the Charlie-Gibbs Fracture Zone. Marine Ecology Progress Series 463, 89–103.
Elucidating trophic pathways in benthic deep-sea assemblages of the Mid-Atlantic Ridge north and south of the Charlie-Gibbs Fracture Zone.Crossref | GoogleScholarGoogle Scholar |

Riaux-Gobin, C., Dinet, A., Dugué, G., Vétion, G., Maria, E., and Grémare, A. (2004). Phytodetritus at the sediment–water interface, NW Mediterranean Basin: spatial repartition, living cells signatures, meiofaunal relationships. Scientia Marina 68, 7–21.

Robles, J. M., and Marinone, S. G. (1987). Seasonal and interannual thermohaline variability in the Guaymas Basin of the Gulf of California. Continental Shelf Research 7, 715–733.
Seasonal and interannual thermohaline variability in the Guaymas Basin of the Gulf of California.Crossref | GoogleScholarGoogle Scholar |

Roullier, F., Berline, L., Guidi, L., Sciandra, A., Durrieu De Madron, X., Picheral, M., Pesant, S., and Stemmann, L. (2013). Particles size distribution and carbon flux across the Arabian Sea Oxygen Minimum Zone. Biogeosciences Discussions 10, 19271–19309.
Particles size distribution and carbon flux across the Arabian Sea Oxygen Minimum Zone.Crossref | GoogleScholarGoogle Scholar |

Ruhl, H. A., Ellena, J. A., and Smith, K. L. (2008). Connections between climate, food limitation, and carbon cycling in abyssal sediment communities. Proceedings of the National Academy of Sciences of the United States of America 105, 17006–17011.
Connections between climate, food limitation, and carbon cycling in abyssal sediment communities.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlKmu7fP&md5=cf4e72eb904d3ed664c57712ba9b8bfaCAS | 18974223PubMed |

Saltzman, J., and Wishner, K. F. (1997). Zooplankton ecology in the eastern tropical Pacific oxygen minimum zone above a seamount: 1. General trends. Deep-sea Research. Part I, Oceanographic Research Papers 44, 907–930.
Zooplankton ecology in the eastern tropical Pacific oxygen minimum zone above a seamount: 1. General trends.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXkvFejtb4%3D&md5=a2afe6c3a9e709bcdb930c5c0f4271f2CAS |

Savenkoff, C., Savard, L., Morin, B., and Chabot, D. (2006). Main prey and predators of the northern shrimp (Pandalus borealis) in the northern Gulf of Saint Lawrence during the mid-1980s, mid-1990s, and early 2000s. Canadian Technical Report of Fisheries and Aquatic Sciences , 2639.

Seibel, B. A., Chausson, F. C., Lallier, F. H., Zal, F., and Childress, J. J. (1999). Vampire blood: respiratory physiology of the vampiresquid (Cephalopoda: Vampyromorpha) in relation to the oxygen minimum layer. Experimental Biology Online 4, 1–10.
Vampire blood: respiratory physiology of the vampiresquid (Cephalopoda: Vampyromorpha) in relation to the oxygen minimum layer.Crossref | GoogleScholarGoogle Scholar |

Sellanes, J., Neira, C., Quiroga, E., and Teixido, N. (2010). Diversity patterns along and across the Chilean margin: a continental slope encompassing oxygen gradients and methane seep benthic habitats. Marine Ecology 31, 111–124.
Diversity patterns along and across the Chilean margin: a continental slope encompassing oxygen gradients and methane seep benthic habitats.Crossref | GoogleScholarGoogle Scholar |

Smallwood, B. J., Wolff, G. A., Bett, B. J., Smith, C. R., Hoover, D., Gage, J. D., and Patience, A. (1999). Megafauna can control the quality of organic matter in marine sediments. Naturwissenschaften 86, 320–324.
Megafauna can control the quality of organic matter in marine sediments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXks1Smu7g%3D&md5=4ec027c67f3607d062a80a90da861513CAS |

Smith, K. L., Kaufmann, R. S., and Baldwin, R. J. (1994). Coupling of near-bottom pelagic and benthic processes at abyssal depths in the eastern North Pacific Ocean. Limnology and Oceanography 39, 1101–1118.
Coupling of near-bottom pelagic and benthic processes at abyssal depths in the eastern North Pacific Ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXitVWjsLw%3D&md5=bdc5572f5fb93c2830d8b9752d48cfd1CAS |

Smith, C. R., Levin, L. A., Hoover, D. J., Cremer, M., McMurtry, G., and Gage, J. D. (2000). Variations in bioturbation across the oxygen minimum zone in the northwest Arabian Sea. Deep-sea Research. Part II, Topical Studies in Oceanography 47, 227–257.
Variations in bioturbation across the oxygen minimum zone in the northwest Arabian Sea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXltFanuw%3D%3D&md5=56d4f581d87916b5e92416b128788e40CAS |

