Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Assessing the diet and trophic niche breadth of an omnivorous fish (Glanidium ribeiroi) in subtropical lotic environments: intraspecific and ontogenic responses to spatial variations

B. C. K. Kliemann https://orcid.org/0000-0002-7972-2043 A E , M. C. Baldasso B , S. F. R. Pini C , M. C. Makrakis https://orcid.org/0000-0001-7539-9659 D , S. Makrakis https://orcid.org/0000-0002-7868-9034 D and R. L. Delariva B
+ Author Affiliations
- Author Affiliations

A Universidade Estadual Paulista (UNESP), Instituto de Biociências, Botucatu, Programa de Pós graduação em Ciências Biológicas – Zoologia, Rua Prof. Dr Antônio Celso Wagner Zanin, 250, 18618-689 - Botucatu, São Paulo, Brazil.

B Universidade Estadual do Oeste do Paraná, Programa de Pós Graduação em Conservação e Manejo de Recursos Naturais, Rua Universitária, 2069, 85819-110, Cascavel, Paraná, Brazil.

C Universidade Estadual do Oeste do Paraná, Programa de Pós-graduação em Engenharia de Pesca, Rua Miraldo Pedro Zibetti, 385, 85903-160, Toledo, Paraná, Brazil.

D Universidade Estadual do Oeste do Paraná, Grupo de Pesquisa em Tecnologia em Ecohidráulica e Conservação de Recursos Pesqueiros e Hídricos (GETECH), Rua Miraldo Pedro Zibetti, 385, 85903-160, Toledo, Paraná, Brazil.

E Corresponding author. Email: bruna.kli@gmail.com

Marine and Freshwater Research 70(8) 1116-1128 https://doi.org/10.1071/MF18149
Submitted: 6 April 2018  Accepted: 18 January 2019   Published: 11 April 2019

Abstract

The diet of Glanidium ribeiroi was investigated in lotic stretches downstream from a cascade of reservoirs to determine how it responds to intraspecific and environmental variations. Monthly sampling was performed from 2013 to 2016 at sites including the main channel of the Iguaçu River and tributaries in preserved basins and agricultural land. The diet of individuals in the preserved tributaries was primarily associated with allochthonous resources, whereas in the non-preserved tributaries and main channel the diets were primarily associated with autochthonous resources. Trophic niche breadth and intraspecific variability differed significantly among sampling areas and size classes. Trophic niche overlap among size classes and sampling areas was low. Positive and negative relationships between the trophic niche breadth and the standard length of individuals were also found in different sampling areas. Intraspecific and ontogenic variations were strongly and consistently associated with forest cover. Individuals responded differently to local environmental variations due to differences in landscape gradients and life cycle changes. Therefore, the effects of spatial heterogeneity on diet composition and intraspecific variations therein appear to be crucial to the success of the populations evaluated. These results may help with the implementation of conservation measures for this and other endemic species.

Additional keywords: allochthonous resources, feeding, fish freshwater, preserved areas, trophic segregation.


References

Abelha, M. C. F., Agostinho, A. A., and Goulart, E. (2001). Plasticidade trófica em peixes de água doce. Acta Scientiarum 23, 425–434.

Alberts, J. M., Beaulieu, J. J., and Buffam, I. (2017). Watershed land use and seasonal variation constrain the influence of riparian canopy cover on stream ecosystem metabolism. Ecosystems 20, 553–567.
Watershed land use and seasonal variation constrain the influence of riparian canopy cover on stream ecosystem metabolism.Crossref | GoogleScholarGoogle Scholar | 30416371PubMed |

Anderson, M. J. (2004). ‘PERMDISP: a FORTRAN Computer Program for Permutational Analysis of Multivariate Dispersions (for any Two-Factor ANOVA Design) using Permutation Tests.’ (Department of Statistics, University of Auckland: Auckland, New Zealand).

