Pelagic larval duration of two diadromous species of Kuhliidae (Teleostei: Percoidei) from Indo-Pacific insular systems
Pierre Feutry A D , Pierre Valade B , Jennifer R. Ovenden C , Pascal Jean Lopez A and Philippe Keith AA Département Milieux et Peuplements Aquatiques, Biologie des Organismes et Écosystèmes Aquatiques, UMR CNRS-MNHN 7208, Muséum national d’Histoire naturelle, CP-026, Paris, France.
B ARDA, Route Forestière de l’Étang du Gol, BP16, 97427 Étang Salé, La Réunion, France.
C Molecular Fisheries Laboratory, Queensland Government, PO Box 6097, St Lucia, Qld 4067, Australia.
D Corresponding author. Email: pfeutry@yahoo.fr
Marine and Freshwater Research 63(5) 397-402 https://doi.org/10.1071/MF11243
Submitted: 4 November 2011 Accepted: 16 January 2012 Published: 4 May 2012
Abstract
Diadromous fish species in the family Kuhliidae are able to colonise freshwater systems in Indo-Pacific islands, but their life cycle and the mechanisms involved in the colonisation of such ecosystems are poorly documented. After validating the daily rate of increment deposition in otoliths of Kuhlia rupestris, we estimated the pelagic larval duration (PLD) of K. rupestris, widely distributed in the Indo-Pacific area, and K. sauvagii, endemic to the Indian Ocean. Median PLD of K. rupestris was significantly longer than that of K. sauvagii (40.6 ± 6.9 and 32.3 ± 3.4 days (± s.d.), respectively), implying that the PLD is probably one factor controlling the extent of distribution range in Kuhlia. Within K. rupestris, individuals from New Caledonia had longer PLDs than those from Réunion Island (44.3 ± 6.7 and 37.3 ± 4.7 days (± s.d.) respectively). Further research on larval migration is needed to determine whether this was due to different environmental conditions or is population-specific. Interestingly, the PLD of these Kuhlia species is shorter than the PLD of other tropical diadromous fishes. These results improve our understanding of the dispersal strategies of freshwater fauna, to colonise and persist in tropical islands.
Additional keywords: diadromy, endemism, fish, larval dispersion, otolith increment counts.
References
Arai, T., Limbong, D., Otake, T., and Tsukamoto, K. (2001). Recruitment mechanisms of tropical eels Anguilla spp. and implications for the evolution of oceanic migration in the genus Anguilla. Marine Ecology Progress Series 216, 253–264.| Recruitment mechanisms of tropical eels Anguilla spp. and implications for the evolution of oceanic migration in the genus Anguilla.Crossref | GoogleScholarGoogle Scholar |
Begg, G. A., Campana, S. E., Fowler, A. J., and Suthers, I. M. (2005). Otolith research and application: current directions in innovation and implementation. Marine and Freshwater Research 56, 477–483.
| Otolith research and application: current directions in innovation and implementation.Crossref | GoogleScholarGoogle Scholar |
Benson, L. K., and Fitzsimons, J. M. (2002). Life history of the Hawaiian fish Kuhlia sandvicensis as inferred from daily growth rings of otoliths. Environmental Biology of Fishes 65, 131–137.
| Life history of the Hawaiian fish Kuhlia sandvicensis as inferred from daily growth rings of otoliths.Crossref | GoogleScholarGoogle Scholar |
Blom, G., Nordeide, J., Svasand, T., and Borge, A. (1994). Application of two fluorescent chemicals, alizarin complex one and alizarin red S, to mark otoliths of Atlantic cod, Gadus morhua L. Aquaculture and Fisheries Management 25, 229–243.
Campana, S. E. (2005). Otolith science entering the 21st century. Marine and Freshwater Research 56, 485–495.
| Otolith science entering the 21st century.Crossref | GoogleScholarGoogle Scholar |
Cowen, R. K., and Sponaugle, S. (2009). Larval dispersal and marine population connectivity. Annual Review of Marine Science 1, 443–466.
| Larval dispersal and marine population connectivity.Crossref | GoogleScholarGoogle Scholar |
Feutry, P., Castelin, M., Grondin, H., Cruaud, C., Couloux, A., and Keith, P. (). First record of Kuhlia sauvagii Regan, 1913 (Telesostei: Perciformes) in Mayotte and Réunion islands. Cybium. , .
