Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

First record of photosynthetic cyanobacterial symbionts from mesophotic temperate sponges

John K. Keesing A E , Kayley M. Usher B C and Jane Fromont D
+ Author Affiliations
- Author Affiliations

A CSIRO Wealth from Oceans National Research Flagship, Marine and Atmospheric Research, Private Bag 5, Wembley, WA 6913, Australia.

B CSIRO, Water for a Healthy Country Flagship, Land and Water, Private Bag 5, Wembley, WA 6913, Australia.

C School of Plant Biology, University of Western Australia, Crawley, WA 6009, Australia.

D Western Australian Museum, Locked Bag 49, Welshpool DC, WA 6986, Australia.

E Corresponding author. Email: john.keesing@csiro.au

Marine and Freshwater Research 63(5) 403-408 https://doi.org/10.1071/MF11216
Submitted: 26 September 2011  Accepted: 23 January 2012   Published: 4 May 2012

Abstract

Cyanobacterial symbionts may enable sponges to play a critical role in bentho-pelagic coupling, recycling nutrients at the benthic surface and providing a key requirement for ecosystem function. This is the first study to investigate the depths to which these symbioses are viable and the first record of photosynthetic sponges (i.e. sponges having a symbiotic relationship with photosynthetic cyanobacteria) from mesophotic temperate habitats. Sponges with high levels of photosynthetic cyanobacteria occurred at depths of up to 50 m, medium levels to 75 m and low levels to 150 m off south-western Australia. The proportion of sponges that showed no epifluorescence increased greatly with depth. Cyanobacterial symbionts sequenced from sponges at 40 and 50 m belonged to the genera Synechococcus and Synechocystis. Our results verify that the domain of photosynthetic sponges is not just tropical or shallow water temperate environments. Sponges made up the highest biomass of biota across all the sites we sampled from depths of 30–150 m and we hypothesise that photosynthetic cyanobacterial symbionts may be important in facilitating sponges to dominate habitats at these depths off Australia’s oligotrophic west coast.

Additional keywords: deep-water, nutrient recycling, photosynthetic cyanobacteria, sponges, temperate.


References

Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology 215, 403–410.
| 1:CAS:528:DyaK3MXitVGmsA%3D%3D&md5=1fbcfa97f9f91c5f665f107d1bfa29a6CAS |

Arillo, A., Bavestrello, G., Burlando, B., and Sarà, M. (1993). Metabolic integration between symbiotic cyanobacteria and sponges: a possible mechanism. Marine Biology 117, 159–162.
Metabolic integration between symbiotic cyanobacteria and sponges: a possible mechanism.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXlt1Cj&md5=88b290e0a399acd8e61d31841bfa0994CAS |

Bayer, K., Schmitt, S., and Hentschel, U. (2007). Microbial nitrification in Mediterranean sponges: possible involvement of ammonia-oxidizing betaproteobacteria. Porifera Research: Biodiversity. Innovation and Sustainability 2007, 165–171.

Bergquist, P. R. (1978). ‘Sponges.’ (Hutchinson: London.)

Corredor, J. E., Wilkinson, C. R., Vicente, V. P., Morell, J. M., and Otero, E. (1988). Nitrate release by Caribbean reef sponges. Limnology and Oceanography 33, 114–120.
Nitrate release by Caribbean reef sponges.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXhsleisb8%3D&md5=eea0057d1f3984e057cfbd6dd94ff1bbCAS |

Diaz, M. C., and Ward, B. B. (1997). Sponge-mediated nitrification in tropical benthic communities. Marine Ecology Progress Series 156, 97–107.
Sponge-mediated nitrification in tropical benthic communities.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmvVOht7o%3D&md5=eebe8ba9865b638fa93dc66046dda902CAS |

Feng, M., and Wild-Allen, K. (2010). The Leeuwin Current. In ‘Carbon and Nutrient Fluxes in Continental Margins: a Global Synthesis’. (Eds K.-K. Liu, L. Atkinson, R. Quinones and L. Talaue-McManus.) pp. 197–210. (Springer: Berlin.)

