Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Microbiology Australia Microbiology Australia Society
Microbiology Australia, bringing Microbiologists together
RESEARCH ARTICLE

Methane matters in animals and man: from beginning to end

Emily Hoedt A , Paul Evans B , Stuart Denman C , Chris McSweeney C , Paraic ÓCuív D and Mark Morrison D E
+ Author Affiliations
- Author Affiliations

A School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Qld 4072, Australia

B Autralian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Qld 4072, Australia

C CSIRO Agriculture, Queensland Bioscience Precinct, St Lucia, Qld 4067, Australia

D University of Queensland Diamantina Institute, Translational Research Institute, Woolloongabba, Qld 4102, Australia

E Corresponding author. Tel: +61 7 3443 6957, Fax: +61 7 3443 6966, Email: m.morrison1@uq.edu.au

Microbiology Australia 36(1) 4-7 https://doi.org/10.1071/MA15003
Published: 6 March 2015

Abstract

Methanogenic archaea resident in the mammalian gastrointestinal tract have long been recognised for their capacity to participate in interspecies hydrogen transfer, with commensurate positive effects on plant biomass conversion. However, there is also still much to learn about these methanogenic archaea in regards to their metabolic versatility, host adaptation, and immunogenic properties that is of relevance to host health and nutrition.


References

[1]  Anderson, I. et al. (2009) Genomic characterization of methanomicrobiales reveals three classes of methanogens. PLoS ONE 4, e5797.
Genomic characterization of methanomicrobiales reveals three classes of methanogens.Crossref | GoogleScholarGoogle Scholar | 19495416PubMed |

[2]  Sakai, S. et al. (2008) Methanocella paludicola gen. nov., sp. nov., a methane-producing archaeon, the first isolate of the lineage ‘Rice Cluster I’, and proposal of the new archaeal order Methanocellales ord. nov. Int. J. Syst. Evol. Microbiol. 58, 929–936.
Methanocella paludicola gen. nov., sp. nov., a methane-producing archaeon, the first isolate of the lineage ‘Rice Cluster I’, and proposal of the new archaeal order Methanocellales ord. nov.Crossref | GoogleScholarGoogle Scholar | 18398197PubMed |

[3]  Paul, K. et al. (2012)Methanoplasmatales,’ Thermoplasmatales-related archaea in termite guts and other environments, are the seventh order of methanogens. Appl. Environ. Microbiol. 78, 8245–8253.
Methanoplasmatales,’ Thermoplasmatales-related archaea in termite guts and other environments, are the seventh order of methanogens.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1yktrrJ&md5=9b624308d3a681fe657479e0a21c422aCAS | 23001661PubMed |

[4]  Liu, Y. and Whitman, W.B. (2008) Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea. Ann. N. Y. Acad. Sci. 1125, 171–189.
Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlsV2rsL0%3D&md5=978a6958a3318679086fee1ace304e71CAS | 18378594PubMed |

[5]  Edwards, T. and McBride, B.C. (1975) New method for the isolation and identification of methanogenic bacteria. Appl. Microbiol. 29, 540–545.
| 1:STN:280:DyaE2M7ksFWhtQ%3D%3D&md5=d41072be452d7e8b038830eec4383d2fCAS | 804855PubMed |

[6]  Evans, P.N. et al. (2009) Community composition and density of methanogens in the foregut of the Tammar wallaby (Macropus eugenii). Appl. Environ. Microbiol. 75, 2598–2602.
Community composition and density of methanogens in the foregut of the Tammar wallaby (Macropus eugenii).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlsFChtr8%3D&md5=2fb4f6775954969ba7e9740a887356cbCAS | 19218421PubMed |

[7]  Lowe, D.C. (2006) Global change: a green source of surprise. Nature 439, 148–149.
Global change: a green source of surprise.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XislKjug%3D%3D&md5=66c3066a967b86d3f14e53fe3633c2a2CAS | 16407940PubMed |

[8]  Samuel, B.S. et al. (2007) Genomic and metabolic adaptations of Methanobrevibacter smithii to the human gut. Proc. Natl. Acad. Sci. USA 104, 10643–10648.
Genomic and metabolic adaptations of Methanobrevibacter smithii to the human gut.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnt1OmtL0%3D&md5=69f58f5d50ee7b58b423c699f15d12a0CAS | 17563350PubMed |

[9]  Karasov, W.H. and Carey, H.V. (2009) Metabolic teamwork between gut microbes and hosts. Microbe 4, 323–328.

