Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Microbiology Australia Microbiology Australia Society
Microbiology Australia, bringing Microbiologists together
RESEARCH ARTICLE

Use of Caenorhabditis elegans as a non-mammalian model system to study Candida virulence

Farkad Bantun A B , Sanjiveeni Dhamgaye A and Anton Y Peleg A C D
+ Author Affiliations
- Author Affiliations

A Department of Microbiology, Monash University, Clayton, Vic., Australia

B Department of Medical Laboratories Technology, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia

C Department of Infectious Diseases, Central Clinical School, The Alfred Hospital and Monash University, Melbourne, Vic., Australia

D Corresponding author. Tel: +61 3 9076 8491, Fax: +61 3 9076 2431, Email: anton.peleg@monash.edu

Microbiology Australia 36(2) 98-100 https://doi.org/10.1071/MA15032
Published: 17 March 2015

Abstract

Candida albicans forms part of the normal human commensal flora but has the ability to cause serious, invasive disease in those who are immunosuppressed. One of its key virulence determinants is its ability to transition from a yeast to a filamentous form. This article focuses on the utility of using the worm model, Caenorhabditis elegans, to study Candida pathogenesis. C. elegans provides an in vivo infection environment that is ideally suited to study the mechanisms of filamentation and its role in disease. Findings from the C. elegans-Candida model appear highly predictive of findings in a mammalian infection model.


References

[1]  Leroy, O. et al. (2009) Epidemiology, management, and risk factors for death of invasive Candida infections in critical care: a multicenter, prospective, observational study in France (2005–2006). Crit. Care Med. 37, 1612–1618.
Epidemiology, management, and risk factors for death of invasive Candida infections in critical care: a multicenter, prospective, observational study in France (2005–2006).Crossref | GoogleScholarGoogle Scholar | 19325476PubMed |

[2]  Calderone, R.A. (2002) Candida and candidiasis. 2002, Washington, DC: ASM Press.

[3]  Berman, J. and Sudbery, P.E. (2002) Candida albicans: A molecular revolution built on lessons from budding yeast. Nat. Rev. Genet. 3, 918–932.
Candida albicans: A molecular revolution built on lessons from budding yeast.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XptFCjt74%3D&md5=6efa06db53249f8c9e8b79ff00881758CAS | 12459722PubMed |

[4]  Larriba, G. et al. (2000) Candida albicans molecular biology reaches its maturity. Int. Microbiol. 3, 247–252.
| 1:CAS:528:DC%2BD3MXks1Kgtb4%3D&md5=801e85f85ddcab96e41d8d48389bed98CAS | 11334309PubMed |

[5]  Dalle, F. et al. (2010) Cellular interactions of Candida albicans with human oral epithelial cells and enterocytes. Cell. Microbiol. 12, 248–271.
Cellular interactions of Candida albicans with human oral epithelial cells and enterocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFGlu7s%3D&md5=0b46dc69a2b4f1488cdb480c9ddef635CAS | 19863559PubMed |

[6]  Gow, N.A.R. et al. (2002) Fungal morphogenesis and host invasion. Curr. Opin. Microbiol. 5, 366–371.
Fungal morphogenesis and host invasion.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlvVequr0%3D&md5=241abc7f6f98516ca5c78d1ae7f678b2CAS |

[7]  Pukkila-Worley, R. et al. (2009) Candida albicans hyphal formation and virulence assessed using a Caenorhabditis elegans infection model. Eukaryot. Cell 8, 1750–1758.
Candida albicans hyphal formation and virulence assessed using a Caenorhabditis elegans infection model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFSku73K&md5=e9197dfe8f15bdb93a9d5c2f235ecbadCAS | 19666778PubMed |

[8]  Sifri, C.D. et al. (2005) The worm has turned-microbial virulence modeled in Caenorhabditis elegans. Trends Microbiol. 13, 119–127.
The worm has turned-microbial virulence modeled in Caenorhabditis elegans.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhslehsro%3D&md5=ea76649dcd19b6569560660208a5f014CAS | 15737730PubMed |

