Register      Login
Microbiology Australia Microbiology Australia Society
Microbiology Australia, bringing Microbiologists together
RESEARCH ARTICLE

Anaerobic microorganisms and bioremediation of organohalide pollution

Matthew Lee A , Chris Marquis A , Bat-Erdene Judger A and Mike Manefield A B
+ Author Affiliations
- Author Affiliations

A School of Biotechnology and Biomolecular Sciences
University of New South Wales
Sydney, NSW 2052, Australia
Tel: +61 2 9385 1780

B Email: manefield@unsw.edu.au

Microbiology Australia 36(3) 125-128 https://doi.org/10.1071/MA15044
Published: 11 August 2015

Abstract

Organohalide pollution of subsurface environments is ubiquitous across all industrialised countries. Fortunately, strictly anaerobic microorganisms exist that have evolved using naturally occurring organohalides as their terminal electron acceptor. These unusual organisms are now being utilised to clean anthropogenic organohalide pollution.


References

[1]  Lovley, D.R. (2003) Cleaning up with genomics: applying molecular biology to bioremediation. Nat. Rev. Microbiol. 1, 35–44.
Cleaning up with genomics: applying molecular biology to bioremediation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXptFWlu7w%3D&md5=1caab38bf2eabc199062585f093f810eCAS | 15040178PubMed |

[2]  Doherty, R.E. (2000) A history of the production and use of carbon tetrachloride, tetrachloroethylene, trichloroethylene and 1, 1, 1-trichloroethane in the United States: part 2--trichloroethylene and 1, 1, 1-trichloroethane. Environ. Forensics 1, 83–93.
A history of the production and use of carbon tetrachloride, tetrachloroethylene, trichloroethylene and 1, 1, 1-trichloroethane in the United States: part 2--trichloroethylene and 1, 1, 1-trichloroethane.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xis1agur0%3D&md5=4d2805aa7f5f24447be32749b8055cf7CAS |

[3]  Koenig, J. et al. (2015) Aliphatic organochlorine degradation in subsurface environments. Rev. Environ. Sci. Biotechnol. 14, 49–71.
Aliphatic organochlorine degradation in subsurface environments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtlKht7nJ&md5=4356356b7a265e22dd6ab1f7334d7f5aCAS |

[4]  Gribble, G.W. (1992) Naturally occurring organohalogen compounds--a survey. J. Nat. Prod. 55, 1353–1395.
Naturally occurring organohalogen compounds--a survey.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XmtVOhtbc%3D&md5=6633f577b44a8be1ccadfa3710777695CAS |

[5]  Mohn, W.W. and Tiedje, J.M. (1992) Microbial reductive dehalogenation. Microbiol. Rev. 56, 482–507.
| 1:CAS:528:DyaK3sXjsFCkuw%3D%3D&md5=09f313e0459914126a00ca3b000cab47CAS | 1406492PubMed |

[6]  DeWeerd, K.A. et al. (1990) Desulfomonile tiedjei gen. nov. and sp. nov., a novel anaerobic, dehalogenating, sulfate-reducing bacterium. Arch. Microbiol. 154, 23–30.
Desulfomonile tiedjei gen. nov. and sp. nov., a novel anaerobic, dehalogenating, sulfate-reducing bacterium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXlt12itL0%3D&md5=b6437bf40e26c57d166f1cd434db8c8eCAS |

[7]  Vogel, T.M. and McCarty, P.L. (1985) Biotransformation of tetrachloroethylene to trichloroethylene, dichloroethylene, vinyl chloride, and carbon dioxide under methanogenic conditions. Appl. Environ. Microbiol. 49, 1080–1083.
| 1:CAS:528:DyaL2MXkt1Kqs7Y%3D&md5=2d50ac2c14ef08996995674c572ec894CAS | 3923927PubMed |

[8]  DiStefano, T.D. et al. (1992) Hydrogen as an electron donor for dechlorination of tetrachloroethene by an anaerobic mixed culture. Appl. Environ. Microbiol. 58, 3622–3629.
| 1:CAS:528:DyaK3sXlsFyjug%3D%3D&md5=e98aca7c4082b24889e7ba5c4f2ff5f5CAS | 1482184PubMed |