Anderson, M. J. (2006). Distance-based tests for homogeneity of multivariate dispersions. Biometrics 62, 245–253.
Distance-based tests for homogeneity of multivariate dispersions.Crossref | GoogleScholarGoogle Scholar | 16542252PubMed |

Araújo, M. S., Bolnick, D. I., and Layman, C. A. (2011). The ecological causes of individual specialization. Ecology Letters 14, 948–958.
The ecological causes of individual specialization.Crossref | GoogleScholarGoogle Scholar | 21790933PubMed |

Baumgartner, G. C. S., Pavanelli, C. S., Baumgartner, D., Bifi, A. G., Debona, T., and Frana, V. A. (2012). ‘Peixes do baixo Rio Iguaçu.’ (EDUEM: Maringá, Brazil.)

Berggren, M., Bergström, A. K., and Karlsson, J. (2015). Intraspecific autochthonous and allochthonous resource use by zooplankton in a humic lake during the transitions between winter, summer and fall. PLoS One 10, e0120575.
Intraspecific autochthonous and allochthonous resource use by zooplankton in a humic lake during the transitions between winter, summer and fall.Crossref | GoogleScholarGoogle Scholar | 25764501PubMed |

Bernal, A., Olivar, M. P., Maynou, F., and de Puelles, M. L. F. (2015). Diet and feeding strategies of mesopelagic fishes in the western Mediterranean. Progress in Oceanography 135, 1–17.
Diet and feeding strategies of mesopelagic fishes in the western Mediterranean.Crossref | GoogleScholarGoogle Scholar |

Bifi, A. G., Baumgartner, D., Baumgartner, G., Frana, V. A., and Debona, T. (2006). Composição específica e abundância da ictiofauna do rio dos Padres, bacia do rio Iguaçu, Brasil. Acta Scientiarum. Biological Sciences 28, 203–211.

Bolnick, D. I., Svanback, R., Fordyce, J. A., Yang, L. H., Davis, J. M., Hulsey, C. D., and Forister, M. L. (2003). The ecology of individuals: incidence and implications of individual specialization. American Naturalist 161, 1–28.
The ecology of individuals: incidence and implications of individual specialization.Crossref | GoogleScholarGoogle Scholar | 12650459PubMed |

Bolnick, D. I., Amarasekare, P., Araújo, M. S., Burger, R., Levine, J. M., Novak, M., Rudolf, V. H. W., Schreiber, S. J., Urban, M. C., and Vasseur, D. (2011). Why intraspecific trait variation matters in community ecology. Trends in Ecology & Evolution 26, 183–192.
Why intraspecific trait variation matters in community ecology.Crossref | GoogleScholarGoogle Scholar |

Canavero, A., Hernández, D., Zarucki, M., and Arim, M. (2014). Patterns of co-ocurrences in a killifsh metacommunity are more related with body size than with species identity. Austral Ecology 39, 455–461.
Patterns of co-ocurrences in a killifsh metacommunity are more related with body size than with species identity.Crossref | GoogleScholarGoogle Scholar |

Ceneviva-Bastos, M., and Casatti, L. (2014). Shading effects on community composition and food web structure of a deforested pasture stream: evidences from a field experiment in Brazil. Limnology 46, 9–21.
Shading effects on community composition and food web structure of a deforested pasture stream: evidences from a field experiment in Brazil.Crossref | GoogleScholarGoogle Scholar |

Chase, J. M., and Leibold, M. A. (2003). ‘Ecological Niches: Linking Classical and Contemporary Approaches.’ (University of Chicago Press: Chicago, IL, USA.)

Clarke, K. R. (1993). Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology 18, 117–143.
Non-parametric multivariate analyses of changes in community structure.Crossref | GoogleScholarGoogle Scholar |

Clarke, K. R., and Warwick, R. M. (2001). A further biodiversity index applicable to species lists: variation in taxonomic distinctness. Marine Ecology Progress Series 216, 265–278.
A further biodiversity index applicable to species lists: variation in taxonomic distinctness.Crossref | GoogleScholarGoogle Scholar |

Coblentz, K. E., Rosenblatt, A. E., and Novak, M. (2017). The application of Bayesian hierarchical models to quantify individual diet specialization. Ecology 98, 1535–1547.
The application of Bayesian hierarchical models to quantify individual diet specialization.Crossref | GoogleScholarGoogle Scholar | 28470993PubMed |