[10]  Hobson, P.N. (1988) The Rumen Microbial Ecosystem, First edn. Elsevier Applied Science, New York.

[11]  Bryant, M.P. and Wolin, M.J. (1975) Proceedings of the first international congress of the international association of the microbiological society, Developmental Microbiology E, Science Council of Japan, Tokyo, Japan. p. 297.

[12]  Janssen, P.H. and Kirs, M. (2008) Structure of the archaeal community of the rumen. Appl. Environ. Microbiol. 74, 3619–3625.
Structure of the archaeal community of the rumen.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnvFWlsrk%3D&md5=081e020869b8f169659ccc4ae4e8e969CAS | 18424540PubMed |

[13]  Poulsen, M. et al. (2013) Methylotrophic methanogenic Thermoplasmata implicated in reduced methane emissions from bovine rumen. Nat Commun 4, 1428.
Methylotrophic methanogenic Thermoplasmata implicated in reduced methane emissions from bovine rumen.Crossref | GoogleScholarGoogle Scholar | 23385573PubMed |

[14]  Shi, W. et al. (2014) Methane yield phenotypes linked to differential gene expression in the sheep rumen microbiome. Genome Res. 24, 1517–1525.
Methane yield phenotypes linked to differential gene expression in the sheep rumen microbiome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsFaksLnJ&md5=9396e5320d16af581c2c599d40a90d91CAS | 24907284PubMed |

[15]  Janssen, P.H. (2010) Influence of hydrogen on rumen methane formation and fermentation balances through microbial growth kinetics and fermentation thermodynamics. Anim. Feed Sci. Technol. 160, 1–22.
Influence of hydrogen on rumen methane formation and fermentation balances through microbial growth kinetics and fermentation thermodynamics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtV2itLvF&md5=ff87f154df72f62f725da4dec088c540CAS |

[16]  Kittelmann, S. et al. (2014) Two different bacterial community types are linked with the low-methane emission trait in sheep. PLoS ONE 9, e103171.
Two different bacterial community types are linked with the low-methane emission trait in sheep.Crossref | GoogleScholarGoogle Scholar | 25078564PubMed |

[17]  Attwood, G.T. et al. (2011) Exploring rumen methanogen genomes to identify targets for methane mitigation strategies. Anim. Feed Sci. Technol. 166–167, 65–75.
Exploring rumen methanogen genomes to identify targets for methane mitigation strategies.Crossref | GoogleScholarGoogle Scholar |

[18]  Madsen, J. and Bertelsen, M.F. (2012) Methane production by red-necked wallabies (Macropus rufogriseus). J. Anim. Sci. 90, 1364–1370.
Methane production by red-necked wallabies (Macropus rufogriseus).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XkvFanu7w%3D&md5=89d1f36af504cca794659b5f4c85460eCAS | 22408184PubMed |

[19]  von Engelhardt, W. et al. (1978) Production of methane in two non-ruminant herbivores Comp. Biochem. Physiol. Part A. Physiol. 60, 309–311.
Production of methane in two non-ruminant herbivoresCrossref | GoogleScholarGoogle Scholar |

[20]  Miller, T.L. and Wolin, M.J. (1985) Methanosphaera stadtmaniae gen. nov., sp. nov.: a species that forms methane by reducing methanol with hydrogen. Arch. Microbiol. 141, 116–122.
Methanosphaera stadtmaniae gen. nov., sp. nov.: a species that forms methane by reducing methanol with hydrogen.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXhvVags70%3D&md5=184799d241cbccb778aa7fb5bfd6d3c9CAS | 3994486PubMed |

