Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Spatial and temporal patterns of near-surface chlorophyll a in the Great Barrier Reef lagoon

J. Brodie A D , G. De’ath B , M. Devlin C , M. Furnas B and M. Wright B
+ Author Affiliations
- Author Affiliations

A Australian Centre for Tropical Freshwater Research, James Cook University, James Cook Drive, Townsville, Qld 4811, Australia.

B Australian Institute of Marine Science, PMB 3, Townsville MC, Townsville, Qld 4810, Australia.

C Centre for Environment, Fisheries & Aquaculture Science, Pakefield Road, Lowestoft, Suffolk NR33 OHT, UK.

D Corresponding author. Email: jon.brodie@jcu.edu.au

Marine and Freshwater Research 58(4) 342-353 https://doi.org/10.1071/MF06236
Submitted: 3 December 2006  Accepted: 10 January 2007   Published: 13 April 2007

Abstract

Surface chlorophyll a concentrations in the Great Barrier Reef (GBR) lagoon were monitored at individual stations for periods of 6 to 12 years. The monitoring program was established to detect spatial and temporal changes in water quality resulting from increased loads of nutrients exported from the catchments adjoining the GBR. Sampling occurred monthly at up to 86 sites that were located in transects across the width of the continental shelf. In the central and southern GBR (16–21°S), there was a persistent cross-shelf chlorophyll a gradient, with higher concentrations near the coast. No cross-shelf gradient was observed in the far northern GBR (12–15°S). Mean chlorophyll a concentrations in the far northern GBR (0.23 µg L–1) were less than half those in the south and central GBR (0.54 µg L–1). Chlorophyll a varied seasonally within regions, with mean summer-wet season (December–April) concentrations ~50% greater than those in the winter-dry season (May–November). Sub-annual, inter-annual and event-related variations in chlorophyll a concentrations were observed in several zones. Multi-year patterns in concentrations suggest that relatively short (5–8 years) time series may give spurious estimates of secular trends. Higher chlorophyll a concentrations in inshore waters south of 16°S were most likely related to the levels of river nutrient delivery associated with agricultural development on adjacent catchments.

Additional keywords: monitoring, phytoplankton.


References

Andrews, J. C. , and Gentian, P. (1982). Upwelling as a source of nutrients for the Great Barrier Reef ecosystems: a solution to Darwin's question. Marine Ecology Progress Series 8, 257–269.
Ayukai T., King B., and Baird D. (1997a). Hydrographic and nutrient measurements in the Daintree River plume and its vicinity. In ‘Cyclone Sadie Flood Plumes in the Great Barrier Reef Lagoon: Composition and Consequences’. GBRMPA Workshop Series No. 22. (Ed. A. Steven.) pp. 35–43. (Great Barrier Reef Marine Park Authority: Townsville.)

Ayukai T., Okaji K., and Lucas J. (1997b). Food limitation in the growth and development of crown-of-thorns starfish larvae in the Great Barrier Reef. In ‘Proceedings of the 8th International Coral Reef Symposium’. Vol. 1. (Eds H. A. Lessios and I. G. Macintyre, I. G.) pp. 621–626. (Panama City, Panama.)

Bell, P. R. F. , and Elmetri, I. (1995). Ecological indicators of large-scale eutrophication in the Great Barrier Reef Lagoon. Ambio 24(4), 208–215.
Birkeland C., and Lucas J. S. (1990). ‘Acanthaster planci: Major Management Problem of Coral Reefs.’ (CRC Press: Boca Raton, LA).

Blanchot J., and Charpy L. (1997). Picophytoplanktonic community structure in the subtropical Pacific Ocean: a comparison between the offshore and coastal ocean and closed and open lagoons, in relation with nitrogen availability. In ‘Proceedings of the 8th International Coral Reef Symposium’. Vol. 1. (Eds H. A. Lessios and I. G. Macintyre.) pp. 821–826. (Panama City, Panama.)

Brinkman, R. , Wolanski, E. , Deleersnijder, E. , McAllister, F. , and Skirving, W. (2002). Oceanic inflow from the Coral Sea into the Great Barrier Reef. Estuarine, Coastal and Shelf Science 54, 655–668.
Crossref | GoogleScholarGoogle Scholar | Brodie J. (2003). Chapter 13. The Great Barrier Reef: 25 years of management as a large marine ecosystem. In ‘Large Marine Ecosystems of the World: Trends in Exploitation, Protection and Research’. (Eds G. Hempel and K. Sherman.) pp. 313–336. (Elsevier: Amsterdam.)