Correa, S. B., and Winemiller, K. O. (2014). Niche partitioning among frugivorous fishes in response to fluctuating resources in the Amazonian floodplain forest. Ecology 95, 210–224.
Niche partitioning among frugivorous fishes in response to fluctuating resources in the Amazonian floodplain forest.Crossref | GoogleScholarGoogle Scholar | 24649660PubMed |

Corrêa, C. E., Albrecht, M. P., and Hahn, N. S. (2011). Patterns of niche breadth and feeding overlap of the fish fauna in the seasonal Brazilian Pantanal, Cuiabá River basin. Neotropical Ichthyology 9, 637–646.
Patterns of niche breadth and feeding overlap of the fish fauna in the seasonal Brazilian Pantanal, Cuiabá River basin.Crossref | GoogleScholarGoogle Scholar |

da Silva, J. C., Gubiani, É. A., Neves, M. P., and Delariva, R. L. (2017). Coexisting small fish species in lotic neotropical environments: evidence of trophic niche differentiation. Aquatic Ecology 51, 275–288.
Coexisting small fish species in lotic neotropical environments: evidence of trophic niche differentiation.Crossref | GoogleScholarGoogle Scholar |

Delariva, R. L., Hahn, N. S., and Kashiwaqui, E. A. L. (2013). Diet and trophic structure of the fish fauna in a subtropical ecosystem: impoundment effects. Neotropical Ichthyology 11, 891–904.
Diet and trophic structure of the fish fauna in a subtropical ecosystem: impoundment effects.Crossref | GoogleScholarGoogle Scholar |

Demars, B. O. L., Manson, J. R., Olafsson, J. S., Gislason, G. M., Gudmundsdottir, R., Woodward, G., Reiss, J., Pichler, D. E., Rasmussen, J. J., and Friberg, N. (2011). Temperature and the metabolic balance of streams. Freshwater Biology 56, 1106–1121.
Temperature and the metabolic balance of streams.Crossref | GoogleScholarGoogle Scholar |

Dias, T. S., Stein, R. J., and Fialho, C. B. (2017). Ontogenetic variations and feeding habits of a Neotropical annual fish from southern Brazil. Iheringia. Série Zoologia 107, 1–15.
Ontogenetic variations and feeding habits of a Neotropical annual fish from southern Brazil.Crossref | GoogleScholarGoogle Scholar |

Feld, C. K. (2013). Response of three lotic assemblages to riparian and catchment-scale land use: implications for designing catchment monitoring programmes. Freshwater Biology 58, 715–729.
Response of three lotic assemblages to riparian and catchment-scale land use: implications for designing catchment monitoring programmes.Crossref | GoogleScholarGoogle Scholar |

Ferraris, C. (2003). Family Auchenipteridae (Drifwood catfishes). In ‘Checklist of the Freshwater Fishes of South and Central America’. (Eds R. E. Reis, S. O. Kullander, and C. J. Ferraris Jr.) pp. 471–483. (Editora da Pontifícia Universidade Católica do Rio Grande do Sul (EDIPUCRS): Porto Alegre, Brazil.)

Gerking, S. D. (1994). Larval feeding. In ‘Feeding Ecology of Fish’. (Ed. S. D. Gerking.) pp. 139–170. (Academic Press: San Diego, CA, USA.)

Grossman, G. D. (1986). Food resources partitioning in a rocky intertidal fish assemblage. Journal of Zoology 2, 317–355.

Hahn, N. S., Adrian, I. F., Fugi, R., and Almeida, V. L. L. (1997). Ecologia trófica. In ‘A planície de inundação do alto rio Paraná: aspectos físicos, biológicos e socioeconômicos’. (Eds A. E. A. M. Vazzoler, A. A. Agostinho, and N. S. Hahn.) pp. 209–228. (EDUEM: Maringá, Brazil.)

Hales, J., and Petry, P. (2018). Freshwater ecoregions of the world – 346: Iguassu. Available at http://www.feow.org/ecoregions/details/346 [Verified 2 August 2018].

Hammer, Ø., Harper, D. A. T., and Ryan, P. D. (2001). Paleontological statistics software: package for education and data analysis. Palaeontologia Electronica 4, 1–259.