Feutry, P., Tabouret, H., Maeda, K., Pécheyran, C., and Keith, P. (in press). Diadromous life cycle and behavioural plasticity in freshwater and estuarine Kuhliidae species (Teleostei) revealed by otolith microchemistry. Aquatic Biology , .
| Diadromous life cycle and behavioural plasticity in freshwater and estuarine Kuhliidae species (Teleostei) revealed by otolith microchemistry.Crossref | GoogleScholarGoogle Scholar |
Hoareau, T. B., Lecomte-Finiger, R., Grondin, H.-P., Conand, C., and Berrebi, P. (2007). Oceanic larval life of La Réunion ‘bichiques’, amphidromous gobiid post-larvae. Marine Ecology Progress Series 333, 303–308.
| Oceanic larval life of La Réunion ‘bichiques’, amphidromous gobiid post-larvae.Crossref | GoogleScholarGoogle Scholar |
Hogan, A. E., and Nicholson, J. C. (1987). Sperm motility of sooty grunter Hephaestus fuliginosus (Macleay), and jungle perch, Kuhlia rupestris (Lacépède), in different salinities. Australian Journal of Marine and Freshwater Research 38, 523–528.
| Sperm motility of sooty grunter Hephaestus fuliginosus (Macleay), and jungle perch, Kuhlia rupestris (Lacépède), in different salinities.Crossref | GoogleScholarGoogle Scholar |
Iida, M., Watanabe, S., Shinoda, A., and Tsukamoto, K. (2008). Recruitment of the amphidromous goby Sicyopterus japonicus to the estuary of the Ota River, Wakayama, Japan. Environmental Biology of Fishes 83, 331–341.
| Recruitment of the amphidromous goby Sicyopterus japonicus to the estuary of the Ota River, Wakayama, Japan.Crossref | GoogleScholarGoogle Scholar |
Iida, M., Watanabe, S., and Katsumi, T. (2010). Validation of otolith daily increments in the amphidromous goby Sicyopterus japonicus. Coastal Marine Science 34, 39–41.
Keith, P. (2003). Biology and ecology of amphidromous Gobiidae of the Indo-Pacific and Caribbean regions. Journal of Fish Biology 63, 831–847.
| Biology and ecology of amphidromous Gobiidae of the Indo-Pacific and Caribbean regions.Crossref | GoogleScholarGoogle Scholar |
Keith, P., Lord, C., and Vigneux, E. (2006a). In vivo observations on postlarval development of freshwater gobies and eleotrids from French Polynesia and New Caledonia. Ichthyological Exploration of Freshwaters 17, 187–191.
Keith, P., Marquet, G., Valade, P., Bosc, P., and Vigneux, E. (2006b). ‘Atlas des Poissons et des Crustacés d’Eau Douce des Comores, Mascareignes et Seychelles.’ (Publications Scientifiques du Muséum national d’Histoire naturelle: Paris.)
Keith, P., Hoareau, T. B., Lord, C., Ah-Yane, O., Gimonneau, G., Robinet, T., and Valade, P. (2008). Characterisation of post-larval to juvenile stages, metamorphosis and recruitment of an amphidromous goby, Sicyopterus lagocephalus (Pallas) (Teleostei: Gobiidae: Sicydiinae). Marine and Freshwater Research 59, 876–889.
| Characterisation of post-larval to juvenile stages, metamorphosis and recruitment of an amphidromous goby, Sicyopterus lagocephalus (Pallas) (Teleostei: Gobiidae: Sicydiinae).Crossref | GoogleScholarGoogle Scholar |
Lagardère, F., Thibaudeau, K., and Bégout Anras, M. L. (2000). Feasibility of otolith markings in large juvenile turbot, Scophthalmus maximus, using immersion in alizarin-red S solutions. ICES Journal of Marine Science 57, 1175–1181.
| Feasibility of otolith markings in large juvenile turbot, Scophthalmus maximus, using immersion in alizarin-red S solutions.Crossref | GoogleScholarGoogle Scholar |
Lewis, A. D., and Hogan, A. E. (1987). The enigmatic jungle perch: recent research provides some answers. South Pacific Commission Fisheries Newsletter 40, 24–31.
Loiselle, P. V., and Stiassny, M. L. J. (2007). Rehabilitation of the Malagasy endemic Kuhlia sauvagii Regan, 1913 (Teleostei: Perciformes), with the designation of a neotype for Centropomus rupestris (Lacépède, 1802). American Museum Novitates 3561, 1–13.
| Rehabilitation of the Malagasy endemic Kuhlia sauvagii Regan, 1913 (Teleostei: Perciformes), with the designation of a neotype for Centropomus rupestris (Lacépède, 1802).Crossref | GoogleScholarGoogle Scholar |
Lord, C., Brun, C., Hautecoeur, M., and Keith, P. (2010). Insights on endemism: comparison of the duration of the marine larval phase estimated by otolith microstructural analysis of three amphidromous Sicyopterus species (Gobioidei: Sicydiinae) from Vanuatu and New Caledonia. Ecology Freshwater Fish 19, 26–38.
