Register      Login
Microbiology Australia Microbiology Australia Society
Microbiology Australia, bringing Microbiologists together
RESEARCH ARTICLE

Vaccination against streptococcal infections in farmed fish

Andrew C Barnes A B and Oleksandra Rudenko A
+ Author Affiliations
- Author Affiliations

A The University of Queensland School of Biological Sciences and Centre for Marine Science Brisbane, Qld 4072, Australia

B Email: a.barnes@uq.edu.au

Microbiology Australia 37(3) 118-121 https://doi.org/10.1071/MA16040
Published: 10 August 2016

Abstract

Aquaculture produces more than 50% of fish for human consumption and, in spite of major improvements since the adoption of injectable vaccines in the 1990s, bacterial diseases still account for considerable losses, particularly in tropical and warm temperate species. Streptococcosis, caused predominantly by Streptococcus iniae and S. agalactiae, manifests as a generalised septicaemia and meningitis followed by rapid mortality. Vaccination against streptococcal infections is difficult as a result of multiple, poorly defined serotypes and consequent vaccine escape (reinfection of previously vaccinated animals). However, genomics applied to reverse vaccinology is providing novel insights into diversity among these aquatic pathogens and is identifying cross-serotype targets that may be exploited for new generation streptococcal vaccines for aquaculture.


References

[1]  Anon. (2014) The State of World Fisheries and Aquaculture. In: FAO, ed. Food and Agriculture Organisation of the United Nations, Rome.

[2]  Hamouda, L. et al. (2005) The salmon aquaculture conflict in British Columbia: a graph model analysis. Ocean Coast. Manage. 48, 571–587.
The salmon aquaculture conflict in British Columbia: a graph model analysis.Crossref | GoogleScholarGoogle Scholar |

[3]  Leith, P. et al. (2014) Science and social license: defining environmental sustainability of Atlantic salmon aquaculture in south-eastern Tasmania, Australia. Soc. Epistemol. 28, 277–296.
Science and social license: defining environmental sustainability of Atlantic salmon aquaculture in south-eastern Tasmania, Australia.Crossref | GoogleScholarGoogle Scholar |

[4]  Grave, K. et al. (1999) Surveillance of the overall consumption of antibacterial drugs in humans, domestic animals and farmed fish in Norway in 1992 and 1996. J. Antimicrob. Chemother. 43, 243–252.
Surveillance of the overall consumption of antibacterial drugs in humans, domestic animals and farmed fish in Norway in 1992 and 1996.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhsFyms7o%3D&md5=bd0e08edeffafde2dd9b0ea65991f6a6CAS | 11252330PubMed |

[5]  Sommerset, I. et al. (2005) Vaccines for fish in aquaculture. Expert Rev. Vaccines 4, 89–101.
Vaccines for fish in aquaculture.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXis12nsro%3D&md5=b509b89be80d911921d4a50fadc77b0eCAS | 15757476PubMed |

[6]  Agnew, W. and Barnes, A.C. (2007) Streptococcus iniae: an aquatic pathogen of global veterinary significance and a challenging candidate for reliable vaccination. Vet. Microbiol. 122, 1–15.
Streptococcus iniae: an aquatic pathogen of global veterinary significance and a challenging candidate for reliable vaccination.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXksFWqtbY%3D&md5=cab24d16e9591ec67b08f865aed94882CAS | 17418985PubMed |

[7]  Pier, G.B. and Madin, S.H. (1976) Streptococcus iniae sp nov, a beta-hemolytic Streptococcus isolated from an amazon freshwater dolphin, Inia geoffrensis. Int. J. Syst. Bacteriol. 26, 545–553.
Streptococcus iniae sp nov, a beta-hemolytic Streptococcus isolated from an amazon freshwater dolphin, Inia geoffrensis.Crossref | GoogleScholarGoogle Scholar |

[8]  Lahav, D. et al. (2004) Streptococcus iniae type II infections in rainbow trout Oncorhynchus mykiss. Dis. Aquat. Organ. 62, 177–180.
Streptococcus iniae type II infections in rainbow trout Oncorhynchus mykiss.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2M%2Fit1Ggug%3D%3D&md5=dff168db68c71a2d67c7a7ccd46ed99fCAS | 15648844PubMed |

