Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

A new radiometric instrument for in situ measurements of physical sediment properties

W. Jacobs A E , M. Eelkema A , H. Limburg B and J. C. Winterwerp C D
+ Author Affiliations
- Author Affiliations

A Delft University of Technology, Faculty of Civil Engineering and Geosciences, Hydraulic Engineering Section, PO Box 5048, 2600 GA Delft, The Netherlands.

B Medusa Explorations B.V., PO Box 623, 9700 AP Groningen, The Netherlands.

C Delft University of Technology, Faculty of Civil Engineering and Geosciences, Environmental Fluid Mechanics Section, PO Box 5048, 2628 CN Delft, The Netherlands.

D Deltares, PO Box 177, 2600 MH Delft, The Netherlands.

E Corresponding author. Email: walterjacobs@hotmail.com

Marine and Freshwater Research 60(7) 727-736 https://doi.org/10.1071/MF08056
Submitted: 27 February 2008  Accepted: 18 February 2009   Published: 28 July 2009

Abstract

Information on the sedimentological composition of sediment beds in marine wetlands is important for the study of the complicated interactions between physical, biological and chemical processes. In situ soil sample collection and subsequent laboratory analyses using traditional methods is rather time consuming. The present paper presents the Medusa (Multi Detector system for Underwater Sediment Activity) RhoC system. ‘Rho’ refers to density and ‘C’ to the activity concentration of the decaying isotopes adhered to the sediments. The new instrument directly translates (the attenuation of) natural radioactivity to sedimentological data concerning the depth-averaged sediment composition and vertical density profiles of the upper 15 cm of the sediment bed. The accuracy and applicability of the instrument were assessed to illustrate its potential and limitations. Results from a field campaign on several intertidal flats and from similar measurements in the laboratory for controlled circumstances were compared with data obtained by traditional analyses. The instrument generates accurate results for the depth-averaged sediment composition. Vertical density profiles are also well represented by the RhoC after smoothing and correcting the data for partly saturated soils. Thus, Medusa RhoC is a useful and practical tool to provide accurate sedimentological data in a fast and cost-effective way. The combination of sedimentological relations with the data obtained by RhoC further increases the applicability of the new instrument.

Additional keywords: clay, cohesive sediment, intertidal, mud, natural radioactivity, sand, Western Scheldt Estuary.


Acknowledgements

This research was supported by the Dutch Technology Foundation STW, the Applied Science Division of NWO and the technology program of the Ministry of Economic Affairs. The authors would like to thank The Netherlands Institute of Ecology for their assistance during the field campaign and the laboratory analyses. In particular we would like to thank Daphne van der Wal and Francesc Montserrat. We are also thankful for the assistance of Marco Tijs, Medusa Explorations B.V., and for the use of facilities at the Laboratory of Fluidmechanics, Faculty of Civil Engineering, Delft University of Technology. The comments of Maarten van der Vegt and the anonymous reviewers of the manuscript are highly appreciated.


References

De Groot A. V., van der Klis M. M. I. P., van Wesenbeeck B. K., ten Have R., de Meijer R. J., and Bakker J. P. (2002). Natural radionuclides in salt marsh sediments; revealing spatial sediment patterns. KVI Annual Report 62, KVI, Groningen.

De Meijer, R. J. , and Donoghue, J. F. (1995). Radiometric fingerprinting of sediments on the Dutch, German and Danish coasts. Quaternary International 26, 43–47.
Crossref | GoogleScholarGoogle Scholar | Eelkema M. (2008). Measuring sediment properties in the field using Medusa RhoC. MSc Thesis, Delft University of Technology. Available at: http://www.citg.tudelft.nl/live/pagina.jsp?id=4de0d195-5207-4e67-84bb-455c5403ae47&lang=en [accessed 28 October 2008].

Eleveld M. A. (1999). Exploring coastal morphodynamics of Ameland (The Netherlands) with remote sensing monitoring techniques and dynamic modelling in GIS. PhD Thesis, University of Amsterdam.

