Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Effects of simulated green turtle regrazing on seagrass abundance, growth and nutritional status in Moreton Bay, south-east Queensland, Australia

Marianne Kuiper-Linley A , Craig R. Johnson B and Janet M. Lanyon A C
+ Author Affiliations
- Author Affiliations

A School of Integrative Biology, The University of Queensland, St Lucia, Qld 4072, Australia.

B School of Zoology, University of Tasmania, Private Bag 5, Hobart, Tas. 7000, Australia.

C Corresponding author. Email: j.lanyon@uq.edu.au

Marine and Freshwater Research 58(5) 492-503 https://doi.org/10.1071/MF06241
Submitted: 14 December 2006  Accepted: 5 April 2007   Published: 22 May 2007

Abstract

In some parts of their range, green turtles maintain grazing plots in seagrass beds by regular regrazing. The effects of simulated repeated grazing on subtropical seagrasses in Moreton Bay, Australia were investigated in a manipulative experiment over summer. Three seagrass species were subjected to two different clipping frequencies (simulating turtle cropping) and compared with unclipped controls over a 3.5-month summer period for the effects on seagrass biomass, leaf size and regrowth rates and water-soluble carbohydrate (WSC) and starch content. The order of the seagrass species’ relative tolerance to simulated grazing was Halophila ovalis > Zostera capricorni > Cymodocea serrulata. Frequent regrazing of the green turtle’s preferred seagrass, H. ovalis, resulted in an increase in leaf regrowth rate so that standing biomass of leaves and total plant material was maintained, suggesting an increase in productivity. Furthermore, whole-plant concentrations of WSC increased significantly in clipped H. ovalis plants relative to unclipped controls. In contrast, leaf biomass of the seagrass species less preferred by turtles, Z. capricorni and C. serrulata, decreased in response to repeated leaf removal relative to controls, despite maintenance of leaf regrowth rates. C. serrulata responded to repeated clipping with a reduction in leaf size and a decrease in rhizome WSC concentration. Z. capricorni also produced fewer and smaller new leaves. The ability of the preferred species, H. ovalis, to increase production of nutrient-rich standing crop in response to regrazing has major implications for green turtles and other seagrass grazers.

Additional keywords: Chelonia mydas, disturbance, green turtle, regrazing, seagrass.


Acknowledgements

We thank Graham Bonnett, Richard Simpson and Hugh Dove (CSIRO Division of Plant Industry, ACT) for assistance with water-soluble carbohydrate and starch analyses; Shad, Vonika and Jack Linley for field assistance; and the School of Integrative Biology, The University of Queensland for financial support. This study reports on an Honours project by M.K.L.


References

Aragones L. (1996). Dugongs and green turtles: grazers in the tropical seagrass ecosystem. Ph.D. Thesis, James Cook University, Townsville.

Aragones, L. , and Marsh, H. (2000). Impact of dugong grazing and turtle cropping on tropical seagrass communities. Pacific Conservation Biology 5, 277–288.
Brand S. J. (1995). Diet selection by juvenile green turtles Chelonia mydas, in subtropical Flathead Gutter, Moreton Bay. Honours Thesis, Zoology Department, The University of Queensland, Brisbane.

Brand-Gardner, S. J. , Lanyon, J. M. , and Limpus, C. J. (1999). Diet selection by immature green turtles Chelonia mydas, in sub-tropical Moreton Bay, south-east Queensland. Australian Journal of Zoology 47, 181–191.
Crossref | GoogleScholarGoogle Scholar | Clarke S. M., and Kirkman H. (1989). Seagrass dynamics. In ‘Biology of Seagrasses’. (Eds A. W. D. Larkum, A. J. McComb and S. A. Shepherd.) pp. 304–305. (Elsevier: Amsterdam.)

Coles R. G., Poiner I. R., and Kirkman H. (1989). Regional studies – seagrasses of north-eastern Australia. In ‘Biology of Seagrasses’. (Eds A. W. D. Larkum, A. J. McComb and S. A. Shepherd.) pp. 261–278. (Elsevier: Amsterdam.)

Dawes, C. J. , and Lawrence, J. M. (1983). Proximate composition and caloric content of seagrasses. Marine Technology Society Journal 17, 53–58.
den Hartog C. (1970). ‘The Seagrasses of the World.’ (North Holland Publishing Co.: Amsterdam.)

Draper N., and Smith H. (1981). ‘Applied Regression Analysis.’ (Wiley: New York.)

Drew E. A. (1980). Soluble carbohydrate composition of seagrasses. In ‘Handbook of Seagrass Biology’. (Eds R. C. Phillips and C. P. McRoy.) pp. 247–259. (Garland STPM: New York.)

Duffy J. E., and Hay M. E. (2001). Ecology and evolution of marine consumer–prey interactions. In ‘Marine Community Ecology’. (Eds M. Bertness, M. E. Hay and S. D. Gaines.) pp. 131–157. (Sinauer Press: Sunderland, MA.)

Greenway, M. (1974). The effects of cropping on the growth of Thalassia testudinum in Jamaica. Aquaculture 4, 199–206.
Crossref | GoogleScholarGoogle Scholar | Hyland S. J., Courtney A. J., and Butler C. T. (1989). ‘Distribution of Seagrass in the Moreton Region from Coolangatta to Noosa.’ Queensland Department of Primary Industries Information Series QI 189010. (Queensland Government: Brisbane.)

