Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Microbiology Australia Microbiology Australia Society
Microbiology Australia, bringing Microbiologists together
RESEARCH ARTICLE

Interesting anaerobes in the environment

Linda L Blackall
+ Author Affiliations
- Author Affiliations

School of Science
Faculty of Science, Engineering and Technology
Swinburne University of Technology
Email: lblackall@swin.edu.au

Microbiology Australia 36(3) 133-135 https://doi.org/10.1071/MA15046
Published: 20 August 2015

Abstract

Prokaryotes (Bacteria and Archaea) have a wide range of capacities to survive by generating energy in environments and situations lacking oxygen, which abound on Earth. Anaerobic metabolic strategies include anaerobic respiration (numerous types – e.g. nitrate reduction – Paracoccus denitrificans; sulfur respiration – Desulfuromonadales; methanogenesis – Methanosarsina spp.; iron reduction – Geobacter spp.; dehalorespiration – Dehalococcoides ethenogenes) and fermentation (sugars converted to simpler organic compounds like acids, gases and alcohols – e.g. Lactobacillus spp.). Relatively novel environmental anaerobic strategies include anaerobic ammonium oxidation (Anammox – e.g. Brocadia spp.) and anaerobic methane oxidation (AMO)1, which is a syntrophic association between anaerobic methanotrophic archaea (ANME) and sulfate-, iron-, manganese- or nitrate-reducing bacteria2. The classic anaerobic synthrophic example is interspecies hydrogen/formate transfer between a hydrogen/formate producing fatty acid oxidising bacterium (the syntroph) and a hydrogen/formate consumer (methanogen or sulfate-reducer)3. Microbes vary in their oxygen tolerance and are described as obligate anaerobes if they are killed by atmospheric levels of oxygen due to the lack of catalase and superoxide dismutase that provide oxygen radical protection.


References

[1]  Knittel, K. and Boetius, A. (2009) Anaerobic oxidation of methane: progress with an unknown process. Annu. Rev. Microbiol. 63, 311–334.
Anaerobic oxidation of methane: progress with an unknown process.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlSitLjN&md5=dc1c005f1c44c296b2a5372997064910CAS | 19575572PubMed |

[2]  Cui, M. et al. (2015) Anaerobic oxidation of methane: an ‘active’ microbial process. MicrobiologyOpen 4, 1–11.
Anaerobic oxidation of methane: an ‘active’ microbial process.Crossref | GoogleScholarGoogle Scholar | 25530008PubMed |

[3]  Sieber, J.R. et al. (2012) Genomic insights into syntrophy: the paradigm for anaerobic metabolic cooperation. Annu. Rev. Microbiol. 66, 429–452.
Genomic insights into syntrophy: the paradigm for anaerobic metabolic cooperation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsF2iurrK&md5=2825bb34f450053b2dfada83afc42ea5CAS | 22803797PubMed |

[4]  Stroud, J.L. and Manefield, M. (2014) The microbiology of acid sulfate soils and sulfidic sediments. Microbiol. Aust. 35, 195–198.
The microbiology of acid sulfate soils and sulfidic sediments.Crossref | GoogleScholarGoogle Scholar |

[5]  Semenec, L. and Franks, A.E. (2014) The microbiology of microbial electrolysis cells. Microbiol. Aust. 35, 201–206.
The microbiology of microbial electrolysis cells.Crossref | GoogleScholarGoogle Scholar |

[6]  Patil, S.S. et al. (2014) Microbiology of chloroethene degradation in groundwater. Microbiol. Aust. 35, 211–214.
Microbiology of chloroethene degradation in groundwater.Crossref | GoogleScholarGoogle Scholar |

[7]  Beech, I.B. and Gaylarde, C.C. (1999) Recent advances in the study of biocorrosion – an overview. Rev. Microbiol. 30, 177–190.
Recent advances in the study of biocorrosion – an overview.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXksVCjsLw%3D&md5=9e001258f4fb69f0c73fa4e8059cb753CAS |

[8]  Little, B.J. et al. (2008) The influence of marine biofilms on corrosion: a concise review. Electrochim. Acta 54, 2–7.
The influence of marine biofilms on corrosion: a concise review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFOjt7vF&md5=abccd01c4d60cb5da08176d56a855494CAS |

[9]  Usher, K.M. et al. (2014) Critical review: microbially influenced corrosion of buried carbon steel pipes. Int. Biodeterior. Biodegradation 93, 84–106.
Critical review: microbially influenced corrosion of buried carbon steel pipes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtF2qtb7F&md5=34cc5d5ef8552c0d0e1bbced475bb3b0CAS |

[10]  Marty, F. et al. (2014) Identification of key factors in accelerated low water corrosion through experimental simulation of tidal conditions: influence of stimulated indigenous microbiota. Biofouling 30, 281–297.
Identification of key factors in accelerated low water corrosion through experimental simulation of tidal conditions: influence of stimulated indigenous microbiota.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtlaqu7g%3D&md5=c2a149dcd1c4d45207971e7ed287bd1eCAS | 24456308PubMed |

[11]  Wade, S.A. et al. (2011) Microbiologically influenced corrosion in maritime vessels. Corrosion and Materials. 36, 68–79.