Flemming, B. W. (2000). A revised textural classification of gravel-free muddy sediments on the bases of ternary diagrams. Continental Shelf Research 20, 1125–1137.
Crossref | GoogleScholarGoogle Scholar | Fontaine K. (2004). Waar komt het slib voor de Belgische kust vandaan? Een klei mineralogische benadering (in Dutch). MSc Thesis, Katholieke Universiteit Leuven.

Gouleau, D. , Jouanneau, J. M. , Weber, D. M. , and Sauriau, P. G. (2000). Short- and long-term sedimentation on Montportail-Brouage intertidal mudflat, Marennes-Oléron Bay (France). Continental Shelf Research 20, 1513–1530.
Crossref | GoogleScholarGoogle Scholar | Head K. H., (1980). ‘Manual of Soil Laboratory Testing, Volume 1: Soil Classification and Compaction Tests.’ (Pentech Press: London.)

Hedges, J. I. , and Keil, R. G. (1995). Sedimentary organic matter preservation: an assessment and speculative synthesis. Marine Chemistry 49, 81–115.
Crossref | GoogleScholarGoogle Scholar | CAS | Hussein E. M. A. (2003a). Modifying physics. In ‘Handbook on Radiation Probing, Gauging, Imaging and Analysis: Volume I: Basics and Techniques’. pp. 66–69. (Kluwer Academic Publishers: Dordrecht.)

Hussein E. M. A. (2003b). Scattering methods. In ‘Handbook on Radiation Probing, Gauging, Imaging and Analysis: Volume II: Applications and Design’. pp. 465–466. (Kluwer Academic Publishers, Dordrecht.)

Jacobs, W. , Van Kesteren, W. G. M. , and Winterwerp, J. C. (2007a). Permeability and consolidation of sediment mixtures as function of sand content and clay mineralogy. International Journal of Sediment Research 22–23, 180–187.
Jacobs W., Van Kesteren W. G. M., and Winterwerp J. C. (2007b). Strength of sediment mixtures as a function of sand content and clay mineralogy. In ‘Sediment and Ecohydraulics, Intercoh 2005, Saga, Japan. Proceedings in Marine Science 9’. (Eds T. Kusuda, H. Yamanishi, J. Spearman and J. Z. Gailani.) pp. 91–107.

Koomans R. L. (2001). Sand in motion: effects of density and grain size. PhD Thesis, Rijksuniversiteit Groningen.

Malkawi, A. I. H. , Alawneh, A. S. , and Abu-Safaqah, O. T. (1999). Effects of organic matter on the physical and the physicochemical properties of an illitic soil. Applied Clay Science 14, 257–278.
Crossref | GoogleScholarGoogle Scholar | Mitchell J. K. (1976). ‘Fundamentals of Soil Behaviour. Series in Soil Engineering.’ (John Wiley and Sons: New York.)

Odell, R. T. , Thornburn, T. H. , and McKenzie, L. J. (1960). Relationships of Atterberg limits to some other properties of Illinois soils. Proceedings – Soil Science Society of America 24, 297–300.
Roberti J. R. (2001). Meten met Medusa. RIKZ Rijkswaterstaat 2001.035, 7. [in Dutch]

Schofield A. N., and Wroth C. P. (1968). ‘Critical State Soil Mechanics.’ (McGraw-Hill: London.)

Skempton A. W. (1965). The colloidal ‘activity’ of clay. In ‘Proceedings of the Third International Conference on Soil Mechanics and Foundation Engineering’. pp. 57–61. (Zurich: ICOSOMEF.)

Tijs M. (2007). RhoC: a novel system for soil water content, density and composition measurement. MSc Thesis, KVI internal report S-126, Medusa Explorations internal report P-063.

Van der Graaf, E. R. , Koomans, R. L. , Limburg, H. , and De Vries, K. (2007). In situ radiometric mapping as a proxy of sediment contamination: assessment of the underlying geochemical and physical principles. Applied Radiation and Isotopes 65, 619–633.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | Winterwerp J. C., and van Kesteren W. (2004). ‘Introduction to the Physics of Cohesive Sediment in the Marine Environment. Developments in Sedimentology.’ (Elsevier: Amsterdam.)