Jacobs, R. P. W. M. , den Hartog, C. , Braster, B. F. , and Carriere, F. C. (1981). Grazing of the seagrass Zostera noltii by birds at Terschelling (Dutch Wadden Sea). Aquatic Botany 10, 241–259.
Crossref | GoogleScholarGoogle Scholar | Lanyon J. M. (1991). The nutritional ecology of the dugong, Dugong dugon, in tropical Australian waters. Ph.D. Thesis, Monash University, Melbourne.

Lanyon, J. M. (2003). Distribution and abundance of dugongs in Moreton Bay, Queensland Australian Wildlife Research 30, 397–409.
Crossref | GoogleScholarGoogle Scholar | Lanyon J. M., Limpus C. J., and Marsh H. (1989). Dugongs and turtles: grazers in the seagrass system. In ‘Biology of Seagrasses’. (Eds A. W. D. Larkum, A. J. McComb and S. A. Shepherd.) pp. 610–634. (Elsevier: Amsterdam.)

Lee Long, W. , Mellors, J. E. , and Coles, R. G. (1993). Seagrasses between Cape York and Hervey Bay, Queensland, Australia. Australian Journal of Marine and Freshwater Research 44, 33–42.
Limpus C. J. (1982). Status of Australian sea turtle populations. In ‘Biology and Conservation of Sea Turtles’. (Ed. K. A. Bjorndal.) pp. 207–393. (Smithsonian Institution Press: Washington, DC.)

Limpus, C. J. , Couper, P. J. , and Read, M. A. (1994). The green turtle, Chelonia mydas, in Queensland: population structure in a warm temperate feeding area. Memoirs of the Queensland Museum 35, 139–154.
Ogden J. C. (1980). Faunal relationships in Caribbean seagrass beds. In ‘Handbook of Seagrass Biology’. (Eds R. C. Phillips and C. P. McRoy.) pp. 173–198. (Garland STPM: New York.)

Ogden, J. C. , Tighe, S. , and Miller, S. (1980). Grazing of seagrasses by large herbivores in the Caribbean. American Zoologist 20, 949.
Poiner I. R. (1984). Interspecific interactions: their role in structuring multispecific seagrass communities. In ‘The Ecological Basis of Interactions Between Organisms’. (Eds M. J. Liddle and J. C. Tothill.) AES Monograph 1/84. (School of Australian Environmental Studies, Griffith University, Brisbane.)

Preen A. R. (1992). Interactions between dugongs and seagrasses in a subtropical environment. Ph.D. Thesis, James Cook University of North Queensland, Townsville.

Preen, A. R. (1995). Impacts of dugong foraging on seagrass habitats: observational and experimental evidence for cultivation grazing. Marine Ecology Progress Series 124, 201–213.
Read M. A. (1991). Observations on the feeding ecology of immature green turtles Chelonia mydas, in the Moreton Banks region of Moreton Bay, south east Queensland. Honours Thesis, Department of Zoology, The University of Queensland, Brisbane.

Thayer, G. W. , Bjorndal, K. A. , Ogden, J. C. , Williams, S. L. , and Zieman, J. C. (1984). Role of larger herbivores in seagrass communities. Estuaries 7, 351–376.
Crossref | GoogleScholarGoogle Scholar |

Valentine, J. F. , and Heck, K. L. (1991). The role of sea urchin grazing in regulating seagrass meadow size. Journal of Experimental Marine Biology and Ecology 154, 215–230.
Crossref | GoogleScholarGoogle Scholar |

Walker, D. I. , Lukatelich, R. J. , Bastyan, G. , and McComb, A. J. (1989). Effect of boat moorings on seagrass beds near Perth, Western Australia. Aquatic Botany 36, 69–77.
Crossref | GoogleScholarGoogle Scholar |

Williams, S. L. (1988). Thalassia testudinum productivity and grazing by green turtles in a highly disturbed seagrass bed. Marine Biology 98, 447–455.
Crossref | GoogleScholarGoogle Scholar |

Yemm, E. W. , and Willis, A. J. (1954). The estimation of carbohydrates in plant extracts by anthrone. The Biochemical Journal 57, 508–514.
PubMed |

Young, P. C. , and Kirkman, H. (1975). The seagrass communities of Moreton Bay, Queensland. Aquatic Botany 1, 191–202.
Crossref | GoogleScholarGoogle Scholar |

Zieman, J. C. (1975). Seasonal variation of turtle grass, Thalassia testudinum Konig, with reference to temperature and salinity effects. Aquatic Botany 1, 107–123.
Crossref | GoogleScholarGoogle Scholar |

Zieman, J. C. (1976). The ecological effect of physical damage from motor boats on turtle grass beds in southern Florida. Aquatic Botany 2, 127–139.
Crossref | GoogleScholarGoogle Scholar |

Zieman, J. C. , Iverson, R. L. , and Ogden, J. C. (1984). Herbivory effects on Thalassia testudinum leaf growth and nitrogen content. Marine Ecology Progress Series 15, 151–158.