Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
REVIEW

Energy and nutrient fluxes from rivers and streams into terrestrial food webs

Andrea Ballinger A B C and P. S. Lake A
+ Author Affiliations
- Author Affiliations

A CRC for Freshwater Ecology, School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia.

B 60 Berry St, Clifton Hill, Victoria 3068, Australia.

C Corresponding author. Email: andrea.ballinger@dse.vic.gov.au

Marine and Freshwater Research 57(1) 15-28 https://doi.org/10.1071/MF05154
Submitted: 18 August 2005  Accepted: 3 November 2005   Published: 17 January 2006

Abstract

Ecologists long have been aware that there is flux of energy and nutrients from riverine systems to the surrounding terrestrial landscape and vice versa. Riparian ecotones are diverse and ecologically important. Consequently, there is substantial literature examining faunal-mediated transfers of energy and nutrients from rivers into terrestrial food webs. A wide variety of taxa has been shown to utilise riparian resources, from species specialised for existence at the aquatic–terrestrial interface to opportunistic predators and scavengers. Outputs from rivers may be influenced by productivity gradients, channel geometry and the condition of the exchange surface. Until recently, consideration of faunal-transferred, allochthonous inputs has been peripheral to other research questions. The development of general models of inter-habitat transfers, together with advances in technology, has placed questions about the ecological importance of riverine outputs squarely on the research agenda. Researchers now are investigating how aquatic subsidies influence food-web dynamics at landscape scales. However, ecologists continue to largely ignore subsidisation of terrestrial food webs by energy and nutrients from floodwaters in lowland river–floodplain systems. The dearth of information about the benefits of flooding to terrestrial consumers appears to have resulted in underestimation of the gross ecological impacts of river regulation.


References

Anholt, B. R. , Vorburger, C. , and Knaus, P. (2001). Mark–recapture estimates of the daily survival rates of two damselflies (Coenagrion puella and Ischnura elegans). Canadian Journal of Zoology 79, 895–899.
Crossref | GoogleScholarGoogle Scholar | Barker R. D., and Vestjens W. J. M. (1940). ‘The Food of Australian Birds. II. Passerines.’ (CSIRO Publishing: Melbourne.)

Bastow, J. L. , Sabo, J. L. , Finlay, J. C. , and Power, M. E. (2002). A basal aquatic-terrestrial trophic link in rivers: algal subsidies via shore-dwelling grasshoppers. Oecologia 131, 261–268.
Crossref | GoogleScholarGoogle Scholar | Boulton A. J., and Suter P. J. (1986). Ecology of temporary streams – an Australian perspective. In ‘Limnology in Australia’. (Eds P. De Deckker and W. D. Williams.) pp. 313–328. (CSIRO Publishing: Melbourne.)

Briers, R. A. , Cariss, H. M. , and Gee, J. H. R. (2002). Dispersal of adult stoneflies (Plecoptera) from upland streams draining catchments with contrasting land-use. Archiv fuer Hydrobiologie 155, 627–654.
Brode J. M., and Bury R. B. (1984). The importance of riparian systems to amphibians and reptiles. In ‘California Riparian Systems’. (Eds R. E. Warner and K. M. Hendrix.) pp. 30–36. (University of California Press: Berkeley, CA.)

Brookshire, E. N. J. , Kauffman, J. B. , Lytjen, D. , and Otting, N. (2002). Cumulative effects of wild ungulate and livestock herbivory on riparian willows. Oecologia 132, 559–566.
Crossref | GoogleScholarGoogle Scholar | Corbet P. S. (1962). Growth, metamorphosis and emergence. In ‘A Biology of Dragonflies’. pp. 90–119. (H. F. & G. Witherby Ltd.: London.)

Craig, H. (1953). The geochemistry of the stable carbon isotopes. Geochimica et Cosmochimica Acta 3, 53–92.
Crossref | GoogleScholarGoogle Scholar | Dunne T., and Leopold L. B. (1978). ‘Water in Environmental Planning.’ pp. 622–627. (W. H. Freeman and Company: San Francisco, CA.)

Edmunds G. F., and Edmunds C. H. (1980). Predation, climate, and emergence and mating of mayflies. In ‘Advances in Ephemeroptera Biology’. (Eds J. F. Flannagan and K. E. Marshall.) pp. 277–285. (Plenum Press: New York.)

FAO (1995). Fish and fishery products: world apparent consumption statistics based on food balance sheets (1961–1995). FAO Fisheries Circular 821, 253.
Gooderham J., and Tsyrlin E. (2002). ‘The Waterbug Book: A Guide to the Freshwater Macroinvertebrates of Temperate Australia.’ (CSIRO Publishing: Melbourne.)

Goodman, D. (1971). Differential selection of immobile prey among terrestrial and riparian lizards. American Midland Naturalist 86, 217–219.
Junk W. J., Bayley P. B., and Sparks R. E. (1989). The flood pulse concept in river–floodplain systems. In ‘Proceedings of the International Large Rivers Symposium. Canadian Special Publications on Fisheries and Aquatic Sciences’. (Ed. D. P. Dodge.) pp. 110–127. (NRC Research Press: Ottawa.)

Keeley, J. E. , and Sandquist, D. R. (1992). Carbon: freshwater plants. Plant, Cell & Environment 15, 1021–1035.
Nias D. J. (1999). Carbon dynamics and ecology of an Australian temporary floodplain wetland. Ph.D. Thesis, Department of Biological Sciences, Monash University, Melbourne.