Brodie J., and Furnas M. (1994). Long term monitoring programs for eutrophication and the design of a monitoring program for the Great Barrier Reef. In ‘Proceedings of the 7th International Coral Reef Symposium’. Vol. 1. (Ed. R. H. Richmond.) pp. 77–84. (Agana, Guam.)

Brodie J., Steven A., and McGill R. (1994). Spatial and temporal trends in chlorophyll in waters of the Great Barrier Reef Marine Park. In ‘The 6th Pacific Congress on Marine Science and Technology, PACON (1994)’. (Ed. O. Bellwood.) pp. 77–85. (James Cook University: Townsville.)

Brodie J. E., Furnas M. J., Steven A. D. L., Trott L. A., Pantus F., and Wright M. (1997). Monitoring chlorophyll in the Great Barrier Reef lagoon: trends & variability. In ‘Proceedings of the 8th International Coral Reef Symposium’. Vol. 1. (Eds H. A. Lessios and I. G. Macintyre.) pp. 797–802. (Panama City, Panama.)

Brodie, J. , Christie, C. , Devlin, M. , Haynes, D. , Morris, S. , Ramsay, M. , Waterhouse, J. , and Yorkston, H. (2001). Catchment management and the Great Barrier Reef. Water Science and Technology 43(9), 203–211.
PubMed | Devlin M., Waterhouse J., Taylor J., and Brodie J. (2001). ‘Flood Plumes in the Great Barrier Reef: Spatial and Temporal Patterns in Composition and Distribution.’ GBRMPA Research Publication No. 68. (Great Barrier Reef Marine Park Authority: Townsville.)

Devlin M., Waterhouse J., and Brodie J. (2002). Terrestrial discharge into the Great Barrier Reef: distribution of riverwaters and pollutant concentrations during flood plumes. In ‘Proceedings of the 9th International Coral Reef Symposium’. Vol. 2. (Eds M. K. Moosa, S. Soemodihardjo, A. Soegiarto, K. Romimohtarto, A. Nontji, Soekarno and Suharsono.) pp. 1205–1211. (Bali, Indonesia.)

Fabricius, K. E. (2005). Effects of terrestrial runoff on the ecology of corals and coral reefs. Marine Pollution Bulletin 50, 125–146.
Crossref | GoogleScholarGoogle Scholar | PubMed | Furnas M. J. (1989). Cyclonic disturbance and a phytoplankton bloom in a tropical shelf environment. In ‘Red Tides: Biology, Environmental Science and Toxicology’. (Eds T. Okaichi, D. M. Anderson and T. Nemoto.) pp. 271–277. (Elsevier: New York.)

Furnas, M. J. (1991). Net in situ growth rates of phytoplankton in an oligotrophic, tropical shelf ecosystem. Limnology and Oceanography 36, 13–29.
Furnas M. J. (1992). Pelagic Trichodesmium (= Oscillatoria) in the Great Barrier Reef region. In ‘Marine Pelagic Cyanobacteria: Trichodesmium and Other Diazotrophs’. (Eds E. J. Carpenter, D. G. Capone and J. G. Reuter.) pp. 265–272. (Kluwer Academic Publishers: Dordrecht.)

Furnas M. J. (2003). ‘Catchments and Corals: Terrestrial Runoff to the Great Barrier Reef.’ (Australian Institute of Marine Science and Reef CRC: Townsville.)

Furnas M. J., and Brodie J. (1996). Current status of nutrient levels and other water quality parameters in the Great Barrier Reef. In ‘Downstream Effects of Land Use’. (Eds H. M. Hunter, A. G. Eyles and G. E. Rayment.) pp. 9–23. (Department of Natural Resources: Brisbane.)

Furnas, M. J. , and Mitchell, A. W. (1986). Phytoplankton dynamics in the central Great Barrier Reef. I. Seasonal changes in biomass and community structure and their relation to intrusive activity. Continental Shelf Research 6, 363–384.
Crossref | GoogleScholarGoogle Scholar | Furnas M. J., and Mitchell A. W. (1988). Shelf-scale estimates of phytoplankton primary production in the Great Barrier Reef. In ‘Proceedings of the 6th International Coral Reef Symposium’. Vol. 2. (Eds J. H. Choat, D. Barnes, M. A. Borowitzka, J. C. Coll, P. J. Davies, P. Flood, B. G. Hatcher, D. Hopley, P. A. Hutchings, D. Kinsey, G. R. Orme, M. Pichon, P. F. Sale, P. Sammarco, C. C. Wallace, C. Wilkinson, E. Wolanski and O. Bellwood.) pp. 557–562. (Townsville, Australia.)