Harvey, P. H., Colwell, R. K., Silvertown, J. W., and May, R. M. (1983). Null models in ecology. Annual Review of Ecology Evolution and Systematics 14, 189–211.
Null models in ecology.Crossref | GoogleScholarGoogle Scholar |

Hellawell, J. M., and Abel, R. A. (1971). Rapid volumetric method for the analysis of the food of fishes. Journal of Fish Biology 3, 29–37.
Rapid volumetric method for the analysis of the food of fishes.Crossref | GoogleScholarGoogle Scholar |

Humphries, P., Keckeis, H., and Finlayson, B. (2014). The river wave concept: integrating river ecosystem models. Bioscience 64, 870–882.
The river wave concept: integrating river ecosystem models.Crossref | GoogleScholarGoogle Scholar |

Hurlbert, S. H. (1978). The measurement of niche overlap and some relatives. Ecology 59, 67–77.
The measurement of niche overlap and some relatives.Crossref | GoogleScholarGoogle Scholar |

Hyslop, E. J. (1980). Stomach contents analysis: a review of methods and their application. Journal of Fish Biology 17, 411–429.
Stomach contents analysis: a review of methods and their application.Crossref | GoogleScholarGoogle Scholar |

Joly, C. A., Aidar, M. P. M., Klink, C. A., McGrath, D. G., Moreira, A. G., Moutinho, P., Nepstad, D. C., Oliveira, A. A., Pott, A., Rodal, M. J. N., and Sampaio, E. V. S. B. (1999). Evolution of the Brazilian phytogeography classification systems: implications for biodiversity conservation. Ciência e Cultura 51, 331–348.

Keppeler, F. W., Lanés, L. E. K., Rolon, A. S., Stenert, C., Lehmann, P., Reichard, M., and Maltchik, L. (2015). The morphology–diet relationship and its role in the coexistence of two species of annual fishes. Ecology Freshwater Fish 24, 77–90.
The morphology–diet relationship and its role in the coexistence of two species of annual fishes.Crossref | GoogleScholarGoogle Scholar |

Kruskal, J. B. (1964). Nonmetric multidimensional scaling: a numerical method. Psychometrika 29, 115–129.
Nonmetric multidimensional scaling: a numerical method.Crossref | GoogleScholarGoogle Scholar |

Lampert, W., and Sommer, U. (2007). ‘Limnoecology: the Ecology of Lakes and Streams.’ (Oxford University Press: Oxford, UK.)

Leibold, M. A., and McPeek, M. A. (2006). Coexistence of the niche and neutral perspectives in community ecology. Ecology 87, 1399–1410.
Coexistence of the niche and neutral perspectives in community ecology.Crossref | GoogleScholarGoogle Scholar | 16869414PubMed |

Lowe-McConnell, R. H. (1999). ‘Estudos ecológicos de comunidades de peixes tropicais.’ (Editora da Universidade de São Paulo: São Paulo, Brazil.)

Marsh, J. M., Mueter, F. J., Iken, K., and Danielson, S. (2017). Ontogenetic, spatial and temporal variation in trophic level and diet of Chukchi Sea fishes. Deep-sea Research – II. Topical Studies in Oceanography 135, 78–94.
Ontogenetic, spatial and temporal variation in trophic level and diet of Chukchi Sea fishes.Crossref | GoogleScholarGoogle Scholar |

Mateus, L., Ortega, J., Mendes, A., and Penha, J. (2016). Nonlinear effect of density on trophic niche width and between-individual variation in diet in a neotropical cichlid. Austral Ecology 41, 492–500.
Nonlinear effect of density on trophic niche width and between-individual variation in diet in a neotropical cichlid.Crossref | GoogleScholarGoogle Scholar |

Molina, M. C., Roa-Fuentes, C. A., Zeni, J. O., and Casatti, L. (2017). The effects of land use at different spatial scales on instream features in agricultural streams. Limnologica 65, 14–21.
The effects of land use at different spatial scales on instream features in agricultural streams.Crossref | GoogleScholarGoogle Scholar |

