Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Microbiology Australia Microbiology Australia Society
Microbiology Australia, bringing Microbiologists together
RESEARCH ARTICLE

A sea of microbes: the diversity and activity of marine microorganisms

Justin R Seymour
+ Author Affiliations
- Author Affiliations

Plant Functional Biology & Climate Change Cluster
University of Technology Sydney
GPO Box 123, Broadway
Sydney, NSW 2007, Australia
Tel: +61 2 9514 1776
Email: Justin.Seymour@uts.edu.au

Microbiology Australia 35(4) 183-187 https://doi.org/10.1071/MA14060
Published: 30 October 2014

Abstract

Covering 70% of the earth's surface, with an average depth of 3.6 km, the ocean's total volume of 1.3 billion cubic kilometres represents perhaps the largest inhabitable space in the biosphere. Within this vast ecosystem, 90% of all living biomass is microbial. Indeed, seawater from all marine environments, ranging from the warm and sunlit upper ocean to the cold, dark and anoxic deep sea floor, and from the tropics to the arctic, is teeming with microbial life. A single teaspoon of seawater typically contains over 50 million viruses, 5million Bacteria, 100,000 Archaea and 50,000 eukaryotic microbes. The numerical importance of these microbes is matched only by their ecological and biogeochemical significance. By performing the bulk of oceanic primary production and mediating key chemical transformation processes, planktonic microbes form the base of the marine food-web and are the engines that drive the ocean's major biogeochemical cycles (Figure 1). While marine microbes are the dominant biological feature throughout the entire water column and within ocean sediments, as well as being important symbionts and pathogens of marine animals and plants, this review will focus on the activity and diversity of microbes inhabiting seawater in the upper sun-lit depths of the global ocean.


References

[1]  Sogin, M.L. et al. (2006) Microbial diversity in the deep sea and the underexplored ‘rare biosphere’. Proc. Natl. Acad. Sci. USA 103, 12 115–12 120.
Microbial diversity in the deep sea and the underexplored ‘rare biosphere’.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xotlyisb4%3D&md5=e48217c292428ed02d8fda935a6f8e71CAS |

[2]  Kashtan, N. et al. (2014) Single-cell genomics reveals hundreds of coexisting subpopulations in wild Prochlorococcus. Science 344, 416–420.
Single-cell genomics reveals hundreds of coexisting subpopulations in wild Prochlorococcus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmsFWmtLo%3D&md5=75998280e1824d97b27f95e93f81469fCAS | 24763590PubMed |

[3]  Brown, M.V. et al. (2005) Coupling 16S-ITS clone libraries and automated ribosomal intergenic spacer analysis to show marine microbial diversity: development and application to a time series. Environ. Microbiol. 7, 1466–1479.
Coupling 16S-ITS clone libraries and automated ribosomal intergenic spacer analysis to show marine microbial diversity: development and application to a time series.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVGnurvP&md5=c8016da1b2f03640399179fc32f6eb33CAS | 16104869PubMed |

[4]  Morris, R.M. et al. (2002) SAR11 clade dominates ocean surface bacterioplankton communities. Nature 420, 806–810.
SAR11 clade dominates ocean surface bacterioplankton communities.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XpsFygt7Y%3D&md5=07fbc4e7cce1367578d801cc545f8885CAS | 12490947PubMed |

[5]  Giovannoni, S.J. et al. (1990) Genetic diversity in Sargasso Sea bacterioplankton. Nature 345, 60–63.
Genetic diversity in Sargasso Sea bacterioplankton.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXktFymu7s%3D&md5=2e7cf1b9d2cc7c23645b03efd472cabcCAS | 2330053PubMed |

[6]  Giovannoni, S.J. et al. (2005) Genome streamlining in a cosmopolitan oceanic bacterium. Science 309, 1242–1245.
Genome streamlining in a cosmopolitan oceanic bacterium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXnvFyls7k%3D&md5=ad1bceaa927ea40806238a3feeefe642CAS | 16109880PubMed |

[7]  Moran, M.A. et al. (2007) Ecological genomics of marine Roseobacters. Appl. Environ. Microbiol. 73, 4559–4569.
Ecological genomics of marine Roseobacters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXot1egs7o%3D&md5=01ee7b760843bdfef68c90c2094bd2e0CAS | 17526795PubMed |

[8]  Kirchman, D.L. (2002) The ecology of Cytophaga–Flavobacteria in aquatic environments. FEMS Microbiol. Ecol. 39, 91–100.
| 1:CAS:528:DC%2BD38XitFaqt7k%3D&md5=52ed8e9ad908e46520d8b31b99b7341cCAS | 19709188PubMed |

[9]  Newton, R.J. et al. (2010) Genome characteristics of a generalist marine bacterial lineage. ISME J. 4, 784–798.
Genome characteristics of a generalist marine bacterial lineage.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmtFCns78%3D&md5=092ebc2216f3d9f6dc2113bdbf670da2CAS | 20072162PubMed |