[9]  Scholz-Muramatsu, H. et al. (1995) Isolation and characterization of Dehalospirillum multivorans gen. nov., sp. nov., a tetrachloroethene-utilizing, strictly anaerobic bacterium. Arch. Microbiol. 163, 48–56.
Isolation and characterization of Dehalospirillum multivorans gen. nov., sp. nov., a tetrachloroethene-utilizing, strictly anaerobic bacterium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXkvVOhsL0%3D&md5=79787d130d8874163151a291df99fce9CAS |

[10]  Gerritse, J. et al. (1996) Desulfitobacterium sp. strain PCE1, an anaerobic bacterium that can grow by reductive dechlorination of tetrachloroethene or ortho-chlorinated phenols. Arch. Microbiol. 165, 132–140.
Desulfitobacterium sp. strain PCE1, an anaerobic bacterium that can grow by reductive dechlorination of tetrachloroethene or ortho-chlorinated phenols.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XisVKqtrg%3D&md5=58ff1c84b2996735096a0ce7b6976b2aCAS | 8593100PubMed |

[11]  Krumholz, L.R. (1997) Desulfuromonas chloroethenica sp. nov. uses tetrachloroethylene and trichloroethylene as electron acceptors. Int. J. Syst. Bacteriol. 47, 1262–1263.
Desulfuromonas chloroethenica sp. nov. uses tetrachloroethylene and trichloroethylene as electron acceptors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXntV2qu7s%3D&md5=e7ae3c947d85d1052f9096ec63cc2df4CAS |

[12]  Miller, E. et al. (1997) Comparative studies on tetrachloroethene reductive dechlorination mediated by Desulfitobacterium sp. strain PCE-S. Arch. Microbiol. 168, 513–519.
Comparative studies on tetrachloroethene reductive dechlorination mediated by Desulfitobacterium sp. strain PCE-S.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXnvFWitbs%3D&md5=24d344fd5a32dc8add27b6a5220bcb7eCAS | 9385143PubMed |

[13]  Holliger, C. et al. (1998) Dehalobacter restrictus gen. nov. and sp. nov., a strictly anaerobic bacterium that reductively dechlorinates tetra-and trichloroethene in an anaerobic respiration. Arch. Microbiol. 169, 313–321.
Dehalobacter restrictus gen. nov. and sp. nov., a strictly anaerobic bacterium that reductively dechlorinates tetra-and trichloroethene in an anaerobic respiration.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXivVWgtbs%3D&md5=232cfe5e13ca5f368071be075088d1faCAS | 9531632PubMed |

[14]  Maymó-Gatell, X. et al. (2001) Reductive dechlorination of cis-1, 2-dichloroethene and vinyl chloride by ‘Dehalococcoides ethenogenes . Environ. Sci. Technol. 35, 516–521.
Reductive dechlorination of cis-1, 2-dichloroethene and vinyl chloride by ‘Dehalococcoides ethenogenes .Crossref | GoogleScholarGoogle Scholar | 11351722PubMed |

[15]  Adrian, L. et al. (2000) Bacterial dehalorespiration with chlorinated benzenes. Nature 408, 580–583.
Bacterial dehalorespiration with chlorinated benzenes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXovFWrsLc%3D&md5=0eb3de0cb00523f331ab38834d30409eCAS | 11117744PubMed |

[16]  Bunge, M. et al. (2003) Reductive dehalogenation of chlorinated dioxins by an anaerobic bacterium. Nature 421, 357–360.
Reductive dehalogenation of chlorinated dioxins by an anaerobic bacterium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlsVagug%3D%3D&md5=7408edb532201a4b12a6de31e3d9ffd4CAS | 12540897PubMed |

[17]  Kube, M. et al. (2005) Genome sequence of the chlorinated compound–respiring bacterium Dehalococcoides species strain CBDB1. Nat. Biotechnol. 23, 1269–1273.
Genome sequence of the chlorinated compound–respiring bacterium Dehalococcoides species strain CBDB1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVOhu7jK&md5=914bccc3d793106fc8903a785191249aCAS | 16116419PubMed |

