Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Microbiology Australia Microbiology Australia Society
Microbiology Australia, bringing Microbiologists together
RESEARCH ARTICLE

Understanding mechanisms of HIV-1 entry into cells

Paul R Gorry
+ Author Affiliations
- Author Affiliations

Centre for Biomedical Research, Burnet Institute, GPO Box 2284, Melbourne, Vic. 3001, Australia

Department of Infectious Diseases, Monash University Central Clinical School, Melbourne, Vic., Australia

Department of Microbiology and Immunology, University of Melbourne, Parkville, Vic., Australia

Tel: +61 3 9282 2129

Fax: +61 3 9282 2100

Email: gorry@burnet.edu.au

Microbiology Australia 35(2) 99-100 https://doi.org/10.1071/MA14031
Published: 5 May 2014

Abstract

Human immunodeficiency virus type 1 (HIV-1) attaches to cells by the stepwise interaction of its envelope glycoproteins (Env), which exist as trimers that stud the exterior of the virus particle, with cellular CD4 and a coreceptor, principally either of the chemokine receptors CCR5 or CXCR4. Virus entry into cells then proceeds via exposure of a viral fusion peptide, and fusion between the viral and cellular membranes. Adaptability in Env conformation is a hallmark of HIV-1, which permits the virus to escape the humoral immune response. HIV-1 may also harness this power of adaptability to alter its target cell tropism and develop resistance to CCR5 antagonist HIV-1 entry inhibitors. Our work has shown that this may occur through a more efficient interaction between the Env glycoproteins and cellular receptors, as well as by an altered (but not necessarily more efficient) mechanism of interaction. Understanding the complexity of these interactions is pivotal for elucidating the molecular determinants of HIV-1 pathogenesis.


References

[1]  Gorry, P.R. and Ancuta, P. (2011) Coreceptors and HIV-1 pathogenesis. Curr. HIV/AIDS Rep. 8, 45–53.
Coreceptors and HIV-1 pathogenesis.Crossref | GoogleScholarGoogle Scholar | 21188555PubMed |

[2]  Gray, L. et al. (2005) Uncoupling coreceptor usage of human immunodeficiency virus type 1 (HIV-1) from macrophage tropism reveals biological properties of CCR5-restricted HIV-1 isolates from patients with acquired immunodeficiency syndrome. Virology 337, 384–398.
Uncoupling coreceptor usage of human immunodeficiency virus type 1 (HIV-1) from macrophage tropism reveals biological properties of CCR5-restricted HIV-1 isolates from patients with acquired immunodeficiency syndrome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXltFCls7s%3D&md5=278529ef50dc7ee05c0ea5f3ecf1cd6bCAS | 15916792PubMed |

[3]  Gonzalez-Scarano, F. and Martin-Garcia, J. (2005) The neuropathogenesis of AIDS. Nat. Rev. Immunol. 5, 69–81.
The neuropathogenesis of AIDS.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlvVOn&md5=87deacd4933eebc582f8bcf452a68535CAS | 15630430PubMed |

[4]  Bjorndal, A. et al. (1997) Coreceptor usage of primary human immunodeficiency virus type 1 isolates varies according to biological phenotype. J. Virol. 71, 7478–7487.
| 1:CAS:528:DyaK2sXmt1Omsr4%3D&md5=05ff33471ec0b8303efab1c33f50944dCAS | 9311827PubMed |

[5]  Connor, R.I. et al. (1997) Change in coreceptor use correlates with disease progression in HIV-1--infected individuals. J. Exp. Med. 185, 621–628.
Change in coreceptor use correlates with disease progression in HIV-1--infected individuals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhtlWnurc%3D&md5=623ab4622c38e14398c6fa4b68ee7b9fCAS | 9034141PubMed |

[6]  Groot, F. et al. (2006) Differential susceptibility of naive, central memory and effector memory T cells to dendritic cell-mediated HIV-1 transmission. Retrovirology 3, 52.
Differential susceptibility of naive, central memory and effector memory T cells to dendritic cell-mediated HIV-1 transmission.Crossref | GoogleScholarGoogle Scholar | 16916447PubMed |

[7]  Gorry, P.R. et al. (2014) HIV-1 envelope-receptor interactions required for macrophage infection and implications for current HIV-1 cure strategies. J. Leukoc. Biol. 95, 71–81.
HIV-1 envelope-receptor interactions required for macrophage infection and implications for current HIV-1 cure strategies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXisVKju7c%3D&md5=b8a61fb6accdfbb4038431c1c1d04ae0CAS | 24158961PubMed |

[8]  Arrildt, K. et al. (2012) HIV-1 infection of macrophages is restricted by host cell CD4 density, which is variable. Program and abstracts of the 19th Conference on retroviruses and opportunistic infections, 5–8 March, Seattle. Abstract 445.