[12]  Gu, T. (2012) New understandings of biocorrosion mechanisms and their classifications. Journal of Microbial and Biochemical Technology. 4, iii–vi.
New understandings of biocorrosion mechanisms and their classifications.Crossref | GoogleScholarGoogle Scholar |

[13]  Usher, K.M. et al. (2014) Marine rust tubercles harbour iron corroding archaea and sulphate reducing bacteria. Corros. Sci. 83, 189–197.
Marine rust tubercles harbour iron corroding archaea and sulphate reducing bacteria.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXjs1Oms74%3D&md5=6c302a4c75ad7f900a0551849a4e0bbfCAS |

[14]  Little, B. et al. (2007) A review of ‘green’ strategies to prevent or mitigate microbiologically influenced corrosion. Biofouling 23, 87–97.
A review of ‘green’ strategies to prevent or mitigate microbiologically influenced corrosion.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmtl2hurg%3D&md5=e4959e1d273e6ecf49e1dd7e032880aaCAS | 17453733PubMed |

[15]  Cote, C. et al. (2015) Geobacter sulfurreducens: an iron reducing bacterium that can protect carbon steel against corrosion? Corros. Sci. 94, 104–113.
Geobacter sulfurreducens: an iron reducing bacterium that can protect carbon steel against corrosion?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXisVSjtrY%3D&md5=d0ae850d3763ca794315420c0d99cfbbCAS |

[16]  Dumée, L.F. et al. (2015) Growth of nano-textured graphene coatings across highly porous stainless steel supports towards corrosion resistant coatings. Carbon 87, 395–408.
Growth of nano-textured graphene coatings across highly porous stainless steel supports towards corrosion resistant coatings.Crossref | GoogleScholarGoogle Scholar |

[17]  Mulder, A. et al. (1995) Anaerobic ammonium oxidation discovered in a denitrying fluidized-bed reactor. FEMS Microbiol. Ecol. 16, 177–183.
Anaerobic ammonium oxidation discovered in a denitrying fluidized-bed reactor.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXktlCjtLg%3D&md5=73e2d01c90b25ca748539ee9ac649ec2CAS |

[18]  Broda, E. (1977) Two kinds of lithotrophs missing in nature. Z. Allg. Mikrobiol. 17, 491–493.
Two kinds of lithotrophs missing in nature.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2sXlsVymtbY%3D&md5=737c322a2a6aae4ed67a61980b91578fCAS | 930125PubMed |

[19]  Strous, M. and Jetten, M.S.M. (2004) Anaerobic oxidation of methane and ammonium. Annu. Rev. Microbiol. 58, 99–117.
Anaerobic oxidation of methane and ammonium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVejsr%2FI&md5=9f423f7996bcf830a98344915b339208CAS | 15487931PubMed |

[20]  Zehnder, A.J.B. and Brock, T.D. (1980) Anaerobic methane oxidation – occurrence and ecology. Appl. Environ. Microbiol. 39, 194–204.
| 1:CAS:528:DyaL3cXhvVGhtLo%3D&md5=0d59ba3f177d686b6e1b3c9db95507f6CAS |

[21]  Boetius, A. et al. (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407, 623–626.
A marine microbial consortium apparently mediating anaerobic oxidation of methane.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3cvosFGnuw%3D%3D&md5=102faf7098b8dd852a7a7ca028031aebCAS | 11034209PubMed |

[22]  Orphan, V.J. et al. (2001) Methane-consuming archaea revealed by directly coupled isotopic and phylogenetic analysis. Science 293, 484–487.
Methane-consuming archaea revealed by directly coupled isotopic and phylogenetic analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlsFGjs7k%3D&md5=bd29f875bca7f5e30f1e83a8de7569feCAS | 11463914PubMed |

[23]  Niemann, H. et al. (2006) Novel microbial communities of the Haakon Mosby mud volcano and their role as a methane sink. Nature 443, 854–858.
Novel microbial communities of the Haakon Mosby mud volcano and their role as a methane sink.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVyktbnI&md5=ea25348209566803cc152256a2a0824aCAS | 17051217PubMed |

[24]  Reeburgh, W.S. (2007) Oceanic methane biogeochemistry. Chem. Rev. 107, 486–513.
Oceanic methane biogeochemistry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVOmtr4%3D&md5=875d5853cb8eb40af61cf4af9bd0c34eCAS | 17261072PubMed |

[25]  Mueller, T.J. et al. (2015) Methane oxidation by anaerobic archaea for conversion to liquid fuels. J. Ind. Microbiol. Biotechnol. 42, 391–401.
Methane oxidation by anaerobic archaea for conversion to liquid fuels.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitVWhu73I&md5=831afa0336f6c6e54f260da8903f4413CAS | 25427790PubMed |

[26]  Haroon, M.F. et al. (2013) Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature 500, 567–570.
Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFygt7fK&md5=b48a81907e013d688143486979d6206dCAS | 23892779PubMed |

[27]  Shen, L.-d. et al. (2015) Nitrite-dependent anaerobic methane-oxidising bacteria: unique microorganisms with special properties. Curr. Microbiol. 70, 562–570.
Nitrite-dependent anaerobic methane-oxidising bacteria: unique microorganisms with special properties.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitFClsLzM&md5=c851a6a94cfaa9dcbfe689df573e4691CAS | 25519694PubMed |