[10]  Lauro, F.M. et al. (2009) The genomic basis of trophic strategy in marine bacteria. Proc. Natl. Acad. Sci. USA 106, 15527–15533.
The genomic basis of trophic strategy in marine bacteria.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFyjsLrM&md5=2ba31127ccb449d857ffa3ab37e671b3CAS | 19805210PubMed |

[11]  Teeling, H. et al. (2012) Substrate-controlled succession of marine bacterioplankton populations induced by a phytoplankton bloom. Science 336, 608–611.
Substrate-controlled succession of marine bacterioplankton populations induced by a phytoplankton bloom.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xmt1Gntrw%3D&md5=44f843f38a0782acc32f133234848549CAS | 22556258PubMed |

[12]  Fuhrman, J.A. et al. (2006) Annually reoccurring bacterial communities are predictable from ocean conditions. Proc. Natl. Acad. Sci. USA 103, 13104–13109.
Annually reoccurring bacterial communities are predictable from ocean conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xptlemu7k%3D&md5=3140d3d36fd2163b64e1df90050d35faCAS | 16938845PubMed |

[13]  Fuhrman, J.A. (2009) Microbial community structure and its functional implications. Nature 459, 193–199.
Microbial community structure and its functional implications.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlvFShu70%3D&md5=381461ce7a56e0f400af462341db06c2CAS | 19444205PubMed |

[14]  Partensky, F. et al. (1999a) Differential distribution and ecology of Prochlorococcus and Synechococcus in oceanic waters. In: Marine Cyanobacteria, no. spécial 19 (Charpy, L. and Larkum, A.W.D., eds), Bulletin de l’Institut oceanographique, pp. 457–475.

[15]  Partensky, F. et al. (1999)b Prochlorococcus, a marine photosynthetic prokaryote of global significance. Microbiol. Mol. Biol. Rev. 63, 106–127.
| 1:CAS:528:DyaK1MXitVert78%3D&md5=5efdb84b30efab320a832a510993145cCAS | 10066832PubMed |

[16]  Messer, L.F. et al. (2014) Prokaryotic and diazotrophic population dynamics within a large oligotrophic inverse estuary. Aquat. Microb. Ecol. , .

[17]  DeLong, E.F. (2003) Oceans of Archaea. Microbe Magazine 69, 503–511.

[18]  Karner, M. et al. (2001) Archaeal dominance in the mesopelagic zone of the Pacific Ocean. Nature 409, 507–510.
Archaeal dominance in the mesopelagic zone of the Pacific Ocean.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3M7hvFOqsw%3D%3D&md5=1823cf59e20345a786b139cd9e59796fCAS | 11206545PubMed |

[19]  Walker, C.B.A. et al. (2010) Nitrosopumilus maritimus genome reveals unique mechanisms for nitrification and autotrophy in globally distributed marine crenarchaea. Proc. Natl. Acad. Sci. USA 107, 8818–8823.
Nitrosopumilus maritimus genome reveals unique mechanisms for nitrification and autotrophy in globally distributed marine crenarchaea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmsVOrt7Y%3D&md5=5b1c490c8c803e84b864aefaf530d220CAS |

[20]  Suttle, C. (2007) Marine viruses – major players in the global ecosystem. Nat. Rev. Microbiol. 5, 801–812.
Marine viruses – major players in the global ecosystem.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVeis7nK&md5=223d5fd74df2ff2d7a01ebedcccbf96fCAS | 17853907PubMed |

[21]  Breitbart, M. (2012) Marine viruses: truth or dare. Ann. Rev. Mar. Sci. 4, 425–448.
Marine viruses: truth or dare.Crossref | GoogleScholarGoogle Scholar | 22457982PubMed |

[22]  Fuhrman, J.A. (1999) Marine viruses and their biogeochemical and ecological effects. Nature 399, 541–548.
Marine viruses and their biogeochemical and ecological effects.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjvFeiurk%3D&md5=fa93b89510baa1896ca3a5f71d0c6d0aCAS | 10376593PubMed |

[23]  Falkowski, P.G. et al. (2008) The microbial engines that drive Earth’s biogeochemical cycles. Science 320, 1034–1039.
The microbial engines that drive Earth’s biogeochemical cycles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmtVKnsbo%3D&md5=3b510518275205ce7807c177aa2ee960CAS | 18497287PubMed |

[24]  Pomeroy, L.R. et al. (2007) The microbial loop. Oceanography (Wash. D.C.) 20, 28–33.
The microbial loop.Crossref | GoogleScholarGoogle Scholar |

[25]  Falkowski, P.G. (1994) The role of phytoplankton photosynthesis in global biogeochemical cycles. Photosynth. Res. 39, 235–258.
The role of phytoplankton photosynthesis in global biogeochemical cycles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXksFertb8%3D&md5=d78b50ae9f60ca36eadde77c6f916a72CAS | 24311124PubMed |

[26]  Aaronson, S. (1978) Excretion of organic matter by phytoplankton in vitro. Limnol. Oceanogr. 23, 838.
Excretion of organic matter by phytoplankton in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXlsVaqtb0%3D&md5=60c5fe35215fb899eaa49c423eb37adbCAS |