Soto-Jiménez, M. F., and Páez-Osuna, F. (2001). Distribution and normalization of heavy metal concentrations in mangrove and lagoonal sediments from Mazatlán Harbor (SE Gulf of California). Estuarine, Coastal and Shelf Science 53, 259–274.
Distribution and normalization of heavy metal concentrations in mangrove and lagoonal sediments from Mazatlán Harbor (SE Gulf of California).Crossref | GoogleScholarGoogle Scholar |

Stefanescu, C., Lloris, D., and Rucabado, J. (1993). Deep-sea fish assemblages in the Catalan Sea (western Mediterranean) below a depth of 1000 m. Deep-sea Research. Part I, Oceanographic Research Papers 40, 695–707.
Deep-sea fish assemblages in the Catalan Sea (western Mediterranean) below a depth of 1000 m.Crossref | GoogleScholarGoogle Scholar |

Stramma, L., Johnson, G. C., Sprintall, J., and Mohrholz, V. (2008). Expanding oxygen-minimum zones in the tropical oceans. Science 320, 655–658.
Expanding oxygen-minimum zones in the tropical oceans.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXltFyisro%3D&md5=e1036477b672b98138d8374c5447f863CAS | 18451300PubMed |

Stramma, L., Schmidtko, S., Levin, L. A., and Johnson, G. C. (2010). Ocean oxygen minima expansions and their biological impacts. Deep-sea Research. Part I, Oceanographic Research Papers 57, 587–595.
Ocean oxygen minima expansions and their biological impacts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjvF2isrg%3D&md5=bf9f823446bd21fa7371c7098d5f23e7CAS |

Strickland, J. D. H., and Parsons, T. R. (1972). A Practical Handbook of Seawater Analysis. 2nd edn. Bulletin number 167, Fisheries Research Board of Canada, Ottawa, ON.

Ter Braak, C. F. J. (1986). Canonical Correspondence Analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67, 1167–1178.
Canonical Correspondence Analysis: a new eigenvector technique for multivariate direct gradient analysis.Crossref | GoogleScholarGoogle Scholar |

Thunell, R. C. (1998). Seasonal and annual variability in particle fluxes in the Gulf of California: a response to climate forcing. Deep-sea Research. Part I, Oceanographic Research Papers 45, 2059–2083.
Seasonal and annual variability in particle fluxes in the Gulf of California: a response to climate forcing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmvFyjsQ%3D%3D&md5=e0b46e7366b91b253b5b022c74c80cd1CAS |

Vaquer-Sunyer, R., and Duarte, C. M. (2008). Thresholds of hypoxia for marine biodiversity. Proceedings of the National Academy of Sciences of the United States of America 105, 15452–15457.
Thresholds of hypoxia for marine biodiversity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1Gnt7zI&md5=c454861f956cdc1d1a800598fbc662c1CAS | 18824689PubMed |

Wishner, K. F., Levin, L. A., Gowing, M. M., and Mullineaux, L. (1990). Involvement of the oxygen minimum in the benthic zonation on a deep seamount. Nature 346, 57–59.
Involvement of the oxygen minimum in the benthic zonation on a deep seamount.Crossref | GoogleScholarGoogle Scholar |

Wishner, K. F., Ashjian, C. J., Gelfman, C., Gowing, M. M., Levin, L. A., Mullineaux, S., and Saltzman, J. (1995). Pelagic and benthic ecology of the lower interface of the Eastern Tropical Pacific oxygen minimum zone. Deep-sea Research. Part I, Oceanographic Research Papers 42, 93–115.
Pelagic and benthic ecology of the lower interface of the Eastern Tropical Pacific oxygen minimum zone.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXlt1ers7Y%3D&md5=f3b485bf83c0a6b461f74a35e480abc2CAS |

Wishner, K. F., Gowing, M. M., and Gelfman, C. (1998). Mesozooplankton biomass in the upper 1000 m in the Arabian Sea: overall seasonal and geographic patterns, and relationship to oxygen gradients. Deep-sea Research. Part II, Topical Studies in Oceanography 45, 2405–2432.
Mesozooplankton biomass in the upper 1000 m in the Arabian Sea: overall seasonal and geographic patterns, and relationship to oxygen gradients.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmtlSlsg%3D%3D&md5=786b7b8379e16768bd1bef14c91c65edCAS |

Wyrtki, K. (1962). The oxygen minima in relation to ocean circulation. Deep-Sea Research 9, 11–23.
| 1:CAS:528:DyaF3sXnsl2q&md5=bb64ac3317da5767bdf6e9235f0c0d93CAS |

Zamorano, P., Hendrickx, M. E., and Toledano-Granados, A. (2007). Distribution and ecology of deep-water mollusks from the continental slope, southeastern Gulf of California, Mexico. Marine Biology 150, 883–892.
Distribution and ecology of deep-water mollusks from the continental slope, southeastern Gulf of California, Mexico.Crossref | GoogleScholarGoogle Scholar |