Freeman, C. J., and Thacker, R. W. (2011). Complex interactions between marine sponges and their symbiotic microbial communities. Limnology and Oceanography 56, 1577–1586.
Complex interactions between marine sponges and their symbiotic microbial communities.Crossref | GoogleScholarGoogle Scholar |

Fromont, J., Althaus, F., McEnnulty, F. R., Williams, A., Salotti, M., Gomez, O., and Gowlett-Holmes, K. L. (2011). Living on the edge: the sponge fauna of Australia’s southwestern and northwestern deep continental margin. Hydrobiologia , .
Living on the edge: the sponge fauna of Australia’s southwestern and northwestern deep continental margin.Crossref | GoogleScholarGoogle Scholar |

Furnas, M. J., and Crosbie, N. D. (1999). In situ growth dynamics of photosynthetic prokaryotic picoplankters Synechococcus and Prochlorococcus. In ‘Marine Cyanobacteria’. (Eds L. Charpy and A. W. D. Larkum.) pp. 387–417. (Bulletin de l’Institut Océanographique: Monaco.)

Greenwood, J. (2010). Evidence that increased nitrogen efflux from wave-influenced marine sediment enhances pelagic phytoplankton production on the inner continental shelf of Western Australia. Marine and Freshwater Research 61, 625–632.
Evidence that increased nitrogen efflux from wave-influenced marine sediment enhances pelagic phytoplankton production on the inner continental shelf of Western Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXms1Omtbg%3D&md5=a6d4d35d7813c3d511b4f89989823198CAS |

Hatcher, A. (1994). Nitrogen and phosphorus turnover in some benthic marine invertebrates: implications for the use of C : N ratios to assess food quality. Marine Biology 121, 161–166.
Nitrogen and phosphorus turnover in some benthic marine invertebrates: implications for the use of C : N ratios to assess food quality.Crossref | GoogleScholarGoogle Scholar |

Hentschel, U., Usher, K. M., and Taylor, M. W. (2006). Marine sponges as microbial fermenters. FEMS Microbiology Ecology 55, 167–177.
Marine sponges as microbial fermenters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xit1Sntb4%3D&md5=126f7215976f01ba238c18cb8058f6c1CAS |

Heyward, A., Fromont, J., Schönberg, C. H. L., Colquhoun, J., Radford, B., and Gomez, O. (2010). The sponge gardens of Ningaloo Reef, Western Australia. Open Marine Biology Journal 4, 3–11.
The sponge gardens of Ningaloo Reef, Western Australia.Crossref | GoogleScholarGoogle Scholar |

Ilan, M., Ben-Eliyahu, N., and Galil, B. (1994). Three deep water sponges from the Eastern Mediterranean and their associated fauna. Ophelia 39, 45–54.

Jimenez, E., and Ribes, M. (2007). Sponges as a source of dissolved inorganic nitrogen: nitrification mediated by temperate sponges. Limnology and Oceanography 52, 948–958.
Sponges as a source of dissolved inorganic nitrogen: nitrification mediated by temperate sponges.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXms1ymt78%3D&md5=b33b4ac260c3f85ab8d548f8398ac825CAS |

Keesing, J. K., Irvine, T. R., Alderslade, P., Clapin, G., Fromont, J., Hosie, A., Huisman, J., Phillips, J., Naughton, K. M., Marsh, L. M., Slack-Smith, S., Thomson, D., and Watson, J. (2011). Marine benthic flora and fauna of Gourdon Bay and the Dampier Peninsula in the Kimberley region of north-western Australia. Journal of the Royal Society of Western Australia 94, 285–301.