[9]  Fuchs, B.B. and Mylonakis, E. (2006) Using non-mammalian hosts to study fungal virulence and host defense. Curr. Opin. Microbiol. 9, 346–351.
Using non-mammalian hosts to study fungal virulence and host defense.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xns1Kju70%3D&md5=40b591428b661bde9a9c9e6c7695ce8eCAS | 16814595PubMed |

[10]  Aballay, A. and Ausubel, F.M. (2002) Caenorhabditis elegans as a host for the study of host-pathogen interactions. Curr. Opin. Microbiol. 5, 97–101.
Caenorhabditis elegans as a host for the study of host-pathogen interactions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhtVKqsbk%3D&md5=e8b53d199a1d4bde6496110ed9fbf3e7CAS | 11834377PubMed |

[11]  Ewbank, J.J. and Zugasti, O. (2011) C. elegans: model host and tool for antimicrobial drug discovery. Dis. Model. Mech. 4, 300–304.
C. elegans: model host and tool for antimicrobial drug discovery.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXntlKmsrg%3D&md5=d6c0001c7858e0b118600769c84dfb56CAS | 21504910PubMed |

[12]  Mylonakis, E. et al. (2002) Killing of Caenorhabditis elegans by Cryptococcus neoformans as a model of yeast pathogenesis. Proc. Natl. Acad. Sci. USA 99, 15675–15680.
Killing of Caenorhabditis elegans by Cryptococcus neoformans as a model of yeast pathogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjvFSi&md5=76af29fda001ccf0aa3ea993dd715225CAS | 12438649PubMed |

[13]  Johnson, C.H. et al. (2009) Histoplasma capsulatum and Caenorhabditis elegans: a simple nematode model for an innate immune response to fungal infection. Med. Mycol. 47, 808–813.
Histoplasma capsulatum and Caenorhabditis elegans: a simple nematode model for an innate immune response to fungal infection.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhs1aqt7jJ&md5=f960c4bf31bda5b8ce1ae2de3fbe04c0CAS | 20028234PubMed |

[14]  Huang, X. et al. (2014) Caenorhabditis elegans: a simple nematode infection model for Penicillium marneffei. PLoS ONE 9, e108764.
Caenorhabditis elegans: a simple nematode infection model for Penicillium marneffei.Crossref | GoogleScholarGoogle Scholar | 25268236PubMed |

[15]  Breger, J. et al. (2007) Antifungal chemical compounds identified using a C. elegans pathogenicity assay. PLoS Pathog. 3, e18.
Antifungal chemical compounds identified using a C. elegans pathogenicity assay.Crossref | GoogleScholarGoogle Scholar | 17274686PubMed |

[16]  Uwamahoro, N. et al. (2012) The functions of mediator in Candida albicans support a role in shaping species-specific gene expression. PLoS Genet. 8, e1002613.
The functions of mediator in Candida albicans support a role in shaping species-specific gene expression.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlslejtLw%3D&md5=212104b929c99d3fd6a815a52143a1cfCAS | 22496666PubMed |

[17]  Qu, Y. et al. (2012) Mitochondrial sorting and assembly machinery subunit Sam37 in Candida albicans: insight into the roles of mitochondria in fitness, cell wall integrity, and virulence. Eukaryot. Cell 11, 532–544.
Mitochondrial sorting and assembly machinery subunit Sam37 in Candida albicans: insight into the roles of mitochondria in fitness, cell wall integrity, and virulence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xlslams74%3D&md5=0d808bb1b9d4936427c178cdf422f3f8CAS | 22286093PubMed |

[18]  Peleg, A.Y. et al. (2008) Prokaryote-eukaryote interactions identified by using Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 105, 14585–14590.
Prokaryote-eukaryote interactions identified by using Caenorhabditis elegans.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1Sgt7%2FN&md5=8163b2e889b35eb88393d62593fc77e8CAS | 18794525PubMed |