Neves, M. P., Delariva, R. L., Guimarães, A. T. B., and Sanches, P. V. (2015). Carnivory during ontogeny of the Plagioscion squamosissimus: a successful nonnative fish in a lentic environment of the upper Paraná river basin. PLoS One 10, e0141651.
Carnivory during ontogeny of the Plagioscion squamosissimus: a successful nonnative fish in a lentic environment of the upper Paraná river basin.Crossref | GoogleScholarGoogle Scholar | 26524336PubMed |

Neves, M. P., Baumgartner, D., Baumgartner, G., and Delariva, R. L. (2018). Do environmental variables predict the trophic structure of fish fauna in a subtropical river (Uruguay River Ecoregion)? Journal of Limnology 77, 285–299.
Do environmental variables predict the trophic structure of fish fauna in a subtropical river (Uruguay River Ecoregion)?Crossref | GoogleScholarGoogle Scholar |

Ortêncio Filho, H., Hahn, N. S., Fugi, R., and Russo, M. R. (2001). Aspectos da alimentação de Glanidium ribeiroi (Haseman, 1911) (Teleostei, Auchenipteridae), espécie endêmica do rio Iguaçu, PR. Acta Limnologica Brasiliensia 13, 85–92.

Ortiz, E., and Arim, M. (2016). Hypotheses and trends on how body size affects trophic interactions in a guild of South American killifshes. Austral Ecology 41, 976–982.
Hypotheses and trends on how body size affects trophic interactions in a guild of South American killifshes.Crossref | GoogleScholarGoogle Scholar |

Paul, M. J., and Meyer, J. L. (2001). Streams in the urban landscape. Annual Review of Ecology and Systematics 32, 333–365.
Streams in the urban landscape.Crossref | GoogleScholarGoogle Scholar |

Pianka, E. R. (1969). Sympatry of desert lizards (Ctenotus) in Western Australia. Ecology 50, 1012–1030.
Sympatry of desert lizards (Ctenotus) in Western Australia.Crossref | GoogleScholarGoogle Scholar |

Pianka, E. R. (1973). The structure of lizard communities. Annual Review of Ecology Evolution and Systematics 4, 53–74.
The structure of lizard communities.Crossref | GoogleScholarGoogle Scholar |

Pires, M. M., Guimarães, P. R., Araújo, M. S., Giaretta, A. A., Costa, J. C. L., and Dos Reis, S. F. (2011). The nested assembly of individual–resource networks. Journal of Animal Ecology 80, 896–903.
The nested assembly of individual–resource networks.Crossref | GoogleScholarGoogle Scholar | 21644976PubMed |

Prejs, A., and Prejs, K. (1987). Feeding of tropical freshwater fishes: seasonality in resource availability and resource use. Oecologia 71, 397–404.
Feeding of tropical freshwater fishes: seasonality in resource availability and resource use.Crossref | GoogleScholarGoogle Scholar | 28312987PubMed |

Pulliam, H. R. (1974). On the theory of optimal diets. American Naturalist 108, 59–74.
On the theory of optimal diets.Crossref | GoogleScholarGoogle Scholar |

Pusey, B. J., and Arthington, A. H. (2003). Importance of the riparian zone to the conservation and management of freshwater fish: a review. Marine and Freshwater Research 54, 1–16.
Importance of the riparian zone to the conservation and management of freshwater fish: a review.Crossref | GoogleScholarGoogle Scholar |

Quirino, B. A., Carniatto, N., Gaiotto, J. V., and Fugi, R. (2015). Seasonal variation in the use of food resources by small fishes inhabiting the littoral zone in a neotropical floodplain lake. Aquatic Ecology 49, 431–440.
Seasonal variation in the use of food resources by small fishes inhabiting the littoral zone in a neotropical floodplain lake.Crossref | GoogleScholarGoogle Scholar |

Roberts, B. J., Mulholland, P. J., and Hill, W. R. (2007). Multiple scales of temporal variability in ecosystem metabolism rates: results from 2 years of continuous monitoring in a forested headwater stream. Ecosystems 10, 588–606.
Multiple scales of temporal variability in ecosystem metabolism rates: results from 2 years of continuous monitoring in a forested headwater stream.Crossref | GoogleScholarGoogle Scholar |