Lemloh, M.-L., Fromont, J., Brummer, F., and Usher, K. M. (2009). Diversity and abundance of photosynthetic sponges in temperate Western Australia. BMC Ecology 9, .
Diversity and abundance of photosynthetic sponges in temperate Western Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjtFSjtbc%3D&md5=a85aefa612a43cb32d59530f526d1eaeCAS |

Lourey, M. J., and Kirkman, H. (2009). Short lived dissolved nitrate pulses in a shallow Western Australian coastal lagoon. Marine and Freshwater Research 60, 1068–1080.
Short lived dissolved nitrate pulses in a shallow Western Australian coastal lagoon.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1ymtLnF&md5=d85dd7c9ec6ad2583c1740af295aa878CAS |

Lourey, M. J., Dunn, J. R., and Waring, J. (2006). A mixed-layer nutrient climatology of Leeuwin Current and Western Australian shelf waters: Seasonal nutrient dynamics and biomass. Journal of Marine Systems 59, 25–51.
A mixed-layer nutrient climatology of Leeuwin Current and Western Australian shelf waters: Seasonal nutrient dynamics and biomass.Crossref | GoogleScholarGoogle Scholar |

Maldonado, M., and Young, C. M. (1996). Bathymetric patterns of sponge distribution on the Bahamian slope. Deep-sea Research. Part I, Oceanographic Research Papers 43, 897–915.
Bathymetric patterns of sponge distribution on the Bahamian slope.Crossref | GoogleScholarGoogle Scholar |

McEnnulty, F. R., Gowlett-Holmes, K. L., Williams, A., Althaus, F., Fromont, J., Poore, G. C. B., O’Hara, T. D., Marsh, L., Kott, P., Slack-Smith, S., Alderslade, P., and Kitahara, M. V. (2011). The deepwater megabenthic invertebrates on the western continental margin of Australia (100–1500 m depths): composition, distribution and novelty. Records of the Western Australian Museum 80, 1–191.

Mohamed, N. M., Saito, K., Tal, Y., and Hill, R. T. (2010). Diversity of aerobic and anaerobic ammonia-oxidizing bacteria in marine sponges. ISME Journal 4, 38–48.
Diversity of aerobic and anaerobic ammonia-oxidizing bacteria in marine sponges.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhs1SqsLzI&md5=51f1696c6939337fb2dc672c8c728e46CAS |

Muenchhoff, J., Hirose, E., Maruyama, T., Sunairi, M., Burns, B. P., and Neilan, B. A. (2007). Host specificity and phylogeography of the prochlorophyte Prochloron sp., an obligate symbiont in didemnid ascidians. Environmental Microbiology 9, 890–899.
Host specificity and phylogeography of the prochlorophyte Prochloron sp., an obligate symbiont in didemnid ascidians.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXktlOrt7k%3D&md5=6c2b367f73cd917a53e5d5d6292a117dCAS |

Nübel, U., Garcia-Pichel, F., and Muyzer, G. (1997). PCR primers to amplify 16S rRNA genes from cyanobacteria. Applied and Environmental Microbiology 63, 3327–3332.

Olson, J. B., and Kellogg, C. A. (2010). Microbial ecology of corals, sponges, and algae in mesophotic coral environments. FEMS Microbiology Ecology 73, 17–30.
Microbial ecology of corals, sponges, and algae in mesophotic coral environments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXosFCit70%3D&md5=722435cb274c0c1ad727165818c5bd9eCAS |

Reed, J. K., and Pomponi, S. A. (1997). Biodiversity and distribution of deep and shallow water sponges in the Bahamas. In ‘Proceedings of the 8th International Coral Reef Symposium’. (Eds H. Lessios and I. G. Macintyre.) Vol. 1. pp. 1387–1392. (Smithsonian Tropical Research Institute: Balboa, Republic of Panama.)