[27]  Azam, F. et al. (1983) The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. 10, 257–263.
The ecological role of water-column microbes in the sea.Crossref | GoogleScholarGoogle Scholar |

[28]  Azam, F. and Long, R.A. (2001) Sea snow microcosms. Nature 414, 495–498.
Sea snow microcosms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXptFeksLk%3D&md5=9f9f6730d761108d37152d0371d124f8CAS | 11734832PubMed |

[29]  Jiao, N. and Azam, F. (2011) Microbial carbon pump and its significance for carbon sequestration in the ocean. In: Microbial Carbon Pump in the Ocean (Jiao N., et al., eds.), Science/AAAS, Washington, DC, pp. 43–45.

[30]  Ducklow, H.W. and Doney, S.C. (2013) What is the metabolic state of the oligotrophic ocean? Ann. Rev. Mar. Sci. 5, 525–533.
What is the metabolic state of the oligotrophic ocean?Crossref | GoogleScholarGoogle Scholar | 22809191PubMed |

[31]  Kiene, R.P. et al., eds (1996) Biological and Environmental Chemistry of DMSP and Related Sulfonium Compounds, Plenum Press.

[32]  Kiene, R.P. et al. (2000) New and important roles for DMSP in marine microbial communities. J. Sea Res. 43, 209.
New and important roles for DMSP in marine microbial communities.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXms1Wrtbw%3D&md5=5acdd8140b795d3465f4ebf3e94c3d79CAS |

[33]  Howard, E.C. et al. (2006) Bacterial taxa that limit sulfur flux from the ocean. Science 314, 649–652.
Bacterial taxa that limit sulfur flux from the ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFeitr7M&md5=93a767ee0f19bd102fecb8ac7bcc506fCAS | 17068264PubMed |

[34]  Curson, A.R.J. et al. (2011) Catabolism of dimethylsulphoniopropionate: microorganisms, enzymes and genes. Nat. Rev. Microbiol. 9, 849–859.
Catabolism of dimethylsulphoniopropionate: microorganisms, enzymes and genes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht12iurbE&md5=36a8e01b664edf186953ec66c2719178CAS |

[35]  Simó, R. (2001) Production of atmospheric sulfur by oceanic plankton: biogeochemical, ecological and evolutionary links. Trends Ecol. Evol. 16, 287.
Production of atmospheric sulfur by oceanic plankton: biogeochemical, ecological and evolutionary links.Crossref | GoogleScholarGoogle Scholar | 11369106PubMed |

[36]  Zehr, J.P. and Kudela, R.M. (2011) Nitrogen cycle of the open ocean: from genes to ecosystems. Ann. Rev. Mar. Sci. 3, 197–225.
Nitrogen cycle of the open ocean: from genes to ecosystems.Crossref | GoogleScholarGoogle Scholar | 21329204PubMed |

[37]  Gruber, N. (2008) The marine nitrogen cycle: overview and challenges. In: Nitrogen in the Marine Environment (Capone, D.G., et al., eds), Elsevier.

[38]  Ward, B.A. et al. (2013) Iron, phosphorus and nitrogen supply ratios define the biogeography of nitrogen fixation. Limnol. Oceanogr. 58, 2059–2075.
Iron, phosphorus and nitrogen supply ratios define the biogeography of nitrogen fixation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVyit7%2FP&md5=7cf0dc42cd090178d1f60d29f7c9742eCAS |

[39]  Steele, J.A. et al. (2011) Marine bacterial, archaeal and protistan association networks reveal ecological linkages. ISME J. 5, 1414–1425.
Marine bacterial, archaeal and protistan association networks reveal ecological linkages.Crossref | GoogleScholarGoogle Scholar | 21430787PubMed |

[40]  Ottesen, E.A. et al. (2013) Pattern and synchrony of gene expression among sympatric marine microbial populations. Proc. Natl. Acad. Sci. USA 110, E488–E497.
Pattern and synchrony of gene expression among sympatric marine microbial populations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjtVertLs%3D&md5=17e572d0098a460cef0990ec69ab8e93CAS | 23345438PubMed |

[41]  Beman, J.M. et al. (2011) Co-occurrence patterns for abundant marine archaeal and bacterial lineages in the deep chlorophyll maximum of coastal California. ISME J. 5, 1077–1085.
Co-occurrence patterns for abundant marine archaeal and bacterial lineages in the deep chlorophyll maximum of coastal California.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnvVaqsbo%3D&md5=ec5e6b21a8169e762d3862f0978901f6CAS | 21228895PubMed |

[42]  Ottesen, E.A. et al. (2014) Multispecies diel transcriptional oscillations in open ocean heterotrophic bacterial assemblages. Science 345, 207.
Multispecies diel transcriptional oscillations in open ocean heterotrophic bacterial assemblages.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFWjtLjO&md5=c4a5a79e3b545ffbf401f94d476a6747CAS | 25013074PubMed |