[9]  Huang, H.Y. et al. (2014) Efficacy of a formalin-inactivated vaccine against Streptococcus iniae infection in the farmed grouper Epinephelus coioides by intraperitoneal immunization. Vaccine 32, 7014–7020.
Efficacy of a formalin-inactivated vaccine against Streptococcus iniae infection in the farmed grouper Epinephelus coioides by intraperitoneal immunization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsVymtr%2FK&md5=42b245d597a42108c82eaf403b6fc135CAS | 25192808PubMed |

[10]  Shoemaker, C.A. et al. (2001) Prevalence of Streptococcus iniae in tilapia, hybrid striped bass, and channel catfish on commercial fish farms in the United States. Am. J. Vet. Res. 62, 174–177.
Prevalence of Streptococcus iniae in tilapia, hybrid striped bass, and channel catfish on commercial fish farms in the United States.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD38%2Fgs1amsw%3D%3D&md5=32aaa5592076ce96f133e073da538a19CAS | 11212023PubMed |

[11]  Bromage, E.S. et al. (1999) Streptococcus iniae, a bacterial infection in barramundi Lates calcarifer. Dis. Aquat. Organ. 36, 177–181.
Streptococcus iniae, a bacterial infection in barramundi Lates calcarifer.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1MzivFyhtA%3D%3D&md5=dc1b868c3bd900fc7b50ce0d6f5e201aCAS | 10401583PubMed |

[12]  Klesius, P.H. et al. (1999) Efficacy of a killed Streptococcus iniae vaccine in tilapia (Oreochromis niloticus). Bull. Eur. Assoc. Fish Pathol. 19, 39–41.

[13]  Bachrach, G. et al. (2001) Recovery of Streptococcus iniae from diseased fish previously vaccinated with a streptococcus vaccine. Appl. Environ. Microbiol. 67, 3756–3758.
Recovery of Streptococcus iniae from diseased fish previously vaccinated with a streptococcus vaccine.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlvFSksL0%3D&md5=b2a4eaf2a13c1b313cd9eea1ad5327cdCAS | 11472962PubMed |

[14]  Millard, C.M. et al. (2012) Evolution of the capsular operon of Streptococcus iniae in response to vaccination. Appl. Environ. Microbiol. 78, 8219–8226.
Evolution of the capsular operon of Streptococcus iniae in response to vaccination.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1yktr3F&md5=4fe44a493e5c9141ddda728a7d2e20c3CAS | 23001668PubMed |

[15]  Klesius, P.H. et al. (2000) Efficacy of single and combined Streptococcus iniae isolate vaccine administered by intraperitoneal and intramuscular routes in tilapia (Oreochromis niloticus). Aquaculture 188, 237–246.
Efficacy of single and combined Streptococcus iniae isolate vaccine administered by intraperitoneal and intramuscular routes in tilapia (Oreochromis niloticus).Crossref | GoogleScholarGoogle Scholar |

[16]  Shoemaker, C.A. et al. (2010) Protection against heterologous Streptococcus iniae isolates using a modified bacterin vaccine in Nile tilapia, Oreochromis niloticus (L.). J. Fish Dis. 33, 537–544.
Protection against heterologous Streptococcus iniae isolates using a modified bacterin vaccine in Nile tilapia, Oreochromis niloticus (L.).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXptV2ntLw%3D&md5=797c4085a9129615098a6d59f26495e3CAS | 20298447PubMed |

[17]  Eyngor, M. et al. (2008) Emergence of novel Streptococcus iniae exopolysaccharide-producing strains following vaccination with nonproducing strains. Appl. Environ. Microbiol. 74, 6892–6897.
Emergence of novel Streptococcus iniae exopolysaccharide-producing strains following vaccination with nonproducing strains.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVaru73N&md5=bb73b38c63498c4bc87badc91fc1ec31CAS | 18806000PubMed |

[18]  Barnes, A.C. et al. (2003) Streptococcus iniae: serological differences, presence of capsule and resistance to immune serum killing. Dis. Aquat. Organ. 53, 241–247.
Streptococcus iniae: serological differences, presence of capsule and resistance to immune serum killing.Crossref | GoogleScholarGoogle Scholar | 12691195PubMed |

[19]  Croucher, N.J. et al. (2015) Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using Gubbins. Nucleic Acids Res. 43, e15.
Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using Gubbins.Crossref | GoogleScholarGoogle Scholar | 25414349PubMed |

[20]  Leaché, A.D. et al. (2015) Short tree, long tree, right tree, wrong tree: new acquisition bias corrections for inferring SNP phylogenies. Syst. Biol. 64, 1032–1047.
Short tree, long tree, right tree, wrong tree: new acquisition bias corrections for inferring SNP phylogenies.Crossref | GoogleScholarGoogle Scholar | 26227865PubMed |