Ridley, C. P., Faulkner, D. J., and Haygood, M. G. (2005). Investigation of Oscillatoria spongeliae-dominated bacterial communities in four Dictyoceratid sponges. Applied and Environmental Microbiology 71, 7366–7375.
Investigation of Oscillatoria spongeliae-dominated bacterial communities in four Dictyoceratid sponges.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1ekurbN&md5=68fc581d05190167911f9a02c97a0e2eCAS |

Roberts, D. E., and Davis, A. R. (1996). Patterns in sponge (Porifera) assemblages on temperate coastal reefs off Sydney, Australia. Marine and Freshwater Research 47, 897–906.
Patterns in sponge (Porifera) assemblages on temperate coastal reefs off Sydney, Australia.Crossref | GoogleScholarGoogle Scholar |

Roberts, D. E., Cummins, S. P., Davis, A. R., and Pangway, C. (1999). Evidence for symbiotic algae in sponges from temperate coastal reefs in New South Wales Australia. Memoirs of the Queensland Museum 44, 493–497.

Schmidt, E. W., Obraztsova, A. Y., Davidson, S. K., Faulkner, D. J., and Haygood, M. G. (2000). Identification of the antifungal peptide-containing symbiont of the marine sponge Theonella swinhoei as a novel δ-proteobacterium, ‘Candidatus Entotheonella palauensis’. Marine Biology 136, 969–977.
Identification of the antifungal peptide-containing symbiont of the marine sponge Theonella swinhoei as a novel δ-proteobacterium, ‘Candidatus Entotheonella palauensis’.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXms1agtrc%3D&md5=0d05243c640e447092563f1c1b04e3aaCAS |

Taylor, M. W., Radax, R., Steger, D., and Wagner, M. (2007). Sponge associated microorganisms: evolution, ecology, and biotechnological potential. Microbiology and Molecular Biology Reviews 71, 295–347.
Sponge associated microorganisms: evolution, ecology, and biotechnological potential.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXotV2gu7w%3D&md5=5b8c0c827f847ca19f749c03faf3c219CAS |

Unson, M. D., and Faulkner, D. J. (1993). Cyanobacterial symbiont biosynthesis of chlorinated metabolites from Dysidea herbacea (Porifera). Experientia Basel 49, 349–353.
Cyanobacterial symbiont biosynthesis of chlorinated metabolites from Dysidea herbacea (Porifera).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXltlGitbk%3D&md5=90045ead28c88f1b299ea5713f6b8ef5CAS |

Usher, K. M. (2008). The ecology and phylogeny of cyanobacterial symbionts in sponges. Marine Ecology (Berlin) 29, 178–192.
The ecology and phylogeny of cyanobacterial symbionts in sponges.Crossref | GoogleScholarGoogle Scholar |

van Soest, R. W. M. (1993). Distribution of sponges on the Mauritanian continental shelf. Hydrobiologia 258, 95–106.
Distribution of sponges on the Mauritanian continental shelf.Crossref | GoogleScholarGoogle Scholar |

Webster, N. S., and Blackall, L. L. (2009). What do we really know about sponge–microbial symbioses? ISME Journal 3, 1–3.
What do we really know about sponge–microbial symbioses?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXms12gtr0%3D&md5=bccc76fbeeb715b96149eb1866aaa056CAS |

Wilkinson, C. R. (1978). Microbial associations in sponges. I. Ecology, physiology and microbial populations of coral reef sponges. Marine Biology 49, 161–167.
Microbial associations in sponges. I. Ecology, physiology and microbial populations of coral reef sponges.Crossref | GoogleScholarGoogle Scholar |

Wilkinson, C. R. (1983). Net primary productivity in coral reef sponges. Science 219, 410–412.
Net primary productivity in coral reef sponges.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3cvktFymtg%3D%3D&md5=96bd636c8b2c196921e91ce5d18f8a80CAS |

Wilkinson, C. R. (1987). Interocean differences in size and nutrition of coral reef sponge populations. Science 236, 1654–1657.
Interocean differences in size and nutrition of coral reef sponge populations.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3cvisVyrtw%3D%3D&md5=c867706acc7bd471714e1e2753705f14CAS |

Wilkinson, C. R., and Vacelet, J. (1979). Transplantation of marine sponges to different conditions of light and current. Journal of Experimental Marine Biology and Ecology 37, 91–104.
Transplantation of marine sponges to different conditions of light and current.Crossref | GoogleScholarGoogle Scholar |