[21]  Dridi, B. et al. (2012) Methanomassiliicoccus luminyensis gen. nov., sp. nov., a methanogenic archaeon isolated from human faeces. Int. J. Syst. Evol. Microbiol. 62, 1902–1907.
Methanomassiliicoccus luminyensis gen. nov., sp. nov., a methanogenic archaeon isolated from human faeces.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVKrs7%2FE&md5=8a8aec9e835708dc10b88d0ce23e024cCAS | 22859731PubMed |

[22]  Borrel, G. et al. (2012) Genome sequence of ‘Candidatus Methanomethylophilus alvus’ Mx1201, a methanogenic archaeon from the human gut belonging to a seventh order of methanogens. J. Bacteriol. 194, 6944–6945.
Genome sequence of ‘Candidatus Methanomethylophilus alvus’ Mx1201, a methanogenic archaeon from the human gut belonging to a seventh order of methanogens.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVahtLfP&md5=6edd0834388eff0f7de082c7b21b0209CAS | 23209209PubMed |

[23]  Morrison, M. (2013) Looking large, to make more, out of gut metagenomics. Curr. Opin. Microbiol. 16, 630–635.
Looking large, to make more, out of gut metagenomics.Crossref | GoogleScholarGoogle Scholar | 24209636PubMed |

[24]  Brugère, J.F. et al. (2014) Archaebiotics: proposed therapeutic use of archaea to prevent trimethylaminuria and cardiovascular disease. Gut Microbes 5, 5–10.
Archaebiotics: proposed therapeutic use of archaea to prevent trimethylaminuria and cardiovascular disease.Crossref | GoogleScholarGoogle Scholar | 24247281PubMed |

[25]  Furnari, M. et al. (2012) Reassessment of the role of methane production between irritable bowel syndrome and functional constipation. J. Gastrointestin. Liver Dis. 21, 157–163.
| 22720304PubMed |

[26]  Pimentel, M. et al. (2003) Methane production during lactulose breath test is associated with gastrointestinal disease presentation. Dig. Dis. Sci. 48, 86–92.
Methane production during lactulose breath test is associated with gastrointestinal disease presentation.Crossref | GoogleScholarGoogle Scholar | 12645795PubMed |

[27]  Lepp, P.W. et al. (2004) Methanogenic Archaea and human periodontal disease. Proc. Natl. Acad. Sci. USA 101, 6176–6181.
Methanogenic Archaea and human periodontal disease.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjsFKnt7c%3D&md5=c5ed405439ad6b060f3aa4f9afa0bb66CAS | 15067114PubMed |

[28]  Vianna, M.E. et al. (2008) Quantitative analysis of three hydrogenotrophic microbial groups, methanogenic archaea, sulfate-reducing bacteria, and acetogenic bacteria, within plaque biofilms associated with human periodontal disease. J. Bacteriol. 190, 3779–3785.
Quantitative analysis of three hydrogenotrophic microbial groups, methanogenic archaea, sulfate-reducing bacteria, and acetogenic bacteria, within plaque biofilms associated with human periodontal disease.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlvFWltLk%3D&md5=81915bf6955c6b7ef7afd03099ea4cd1CAS | 18326571PubMed |

[29]  Blais Lecours, P. et al. (2011) Immunogenic properties of archaeal species found in bioaerosols. PLoS ONE 6, e23326.
Immunogenic properties of archaeal species found in bioaerosols.Crossref | GoogleScholarGoogle Scholar | 21858070PubMed |

[30]  Blais Lecours, P. et al. (2014) Increased prevalence of Methanosphaera stadtmanae in inflammatory bowel diseases. PLoS ONE 9, e87734.
Increased prevalence of Methanosphaera stadtmanae in inflammatory bowel diseases.Crossref | GoogleScholarGoogle Scholar | 24498365PubMed |