[9]  Arrildt, K.T. et al. (2012) The HIV-1 env protein: a coat of many colors. Curr. HIV/AIDS Rep. 9, 52–63.
The HIV-1 env protein: a coat of many colors.Crossref | GoogleScholarGoogle Scholar | 22237899PubMed |

[10]  Gorry, P.R. et al. (2001) Macrophage tropism of human immunodeficiency virus type 1 isolates from brain and lymphoid tissues predicts neurotropism independent of coreceptor specificity. J. Virol. 75, 10073–10089.
Macrophage tropism of human immunodeficiency virus type 1 isolates from brain and lymphoid tissues predicts neurotropism independent of coreceptor specificity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXns1Whsbg%3D&md5=2930a4edd9367b35faefcd7c76df7fa3CAS | 11581376PubMed |

[11]  Gorry, P.R. et al. (2002) Increased CCR5 affinity and reduced CCR5/CD4 dependence of a neurovirulent primary human immunodeficiency virus type 1 isolate. J. Virol. 76, 6277–6292.
Increased CCR5 affinity and reduced CCR5/CD4 dependence of a neurovirulent primary human immunodeficiency virus type 1 isolate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XktlSqsb8%3D&md5=9e13b68f573dbb47ddbdff6e6b45f87aCAS | 12021361PubMed |

[12]  Gray, L. et al. (2009) Tissue-specific sequence alterations in the human immunodeficiency virus type 1 envelope favoring CCR5 usage contribute to persistence of dual-tropic virus in the brain. J. Virol. 83, 5430–5441.
Tissue-specific sequence alterations in the human immunodeficiency virus type 1 envelope favoring CCR5 usage contribute to persistence of dual-tropic virus in the brain.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmtlGlu7o%3D&md5=2462afbe6fb1e1359e7412fc393fe008CAS | 19321618PubMed |

[13]  Salimi, H. et al. (2013) Macrophage-tropic HIV-1 variants from brain demonstrate alterations in the way gp120 engages both CD4 and CCR5. J. Leukoc. Biol. 93, 113–126.
Macrophage-tropic HIV-1 variants from brain demonstrate alterations in the way gp120 engages both CD4 and CCR5.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXms1GitQ%3D%3D&md5=7ba6a79663912f6e8f3106045b1dd6c2CAS | 23077246PubMed |

[14]  Cashin, K. et al. (2011) Alternative coreceptor requirements for efficient CCR5- and CXCR4-mediated HIV-1 entry into macrophages. J. Virol. 85, 10699–10709.
Alternative coreceptor requirements for efficient CCR5- and CXCR4-mediated HIV-1 entry into macrophages.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtl2nsb7L&md5=6f82a2ad34bb7f96166ccb8e7555b1d9CAS | 21835796PubMed |

[15]  Sterjovski, J. et al. (2010) An altered and more efficient mechanism of CCR5 engagement contributes to macrophage tropism of CCR5-using HIV-1 envelopes. Virology 404, 269–278.
An altered and more efficient mechanism of CCR5 engagement contributes to macrophage tropism of CCR5-using HIV-1 envelopes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXoslaitbs%3D&md5=b1758cf9b938b187d03e79a145165327CAS | 20570309PubMed |

[16]  Gorry, P.R. et al. (2010) Maraviroc. In: Kucers’ The Use of Antibiotics, 6th edition (Grayson, L. et al. eds.) pp. 2869–2876, London, Hodder & Stoughton Ltd.

[17]  Roche, M. et al. (2011) HIV-1 escape from the CCR5 antagonist maraviroc associated with an altered and less efficient mechanism of gp120-CCR5 engagement that attenuates macrophage-tropism. J. Virol. 85, 4330–4342.
HIV-1 escape from the CCR5 antagonist maraviroc associated with an altered and less efficient mechanism of gp120-CCR5 engagement that attenuates macrophage-tropism.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVSmsLnL&md5=4742ac0d0118b66f7992245bfe5180a2CAS | 21345957PubMed |

[18]  Flynn, J.K. et al. (2013) The magnitude of HIV-1 resistance to the CCR5 antagonist maraviroc may impart a differential alteration in HIV-1 tropism for macrophages and T-cell subsets. Virology 442, 51–58.
The magnitude of HIV-1 resistance to the CCR5 antagonist maraviroc may impart a differential alteration in HIV-1 tropism for macrophages and T-cell subsets.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmtValurg%3D&md5=63cb6d33a24c1df12707d1bb7676ca3cCAS | 23602007PubMed |

[19]  Roche, M. et al. (2013) A common mechanism of clinical HIV-1 resistance to maraviroc despite divergent resistance levels and lack of common gp120 resistance mutations. Retrovirology 10, 43.
A common mechanism of clinical HIV-1 resistance to maraviroc despite divergent resistance levels and lack of common gp120 resistance mutations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXot1Wns74%3D&md5=34203fa5e016a2cb40a7cd195df7bacdCAS | 23602046PubMed |

[20]  Pfaff, J.M. et al. (2010) HIV-1 resistance to CCR5 antagonists associated with highly efficient use of CCR5 and altered tropism on primary CD4+ T cells. J. Virol. 84, 6505–6514.
HIV-1 resistance to CCR5 antagonists associated with highly efficient use of CCR5 and altered tropism on primary CD4+ T cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXptVehurw%3D&md5=49faef48787b4f62c55835784ce2c088CAS | 20410277PubMed |