| Insights on endemism: comparison of the duration of the marine larval phase estimated by otolith microstructural analysis of three amphidromous Sicyopterus species (Gobioidei: Sicydiinae) from Vanuatu and New Caledonia.Crossref | GoogleScholarGoogle Scholar |
MacArthur, R. H., and Wilson, E. O. (1963). An equilibrium theory of insular zoogeography. Evolution 17, 373–387.
| An equilibrium theory of insular zoogeography.Crossref | GoogleScholarGoogle Scholar |
Maeda, K., Yamasaki, N., and Tachihara, K. (2007). Size and age at recruitment and spawning season of sleeper, genus Eleotris (Teleostei: Eleotridae) on Okinawa Island, southern Japan. Raffles Bulletin of Zoology 14, 199–207.
McDowall, R. M., Mitchell, C. P., and Brothers, E. B. (1994). Age at migration from the sea of juvenile Galaxias in New Zealand (Pisces: Galaxiidae). Bulletin of Marine Science 54, 385–402.
Merrick, J. R., and Schmida, G. E. (1984). ‘Australian Freshwater Fishes: Biology and Management.’ (J. R. Merrick: Sydney.)
Murphy, C. A., and Cowan, J. H. (2007). Production, marine larval retention or dispersal, and recruitment of amphidromous Hawaiian gobioids: issues and implications. In ‘Biology of Hawaiian Streams and Estuaries. Vol. 3’. (Eds L. E. Neal and J. M. Fitzsimons.) pp. 63–74. (Bishop Museum: Honolulu, HI.)
Myers, G. S. (1949). Usage of anadromous, catadromous and allied terms for migratory fishes. Copeia 1949, 89–97.
| Usage of anadromous, catadromous and allied terms for migratory fishes.Crossref | GoogleScholarGoogle Scholar |
Radtke, R., Kinzie, R. A., and Folsom, S. (1988). Age at recruitment of Hawaiian freshwater gobies. Environmental Biology of Fishes 23, 205–213.
| Age at recruitment of Hawaiian freshwater gobies.Crossref | GoogleScholarGoogle Scholar |
Radtke, R. L., Kinzie, R. A., and Shafer, D. J. (2001). Temporal and spatial variation in length and size at settlement of the Hawaiian amphidromous goby Lentipes concolor. Journal of Fish Biology 59, 928–938.
Randall, J. E., and Randall, H. A. (2001). Review of the fishes of the genus Kuhlia (Perciformes: Kuhliidae) of the central Pacific. Pacific Science 55, 227–256.
| Review of the fishes of the genus Kuhlia (Perciformes: Kuhliidae) of the central Pacific.Crossref | GoogleScholarGoogle Scholar |
Réveillac, E., Feunteun, E., Berrebi, P., Gagnaire, P.-A., Lecomte-Finiger, R., Bosc, P., and Robinet, T. (2008). Anguilla marmorata larval migration plasticity as revealed by otolith microstructural analysis. Canadian Journal of Fisheries and Aquatic Sciences 65, 2127–2137.
| Anguilla marmorata larval migration plasticity as revealed by otolith microstructural analysis.Crossref | GoogleScholarGoogle Scholar |
Roberts, C. M. (1997). Connectivity and management of Caribbean coral reefs. Science 278, 1454–1457.
| Connectivity and management of Caribbean coral reefs.Crossref | GoogleScholarGoogle Scholar |
Shen, K.-N., and Tzeng, W. N. (2008). Reproductive strategy and recruitment dynamics of amphidromous goby Sicyopterus japonicus as revealed by otolith microstructure. Journal of Fish Biology 73, 2497–2512.
| Reproductive strategy and recruitment dynamics of amphidromous goby Sicyopterus japonicus as revealed by otolith microstructure.Crossref | GoogleScholarGoogle Scholar |
Watanabe, S., Iida, M., Kimura, Y., Feunteun, E., and Tsukamoto, K. (2006). Genetic diversity of Sicyopterus japonicus as revealed by mitochondrial DNA sequencing. Coastal Marine Science 30, 473–479.
Weersing, K., and Toonen, R. J. (2009). Population genetics, larval dispersal, and connectivity in marine systems. Marine Ecology Progress Series 393, 1–12.
| Population genetics, larval dispersal, and connectivity in marine systems.Crossref | GoogleScholarGoogle Scholar |
Yamasaki, N., Maeda, K., and Tachihara, K. (2007). Pelagic larval duration and morphology at recruitment of Stiphodon percnopterygionus (Gobiidae: Sicydiinae). Raffles Bulletin of Zoology 14, 209–214.