Register      Login
Microbiology Australia Microbiology Australia Society
Microbiology Australia, bringing Microbiologists together
RESEARCH ARTICLE

Candida and macrophages: a deadly affair

Timothy Tucey A , Thomas Naderer A and Ana Traven A B
+ Author Affiliations
- Author Affiliations

A Department of Biochemistry and Molecular Biology, Building 76, 23 Innovation Walk, Monash University, Clayton, Vic. 3800, Australia

B Corresponding author. Email: ana.traven@monash.edu

Microbiology Australia 36(2) 53-56 https://doi.org/10.1071/MA15019
Published: 17 March 2015

Abstract

The human fungal pathogen Candida albicans is a significant cause of invasive disease in hospital patients. Treatments are inadequate resulting in high financial costs and mortality rates that approach 50%15. Over the past decades, extensive use of immunosuppressive therapies and invasive medical procedures has exacerbated the problem6. Recent advances have shed light on the intimate relationship between Candida and innate immune cells, which triggers rapid fatal infections710. In this review we focus on the dynamic interaction between C. albicans and macrophages, which act as front line defense against invading pathogens, and discuss a newly discovered deadly affair.


References

[1]  Perlroth, J. et al. (2007) Nosocomial fungal infections: epidemiology, diagnosis, and treatment. Med. Mycol. 45, 321–346.
Nosocomial fungal infections: epidemiology, diagnosis, and treatment.Crossref | GoogleScholarGoogle Scholar | 17510856PubMed |

[2]  Delaloye, J. and Calandra, T. (2014) Invasive candidiasis as a cause of sepsis in the critically ill patient. Virulence 5, 161–169.
Invasive candidiasis as a cause of sepsis in the critically ill patient.Crossref | GoogleScholarGoogle Scholar | 24157707PubMed |

[3]  Zaoutis, T.E. et al. (2005) The epidemiology and attributable outcomes of candidemia in adults and children hospitalized in the United States: a propensity analysis. Clin. Infect. Dis. 41, 1232–1239.
The epidemiology and attributable outcomes of candidemia in adults and children hospitalized in the United States: a propensity analysis.Crossref | GoogleScholarGoogle Scholar | 16206095PubMed |

[4]  Spellberg, B. (2008) Novel insights into disseminated candidiasis: pathogenesis research and clinical experience converge. PLoS Pathog. 4, e38.
Novel insights into disseminated candidiasis: pathogenesis research and clinical experience converge.Crossref | GoogleScholarGoogle Scholar | 18282100PubMed |

[5]  Brown, G.D. et al. (2012) Hidden killers: human fungal infections. Sci. Transl. Med. 4, 165rv13.
Hidden killers: human fungal infections.Crossref | GoogleScholarGoogle Scholar | 23253612PubMed |

[6]  Samaranayake, L.P. et al. (2002) Fungal infections associated with HIV infection. Oral Dis. 8, 151–160.
Fungal infections associated with HIV infection.Crossref | GoogleScholarGoogle Scholar | 12164650PubMed |

[7]  Gow, N.A. et al. (2012) Candida albicans morphogenesis and host defence: discriminating invasion from colonization. Nat. Rev. Microbiol. 10, 112–122.
| 1:CAS:528:DC%2BC3MXhs1aitr%2FK&md5=588e7420bcd309172a4857162b3f2783CAS |

[8]  Zwolanek, F. et al. (2014) The non-receptor tyrosine kinase Tec controls assembly and activity of the noncanonical caspase-8 inflammasome. PLoS Pathog. 10, e1004525.
The non-receptor tyrosine kinase Tec controls assembly and activity of the noncanonical caspase-8 inflammasome.Crossref | GoogleScholarGoogle Scholar | 25474208PubMed |

[9]  Uwamahoro, N. et al. (2014) The pathogen Candida albicans hijacks pyroptosis for escape from macrophages. MBio 5, e00003–e00014.
The pathogen Candida albicans hijacks pyroptosis for escape from macrophages.Crossref | GoogleScholarGoogle Scholar | 24667705PubMed |

[10]  Wellington, M. et al. (2014) Candida albicans triggers NLRP3-mediated pyroptosis in macrophages. Eukaryot. Cell 13, 329–340.
Candida albicans triggers NLRP3-mediated pyroptosis in macrophages.Crossref | GoogleScholarGoogle Scholar | 24376002PubMed |

[11]  Saville, S.P. et al. (2003) Engineered control of cell morphology in vivo reveals distinct roles for yeast and filamentous forms of Candida albicans during infection. Eukaryot. Cell 2, 1053–1060.
Engineered control of cell morphology in vivo reveals distinct roles for yeast and filamentous forms of Candida albicans during infection.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXos1Gkur0%3D&md5=6fd0487168fe322a2aca059875bbf3e2CAS | 14555488PubMed |

[12]  Kumamoto, C.A. and Vinces, M.D. (2005) Contributions of hyphae and hypha-co-regulated genes to Candida albicans virulence. Cell. Microbiol. 7, 1546–1554.
Contributions of hyphae and hypha-co-regulated genes to Candida albicans virulence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFGkt7vP&md5=00051fa64083a7824802f7dde856b47bCAS | 16207242PubMed |