Ross, S. T. (1986). Resource partitioning in fish assemblages: a review of field studies. Copeia , 352–388.
Resource partitioning in fish assemblages: a review of field studies.Crossref | GoogleScholarGoogle Scholar |

Sá-Oliveira, J. C., and Isaac, V. J. (2013). Diet breadth and niche overlap between Hypostomus plecostomus (Linnaeus, 1758) and Hypostomus emarginatus (Valenciennes, 1840) (Siluriformes) in the Coaracy Nunes hydroelectric reservoir, Ferreira Gomes, Amapá-Brazil. Biota Amazônia 3, 116–125.
Diet breadth and niche overlap between Hypostomus plecostomus (Linnaeus, 1758) and Hypostomus emarginatus (Valenciennes, 1840) (Siluriformes) in the Coaracy Nunes hydroelectric reservoir, Ferreira Gomes, Amapá-Brazil.Crossref | GoogleScholarGoogle Scholar |

Santos-Filho, P. S. (1997). The effect of body size on prey choice by Rivulus luelingi Seegers 1984 (Aplocheiloidei: Rivulidae). Revista Brasileira de Biologia 57, 551–562.

Scharf, F. S., Juanes, F., and Rountree, R. A. (2000). Predator size–prey size relationships of marine fish predators: interspecific variation and effects of ontogeny and body size on trophic-niche breadth. Marine Ecology Progress Series 208, 229–248.
Predator size–prey size relationships of marine fish predators: interspecific variation and effects of ontogeny and body size on trophic-niche breadth.Crossref | GoogleScholarGoogle Scholar |

Schilling, H. T., Hughes, J. M., Smith, J. A., Everett, J. D., Stewart, J., and Suthers, I. M. (2017). Latitudinal and ontogenetic variation in the diet of a pelagic mesopredator (Pomatomus saltatrix), assessed with a classification tree analysis. Marine Biology 164, 75.
Latitudinal and ontogenetic variation in the diet of a pelagic mesopredator (Pomatomus saltatrix), assessed with a classification tree analysis.Crossref | GoogleScholarGoogle Scholar |

Schoener, T. W. (1971). Theory of feeding strategies. Annual Review of Ecology Evolution and Systematics 2, 369–404.
Theory of feeding strategies.Crossref | GoogleScholarGoogle Scholar |

Schoener, T. W. (1974). Resource partitioning in ecological communities. Science 185, 27–39.
Resource partitioning in ecological communities.Crossref | GoogleScholarGoogle Scholar | 17779277PubMed |

Schoener, T. W. (1986). Resource partitioning. In ‘Community Ecology: Pattern and Process’. (Eds J. Kikkawa and D. J. Anderson.) pp. 91–126. (Blackwell Scientific Publications: Oxford, UK.)

Siegel, S., and Castellan, N. J. Jr (2006). ‘Estatística não-paramétrica para ciências do comportamento.’ 2nd edn. (Artmed: Porto Alegre, Brazil.)

Silva, E. L., Fugi, R., and Hahn, N. S. (2007). Variações temporais e ontogenéticas na dieta de um peixe onívoro em ambiente impactado (reservatório) e em ambiente natural (baía) da bacia do rio Cuiabá. Acta Scientiarum. Biological Sciences 29, 387–394.

Snyder, C. D., Young, J. A., Villella, R., and Lemarie, D. P. (2003). Influences of upland and riparian land use patterns on stream biotic integrity. Landscape Ecology 18, 647–664.
Influences of upland and riparian land use patterns on stream biotic integrity.Crossref | GoogleScholarGoogle Scholar |

Tabarelli, M., Pinto, L. P., Silva, J. M. C., Hirota, M. M., and Bedê, L. C. (2005). Desafios e oportunidades para a conservação da biodiversidade na Mata Atlântica brasileira. Megadiversidade 1, 132–138.

Teresa, F. B., and Casatti, L. (2010). Importância da vegetação ripária em região intensamente desmatada no sudeste do Brasil: um estudo com peixes de riacho. Pan-American Journal of Aquatic Sciences 5, 444–453.