Nowak R. M. (Ed.) (1999). Ursidae; bears. In ‘Walker’s Mammals of the World’. pp. 678–693. (The John Hopkins University Press: Baltimore, MD.)

Odum, E. P. , Finn, J. T. , and Franz, E. H. (1979). Perturbation theory and the subsidy-stress gradient. Bioscience 29, 349–352.
Polis G. A., and Hurd S. D. (1996a). Allochthonous input across habitats, subsidized consumes and apparent trophic cascades: examples from the ocean–land interface. In ‘Food Webs: Integration of Patterns and Dynamics’. (Eds G. A. Polis and K. O. Winemiller.) pp. 275–285. (Chapman and Hall: New York.)

Polis, G. A. , and Hurd, S. D. (1996b). Linking marine and terrestrial food webs: allochthonous inputs from the ocean supports high secondary productivity on small islands and coastal land communities. American Naturalist 147, 396–423.
Crossref | GoogleScholarGoogle Scholar | Polis G. A., Holt R. D., Menge B. A., and Winemiller K. O. (1996). Time, space and life history: influences on food webs. In ‘Food Webs: Integration of Patterns and Dynamics’. (Eds G. A. Polis and K. O. Winemiller.) pp. 435–460. (Chapman and Hall: New York.)

Polis, G. A. , Anderson, W. B. , and Holt, R. D. (1997). Toward an integration of landscape and food web ecology: the dynamics of spatially subsidized food webs. Annual Review of Ecology and Systematics 28, 289–316.
Crossref | GoogleScholarGoogle Scholar | Power M. E., and Rainey W. E. (2000). Food webs and resource sheds: towards spatially delimiting trophic interactions. In ‘The Ecological Consequences of Environmental Heterogeneity’. (Eds M. J. Hutchings, E. A. John and A. J. A. Stewart.) pp. 291–314. (Blackwell Science Ltd.: Oxford.)

Power M. E., Rainey W. E., Parker M. S., Sabo J. L., Smyth A., Khandwala S., Finlay J. C., McNeely C., Marsee K., and Anderson C. (2004). River-to-watershed subsidies in an old-growth conifer forest. In ‘Food Webs and the Landscape Scale’. (Eds G. A. Polis, M. E. Power and G. R. Huxel.) pp. 217–240. (The University of Chicago Press: Chicago, IL.)

Progar, R. A. , and Moldenke, A. R. (2002). Insect production from temporary and perennially flowing headwater streams in Western Oregon. Journal of Freshwater Ecology 17, 391–407.
Racey P. A. (1998). The importance of the riparian environment as a habitat for British bats. In ‘Behaviour and Ecology of Riparian Mammals’. (Eds N. Dunstone and M. Gorman.) pp. 69–92. (Cambridge University Press: Cambridge.)

Reimchen, T. E. (2000). Some ecological and evolutionary aspects of bear-salmon interactions in coastal British Columbia. Canadian Journal of Zoology 78, 448–457.
Crossref | GoogleScholarGoogle Scholar | Rentz D. C. F. (1996). Family Tetrigidae (pygmy grasshoppers). In ‘Grasshopper Country: The Abundant Orthopteriod Insects of Australia’. pp. 195–199. (University of New South Wales Press: Sydney.)

Robinson, J. V. (1983). Effects of water mite parasitism on the demographics of an adult population of Ischnura posita Odonata Coenagrionidae. American Midland Naturalist 109, 169–174.
Schindler D. E., and Lubetkin S. C. (2004). Using stable isotopes to quantify material transport in food webs. In ‘Food Webs and the Landscape Scale’. (Eds G. A. Polis, M. E. Power and G. R. Huxel.) pp. 25–42. (The University of Chicago Press: Chicago, IL.)

Seidman, V. M. , and Zabel, C. J. (2001). Bat activity along intermittent streams in northwestern Califiornia. Journal of Mammalogy 82, 738–747.
Crossref | GoogleScholarGoogle Scholar | Vander Zanden M. J., and Sanzone D. M. (2004). Food web subsidies at the land-water ecotone. In ‘Food Webs and the Landscape Scale’. (Eds G. A. Polis, M. E. Power and G. R. Huxel.) pp. 185–188. (The University of Chicago Press: Chicago, IL.)

van Geest, G. J. , Roozen, F. C. J. M. , Coops, H. , Roijackers, R. M. M. , Buijse, A. D. , Peeters, E. T. H. M. , and Scheffer, M. (2003). Vegetation abundances in lowland flood plain lakes determined by surface area, age and connectivity. Freshwater Biology 48, 440–454.
Crossref | GoogleScholarGoogle Scholar | Willson M. F., Gende S. M., and Bisson P. A. (2004). Anadromous fishes as ecological links between ocean, freshwater and land. In ‘Food Webs and the Landscape Scale’. (Eds G. A. Polis, M. E. Power and G. R. Huxel.) pp. 284–300. (The University of Chicago Press: Chicago, IL.)

Woinarski, J. C. Z. , Brock, C. , Armstrong, M. , Hempel, C. , Cheal, D. , and Brennan, K. (2000). Bird distribution in riparian vegetation in the extensive natural landscape of Australia’s tropical savanna: a broad-scale survey and analysis of a distributional data base. Journal of Biogeography 27, 843–868.
Crossref | GoogleScholarGoogle Scholar |