[13]  Sudbery, P.E. (2011) Growth of Candida albicans hyphae. Nat. Rev. Microbiol. 9, 737–748.
Growth of Candida albicans hyphae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVWrtLzN&md5=c4d8119fdbad3458affe1977906f2506CAS | 21844880PubMed |

[14]  Lo, H.J. et al. (1997) Nonfilamentous C. albicans mutants are avirulent. Cell 90, 939–949.
Nonfilamentous C. albicans mutants are avirulent.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmtV2htro%3D&md5=2e2917d560a376d3e0b96c0a8ff320d1CAS | 9298905PubMed |

[15]  Braun, B.R. et al. (2000) Identification and characterization of TUP1-regulated genes in Candida albicans. Genetics 156, 31–44.
| 1:CAS:528:DC%2BD3cXntVylsb8%3D&md5=e119d7a4d7ab5088f444e36cf328cdb9CAS | 10978273PubMed |

[16]  Braun, B.R. and Johnson, A.D. (1997) Control of filament formation in Candida albicans by the transcriptional repressor TUP1. Science 277, 105–109.
Control of filament formation in Candida albicans by the transcriptional repressor TUP1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXksVygsLo%3D&md5=3f804f77d7aeea5ee3a98d7532363579CAS | 9204892PubMed |

[17]  Shen, J. et al. (2008) The Candida albicans pescadillo homolog is required for normal hypha-to-yeast morphogenesis and yeast proliferation. Proc. Natl. Acad. Sci. USA 105, 20918–20923.
The Candida albicans pescadillo homolog is required for normal hypha-to-yeast morphogenesis and yeast proliferation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXksFWisA%3D%3D&md5=ca590021125d7d7e3967d16deacf0fb1CAS | 19075239PubMed |

[18]  Fradin, C. et al. (2003) Stage-specific gene expression of Candida albicans in human blood. Mol. Microbiol. 47, 1523–1543.
Stage-specific gene expression of Candida albicans in human blood.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXitlOgsbw%3D&md5=99973eac6a0748d1a86469d7440b578dCAS | 12622810PubMed |

[19]  Lorenz, M.C. and Fink, G.R. (2001) The glyoxylate cycle is required for fungal virulence. Nature 412, 83–86.
The glyoxylate cycle is required for fungal virulence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlt1CrurY%3D&md5=e33c781d667729005f0f14df81123065CAS | 11452311PubMed |

[20]  Miramón, P. et al. (2013) Thriving within the host: Candida spp. interactions with phagocytic cells. Med. Microbiol. Immunol. (Berl.) 202, 183–195.
Thriving within the host: Candida spp. interactions with phagocytic cells.Crossref | GoogleScholarGoogle Scholar |

[21]  Pelegrin, P. et al. (2008) P2X7 receptor differentially couples to distinct release pathways for IL-1beta in mouse macrophage. J. Immunol. 180, 7147–7157.
P2X7 receptor differentially couples to distinct release pathways for IL-1beta in mouse macrophage.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmtVantL0%3D&md5=f6c473c7723ee25893bec5e98f268be8CAS | 18490713PubMed |

[22]  Lamkanfi, M. and Dixit, V.M. (2010) Manipulation of host cell death pathways during microbial infections. Cell Host Microbe 8, 44–54.
Manipulation of host cell death pathways during microbial infections.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXptlylur0%3D&md5=e6744e900233d0e38818d413b9e8a5f8CAS | 20638641PubMed |

[23]  Fink, S.L. and Cookson, B.T. (2005) Apoptosis, pyroptosis, and necrosis: mechanistic description of dead and dying eukaryotic cells. Infect. Immun. 73, 1907–1916.
Apoptosis, pyroptosis, and necrosis: mechanistic description of dead and dying eukaryotic cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjtFygt78%3D&md5=6c808ed8a77ce4bf30f3b39382333cb1CAS | 15784530PubMed |

[24]  Traven, A. and Naderer, T. (2014) Microbial egress: a hitchhiker’s guide to freedom. PLoS Pathog. 10, e1004201.
Microbial egress: a hitchhiker’s guide to freedom.Crossref | GoogleScholarGoogle Scholar | 25057992PubMed |

[25]  Uwamahoro, N. et al. (2012) The functions of Mediator in Candida albicans support a role in shaping species-specific gene expression. PLoS Genet. 8, e1002613.
The functions of Mediator in Candida albicans support a role in shaping species-specific gene expression.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlslejtLw%3D&md5=212104b929c99d3fd6a815a52143a1cfCAS | 22496666PubMed |

[26]  Sun, L. and Zhao, Y. (2007) The biological role of dectin-1 in immune response. Int. Rev. Immunol. 26, 349–364.
The biological role of dectin-1 in immune response.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlWrtL7L&md5=ac6e385b7f1d9b19c8732846df9643acCAS | 18027205PubMed |