[18]  Löffler, F.E. et al. (2013) Dehalococcoides mccartyi gen. nov., sp. nov., obligately organohalide-respiring anaerobic bacteria relevant to halogen cycling and bioremediation, belong to a novel bacterial class, Dehalococcoidia classis nov., order Dehalococcoidales ord. nov. and family Dehalococcoidaceae fam. nov., within the phylum Chloroflexi. Int. J. Syst. Evol. Microbiol. 63, 625–635.
Dehalococcoides mccartyi gen. nov., sp. nov., obligately organohalide-respiring anaerobic bacteria relevant to halogen cycling and bioremediation, belong to a novel bacterial class, Dehalococcoidia classis nov., order Dehalococcoidales ord. nov. and family Dehalococcoidaceae fam. nov., within the phylum Chloroflexi.Crossref | GoogleScholarGoogle Scholar | 22544797PubMed |

[19]  Kandler, O. (1993) Cell wall biochemistry and three-domain concept of life. Syst. Appl. Microbiol. 16, 501–509.
Cell wall biochemistry and three-domain concept of life.Crossref | GoogleScholarGoogle Scholar |

[20]  Bagley, D.M. et al. (2000) Acclimation of anaerobic systems to biodegrade tetrachloroethene in the presence of carbon tetrachloride and chloroform. Water Res. 34, 171–178.
Acclimation of anaerobic systems to biodegrade tetrachloroethene in the presence of carbon tetrachloride and chloroform.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXht1ehsg%3D%3D&md5=8c0d18f2711b59d3f0e89de6243b1d8aCAS |

[21]  Futagami, T. et al. (2006) Effects of chloromethanes on growth of and deletion of the pce gene cluster in dehalorespiring Desulfitobacterium hafniense strain Y51. Appl. Environ. Microbiol. 72, 5998–6003.
Effects of chloromethanes on growth of and deletion of the pce gene cluster in dehalorespiring Desulfitobacterium hafniense strain Y51.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XpvVKjtr8%3D&md5=fa04d463e85d6f206a40767886a4e541CAS | 16957221PubMed |

[22]  Mabey, W. and Mill, T. (1978) Critical review of hydrolysis of organic compounds in water under environmental conditions. J. Phys. Chem. Ref. Data 7, 383–398.
| 1:CAS:528:DyaE1cXlsFaitrw%3D&md5=773bbb0dacfec19a8aac60ec6d1d88c7CAS |

[23]  Lee, M. et al. (2015) Relative Contributions of Dehalobacter and Zerovalent Iron in the Degradation of Chlorinated Methanes. Environ. Sci. Technol. 49, 4481–4489.
Relative Contributions of Dehalobacter and Zerovalent Iron in the Degradation of Chlorinated Methanes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXktlSjtL0%3D&md5=3cee68554a5f425051f6e84ea3916ea9CAS | 25764054PubMed |

[24]  Ding, C. et al. (2014) A Desulfitobacterium sp. strain PR reductively dechlorinates both 1,1,1-trichloroethane and chloroform. Environ. Microbiol. 16, 3387–3397.
A Desulfitobacterium sp. strain PR reductively dechlorinates both 1,1,1-trichloroethane and chloroform.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitVeksLfJ&md5=ec15bb2550575b81fe6289c6f1fdba86CAS | 24428759PubMed |

[25]  Grostern, A. et al. (2010) Chloroform respiration to dichloromethane by a Dehalobacter population. Environ. Microbiol. 12, 1053–1060.
Chloroform respiration to dichloromethane by a Dehalobacter population.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmtFCrsL4%3D&md5=b6215ecfd7fcbc40c62cb8562841465fCAS | 20089043PubMed |

[26]  Lee, M. et al. (2012) Complete chloroform dechlorination by organochlorine respiration and fermentation. Environ. Microbiol. 14, 883–894.
Complete chloroform dechlorination by organochlorine respiration and fermentation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmvFGgsLw%3D&md5=b2c75ae2c87b0818afcf8913c646293bCAS | 22118646PubMed |

[27]  Justicia-Leon, S.D. et al. (2014) Bioaugmentation with distinct Dehalobacter strains achieves chloroform detoxification in microcosms. Environ. Sci. Technol. 48, 1851–1858.
Bioaugmentation with distinct Dehalobacter strains achieves chloroform detoxification in microcosms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXislGktw%3D%3D&md5=c0e6cce5e0f848397937c6f15ec35006CAS | 24392834PubMed |