Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Microbiology Australia Microbiology Australia Society
Microbiology Australia, bringing Microbiologists together
RESEARCH ARTICLE

Management of antibiotic resistance in the intensive care unit setting from an international perspective

Stefano Di Bella A B and Nicola Petrosillo A C
+ Author Affiliations
- Author Affiliations

A 2nd Division
National Institute for Infectious Diseases ‘L. Spallanzani’
via Portuense 292
Rome 00149, Italy
Tel: +3 906 5517 0294
Fax: +3 906 5517 0486

B Email: stefano932@gmail.com

C Email: nicola.petrosillo@inmi.it

Microbiology Australia 35(1) 63-65 https://doi.org/10.1071/MA14018
Published: 4 February 2014

Abstract

Infections represent one of the most threatening complications for intensive care unit (ICU) patients. Approximately 50% of all ICU patients are treated for infection or suspected infection during their ICU stay, of which approximately half are acquired during the ICU stay. Multidrug-resistant (MDR) organisms are often the etiologic agents with a dramatic impact in morbidity and mortality rates. The emergence of carbapenemase-producing bacteria, in particular the emerging K. pneumoniae strains harboring the plasmid-encoded KPC-type carbapenemase and the New Delhi metallo-beta-lactamase 1 (NDM-1), in many countries is an example of the continuous evolution and spread of bacterial resistance. Infection prevention and control and antimicrobial stewardship programs in the ICU setting are demonstrating good results and need continuous implementation.


References

[1]  Vincent, J.L. et al. (2009) International study of the prevalence and outcomes of infection in intensive care units. JAMA 302, 2323–2329.
International study of the prevalence and outcomes of infection in intensive care units.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFCjsr3L&md5=6a94a72829af6f138c0479bf31f8b19eCAS | 19952319PubMed |

[2]  Sociedad española de medicina intensiva crítica y unidades coronaries (SEMICYCUC) grupo de trabajo de enfermedades infecciosas (2012) Informe. http://hws.vhebron.net/envin-helics/Help/Informe%20ENVIN-UCI%202012.pdf (accessed on 24 November 2013).

[3]  Doyle, J.S. et al. (2011) Epidemiology of infections acquired in intensive care units. Semin. Respir. Crit. Care Med. 32, 115–138.
Epidemiology of infections acquired in intensive care units.Crossref | GoogleScholarGoogle Scholar | 21506049PubMed |

[4]  Laxminarayan, R. et al. (2013) Antibiotic resistance-the need for global solutions. Lancet Infect. Dis. 13, 1057–1098.
Antibiotic resistance-the need for global solutions.Crossref | GoogleScholarGoogle Scholar | 24252483PubMed |

[5]  Liu, Z. et al. (2013) Identification and characterization of the first Escherichia coli strain carrying NDM-1 gene in China. PLoS ONE 8, e66666.
Identification and characterization of the first Escherichia coli strain carrying NDM-1 gene in China.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVWksrvJ&md5=fdfde7b3ebc3ef155cc32bc1184df0abCAS | 23762496PubMed |

[6]  Savard, P. et al. (2011) First NDM-positive Salmonella sp. strain identified in the United States. Antimicrob. Agents Chemother. 55, 5957–5958.
First NDM-positive Salmonella sp. strain identified in the United States.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFehsLnI&md5=944c72755f9a349237a6278094dc9ce6CAS | 21968356PubMed |

[7]  Carattoli, A. et al. (2013) Isolation of NDM-1-producing Pseudomonas aeruginosa sequence type ST235 from a stem cell transplant patient in Italy, May 2013. Euro Surveill. 18, pii:20633.

[8]  Vatopoulos, A. (2008) High rates of metallo-beta-lactamase-producing Klebsiella pneumoniae in Greece – a review of the current evidence. Euro Surveill. 13, pii:8023.

[9]  Marra, A.R. et al. (2007) Hospital-acquired Clostridium difficile-associated disease in the intensive care unit setting: epidemiology, clinical course and outcome. BMC Infect. Dis. 7, 42.
Hospital-acquired Clostridium difficile-associated disease in the intensive care unit setting: epidemiology, clinical course and outcome.Crossref | GoogleScholarGoogle Scholar | 17517130PubMed |

[10]  Pea, F. and Viale, P. (2006) The antimicrobial therapy puzzle: could pharmacokinetic-pharmacodynamic relationships be helpful in addressing the issue of appropriate pneumonia treatment in critically ill patients? Clin. Infect. Dis. 42, 1764–1771.
The antimicrobial therapy puzzle: could pharmacokinetic-pharmacodynamic relationships be helpful in addressing the issue of appropriate pneumonia treatment in critically ill patients?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmsVCgsbo%3D&md5=6ca296dbbd4180d77d5052c8e9b8fde6CAS | 16705585PubMed |

[11]  Dellinger, R.P. et al. (2013) Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock, 2012. Intensive Care Med. 39, 165–228.
Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock, 2012.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3szjs1Witw%3D%3D&md5=1cebb84289f4d4de9093a167a3b7ba0eCAS | 23361625PubMed |

[12]  Udy, A.A. et al. (2011) Implications of augmented renal clearance in critically ill patients. Nat. Rev. Nephrol. 7, 539–543.
Implications of augmented renal clearance in critically ill patients.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFWmu7vK&md5=7530fc2da439c595de789383173b5d9fCAS | 21769107PubMed |

[13]  Sinnollareddy, M.G. et al. (2012) β-lactam pharmacokinetics and pharmacodynamics in critically ill patients and strategies for dose optimization: a structured review. Clin. Exp. Pharmacol. Physiol. 39, 489–496.
β-lactam pharmacokinetics and pharmacodynamics in critically ill patients and strategies for dose optimization: a structured review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XotlWktrk%3D&md5=e0f77c5171bd75399b9bd07ebba35f55CAS | 22519600PubMed |

[14]  Udy, A.A. et al. (2013) Clinical implications of antibiotic pharmacokinetic principles in the critically ill. Intensive Care Med. 39, 2070–2082.
Clinical implications of antibiotic pharmacokinetic principles in the critically ill.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVOktL3O&md5=fee7d0b47901da4edf6feb49352e1038CAS | 24045886PubMed |

[15]  Rimawi, R.H. et al. (2013) Impact of regular collaboration between infectious diseases and critical care practitioners on antimicrobial utilization and patient outcome. Crit. Care Med. 41, 2099–2107.
Impact of regular collaboration between infectious diseases and critical care practitioners on antimicrobial utilization and patient outcome.Crossref | GoogleScholarGoogle Scholar | 23873275PubMed |

[16]  Katsios, C.M. et al. (2012) An antimicrobial stewardship program improves antimicrobial treatment by culture site and the quality of antimicrobial prescribing in critically ill patients. Crit. Care 16, R216.
An antimicrobial stewardship program improves antimicrobial treatment by culture site and the quality of antimicrobial prescribing in critically ill patients.Crossref | GoogleScholarGoogle Scholar | 23127353PubMed |

[17]  DiazGranados, C.A. (2012) Prospective audit for antimicrobial stewardship in intensive care: impact on resistance and clinical outcomes. Am. J. Infect. Control 40, 526–529.
Prospective audit for antimicrobial stewardship in intensive care: impact on resistance and clinical outcomes.Crossref | GoogleScholarGoogle Scholar | 21937145PubMed |