[21]  Baiano, J.C. and Barnes, A.C. (2009) Towards control of Streptococcus iniae. Emerg. Infect. Dis. 15, 1891–1896.
Towards control of Streptococcus iniae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXitlajug%3D%3D&md5=009303351e12b90d84501df26675a62fCAS | 19961667PubMed |

[22]  Aviles, F. et al. (2013) The conserved surface M-protein SiMA of Streptococcus iniae is not effective as a cross-protective vaccine against differing capsular serotypes in farmed fish. Vet. Microbiol. 162, 151–159.
The conserved surface M-protein SiMA of Streptococcus iniae is not effective as a cross-protective vaccine against differing capsular serotypes in farmed fish.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlGnsLnL&md5=d6fc00fad713bd2b65d8a3b971921212CAS | 22989514PubMed |

[23]  Membrebe, J.D. et al. (2016) Protective efficacy of Streptococcus iniae derived enolase against Streptococcal infection in a zebrafish model. Vet. Immunol. Immunopathol. 170, 25–29.
Protective efficacy of Streptococcus iniae derived enolase against Streptococcal infection in a zebrafish model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xhs1Oisbk%3D&md5=bac86b78f3c0c445095be61d070d14baCAS | 26872628PubMed |

[24]  Sun, Y. et al. (2013) SagE induces highly effective protective immunity against Streptococcus iniae mainly through an immunogenic domain in the extracellular region. Acta Vet. Scand. 55, 78.
SagE induces highly effective protective immunity against Streptococcus iniae mainly through an immunogenic domain in the extracellular region.Crossref | GoogleScholarGoogle Scholar | 24215645PubMed |

[25]  Jafar, Q.A. et al. (2009) Molecular investigation of Streptococcus agalactiae isolates from environmental samples and fish specimens during a massive fish kill in Kuwait Bay. Afr. J. Microbiol. Res. 3, 22–26.
| 1:CAS:528:DC%2BD1MXhtFaqurfP&md5=9c1d709dd99f449e9ddc806f54353ab6CAS |

[26]  Rosinski-Chupin, I. et al. (2013) Reductive evolution in Streptococcus agalactiae and the emergence of a host adapted lineage. BMC Genomics 14, 252.
Reductive evolution in Streptococcus agalactiae and the emergence of a host adapted lineage.Crossref | GoogleScholarGoogle Scholar | 23586779PubMed |

[27]  Vandamme, P. et al. (1997) Streptococcus difficile is a nonhemolytic group B, type Ib Streptococcus. Int. J. Syst. Bacteriol. 47, 81–85.
Streptococcus difficile is a nonhemolytic group B, type Ib Streptococcus.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2s7kvV2rsA%3D%3D&md5=a2043ff69d5cbd27a22171d37b42f9d4CAS | 8995807PubMed |

[28]  Kawamura, Y. et al. (2005) High genetic similarity of Streptococcus agalactiae and Streptococcus difficilis: S. difficilis Eldar et al. 1995 is a later synonym of S-agalactiae Lehmann and Neumann 1896 (Approved Lists 1980). Int. J. Syst. Evol. Microbiol. 55, 961–965.
High genetic similarity of Streptococcus agalactiae and Streptococcus difficilis: S. difficilis Eldar et al. 1995 is a later synonym of S-agalactiae Lehmann and Neumann 1896 (Approved Lists 1980).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjsFehsr8%3D&md5=110fadc3212491b17cb803a0803627efCAS | 15774692PubMed |

[29]  Evans, J.J. et al. (2004) Efficacy of Streptococcus agalactiae (group B) vaccine in tilapia (Oreochromis niloticus) by intraperitoneal and bath immersion administration. Vaccine 22, 3769–3773.
Efficacy of Streptococcus agalactiae (group B) vaccine in tilapia (Oreochromis niloticus) by intraperitoneal and bath immersion administration.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmsl2jt74%3D&md5=8707bdab8c5928c51a4cf71cf7dcf575CAS | 15315858PubMed |

[30]  Maione, D. et al. (2005) Identification of a universal Group B streptococcus vaccine by multiple genome screen. Science 309, 148–150.
Identification of a universal Group B streptococcus vaccine by multiple genome screen.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlsF2ht7o%3D&md5=5c865d01e3442f427152ea32afeadbfaCAS | 15994562PubMed |