Trindade, M. E. D. J., Peressin, A., Cetra, M., and Jucá-Chagas, R. (2013). Variation in the diet of a small characin according to the riparian zone coverage in an Atlantic Forest stream, northeastern Brazil. Acta Limnologica Brasiliensia 25, 34–41.
Variation in the diet of a small characin according to the riparian zone coverage in an Atlantic Forest stream, northeastern Brazil.Crossref | GoogleScholarGoogle Scholar |

Tupinambás, T. H., Pompeu, P. S., Gandini, C. V., Hughes, R. M., and Callisto, M. (2015). Fish stomach contents in benthic macroinvertebrate assemblage assessments. Brazilian Journal of Biology 75, 157–164.
Fish stomach contents in benthic macroinvertebrate assemblage assessments.Crossref | GoogleScholarGoogle Scholar |

Vannote, R. L., Minshall, G. W., Cummins, K. W., Sedell, J. R., and Cushing, C. E. (1980). The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences 37, 130–137.
The river continuum concept.Crossref | GoogleScholarGoogle Scholar |

Vitule, J. R. S., and Abilhoa, V. (2009). Plano de Conservação para Peixes do Rio Iguaçu. In ‘Plano de Conservação para Espécies da Ictiofauna ameaçada no Paraná Instituto Ambiental do Paraná’. (Eds G. P. Vidolin, M. G. P. Tossulino, and M. M. Britto.) pp. 26–37. (Instituto Ambiental do Paraná: Curitiba, Brazil.)

Wang, M., Liu, F., Lin, P., Yang, S., and Liu, H. (2015). Evolutionary dynamics of ecological niche in three Rhinogobio fishes from the upper Yangtze River inferred from morphological traits. Ecology and Evolution 5, 567–577.
Evolutionary dynamics of ecological niche in three Rhinogobio fishes from the upper Yangtze River inferred from morphological traits.Crossref | GoogleScholarGoogle Scholar | 25691981PubMed |

Ward, A. J. W., Webster, M. M., and Hart, P. J. B. (2006). Intraspecific food competition in fishes. Fish and Fisheries 7, 231–261.
Intraspecific food competition in fishes.Crossref | GoogleScholarGoogle Scholar |

Weihs, D. (1977). Periodic jet propulsion of aquatic creatures. Fortschritte der Zoologie 24, 171–175.

Werner, E. E., and Gilliam, J. F. (1984). The ontogenetic niche and species interactions in size structured populations. Annual Review of Ecology Evolution and Systematics 15, 393–425.
The ontogenetic niche and species interactions in size structured populations.Crossref | GoogleScholarGoogle Scholar |

Wiens, J. J., Ackerly, D. D., Allen, A. P., Anacker, B. L., Buckley, L. B., Cornell, H. V., Wiens, J. J., Damschen, E. I., Davies, T. J., Grytne, J. A., Harrison, S. P., Hawkins, B. A., Holt, R. D., McCain, C. M., and Stephens, P. R. (2010). Niche conservatism as an emerging principle in ecology and conservation biology. Ecology Letters 13, 1310–1324.
Niche conservatism as an emerging principle in ecology and conservation biology.Crossref | GoogleScholarGoogle Scholar | 20649638PubMed |

Winemiller, K. O., and Kelso-Winemiller, L. C. (2003). Food habits of tilapiine cichlids of the Upper Zambezi River and floodplains during the descending phase of the hydrological cycle. Journal of Fish Biology 63, 120–128.
Food habits of tilapiine cichlids of the Upper Zambezi River and floodplains during the descending phase of the hydrological cycle.Crossref | GoogleScholarGoogle Scholar |

Winemiller, K. O., and Pianka, E. R. (1990). Organization in natural assemblages of desert lizards and tropical fishes. Ecological Monographs 60, 27–55.
Organization in natural assemblages of desert lizards and tropical fishes.Crossref | GoogleScholarGoogle Scholar |

Wolff, L. L., Carniatto, N., and Hahn, N. S. (2013). Longitudinal use of feeding resources and distribution of fish trophic guilds in a coastal Atlantic stream, southern Brazil. Neotropical Ichthyology 11, 375–386.
Longitudinal use of feeding resources and distribution of fish trophic guilds in a coastal Atlantic stream, southern Brazil.Crossref | GoogleScholarGoogle Scholar |