Furnas, M. J. , and Mitchell, A. W. (1996). Nutrient inputs into the central Great Barrier Reef (Australia) from subsurface intrusions of Coral Sea waters: a two-dimensional displacement model. Continental Shelf Research 16, 1127–1148.
Crossref | GoogleScholarGoogle Scholar | Furnas M., and Mitchell A. (1997). Biological oceanography of the Great Barrier Reef. In ‘Proceedings of the Conference on the Great Barrier Reef: Science, Use & Management’. Vol. 1. (Eds J. Campbell and C. Dalliston.) pp. 75–87.(Great Barrier Reef Marine Park Authority: Townsville.)

Furnas M. J., Mitchell A., and Skuza M. (1997). Shelf scale nitrogen and phosphorus budgets for the Central Great Barrier Reef (16° – 19° S). In ‘Proceedings of the 8th International Coral Reef Symposium’. Vol. 1. (Eds H. A. Lessios and I. G. Macintyre.) pp. 809–814. (Panama City, Panama.)

Furnas, M. , Mitchell, A. , Skuza, M. , and Brodie, J. (2005). In the other 90 percent: phytoplankton responses to enhanced nutrient availability in the GBR lagoon. Marine Pollution Bulletin 51(1–4), 253–265.
Crossref | GoogleScholarGoogle Scholar | PubMed | Hastie T. J., and Tibshirani R. J. (1990). ‘Generalized Additive Models.’ (Chapman & Hall: London.)

Liston, P. , Furnas, M. J. , Mitchell, A. W. , and Drew, E. A. (1992). Local and mesoscale variability of surface water temperature and chlorophyll in the northern Great Barrier Reef, Australia. Continental Shelf Research 12, 907–922.
Crossref | GoogleScholarGoogle Scholar | McCullagh P., and Nelder J. A. (1983). ‘Generalized Linear Models.’ (Chapman & Hall: London.)

McKergow, L. A. , Prosser, I. P. , Hughes, A. O. , and Brodie, J. (2005). Regional scale nutrient modelling: exports to the Great Barrier Reef World Heritage Area. Marine Pollution Bulletin 51, 186–199.
Crossref | GoogleScholarGoogle Scholar | PubMed | Parsons T. R., Maita Y., and Lailli C. M. (1984). ‘A Manual of Chemical and Biological Methods for Seawater Analysis.’ (Pergamon: New York.)

R Development Core Team (2004). ‘R: A language and environment for statistical computing.’ (R Foundation for Statistical Computing: Vienna.) Available at www.R-project.org [verified 4 February 2007].

Revelante, N. , and Gilmartin, M. (1982). Dynamics of phytoplankton in the Great Barrier Reef lagoon. Journal of Plankton Research 4, 47–76.
Crossref | GoogleScholarGoogle Scholar | Steven A. D. L., Pantus F., Brooks D., and Trott L. (1998). ‘Long-term Chlorophyll Monitoring in the Great Barrier Reef Lagoon. Status Report 1: 1993–1995.’ (Great Barrier Reef Marine Park Authority: Townsville.)

Tada, K. , Sakai, K. , Nakano, Y. , Takemura, A. , and Montani, S. (2003). Size-fractionated phytoplankton biomass in coral reef waters off Sesoko Island, Okinawa, Japan. Journal of Plankton Research 25, 991–997.
Crossref | GoogleScholarGoogle Scholar |

van Woesik, R. , Tomascik, T. , and Blake, S. (1999). Coral assemblages and physico-chemical characteristics of the Whitsunday Islands: evidence of recent community changes. Marine and Freshwater Research 50, 427–440.


Walker, T. A. (1981). Dependence of phytoplankton chlorophyll on bottom resuspension in Cleveland Bay, northern Queensland. Australian Journal of Marine and Freshwater Research 32, 981–986.
Crossref | GoogleScholarGoogle Scholar |

Wasmund, N. , and Uhlig, S. (2003). Phytoplankton trends in the Baltic Sea. ICES Journal of Marine Science 60, 177–186.
Crossref | GoogleScholarGoogle Scholar |

Wolanski, E. , Richmond, R. , McCook, L. , and Sweatman, H. (2003). Mud, marine snow and coral reefs. American Scientist 91, 44–51.
Crossref | GoogleScholarGoogle Scholar |