Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Microbiology Australia Microbiology Australia Society
Microbiology Australia, bringing Microbiologists together
RESEARCH ARTICLE

Listeria monocytogenes: illuminating adaptation with proteomics

John P Bowman , Rolf E Nilsson , Chawalit Kocharunchitt and Tom Ross
+ Author Affiliations
- Author Affiliations

Food Safety Centre
Tasmanian Institute of Agriculture
University of Tasmania, College Road
Sandy Bay, Tas 7005, Australia
Tel: +61 3 6226 6380
Fax: +61 3 6226 2642
Email: john.bowman@utas.edu.au

Microbiology Australia 34(2) 75-77 https://doi.org/10.1071/MA13026
Published: 13 May 2013

Abstract

With increased consumption of minimally processed ready-to-eat foods the potential for exposure to Listeria monocytogenes has increased. Thus, there is a need to maintain a balance between food convenience and safety. L. monocytogenes is not a homogenous species; certain strains are more resilient to stressful conditions while others are potentially more virulent. To understand the basis of these differences we are applying proteomics to determine the molecular mechanism of adaptations of L. monocytogenes in food-relevant environments. The goal is to define how this species grows, behaves and survives thus allowing us to fine tune food safety risk management, especially when developing new minimal food processes or considering introduction of unpasteurised food such as raw milk cheeses.


References

[1]  Pentecost, M. et al. (2010) Listeria monocytogenes Internalin B activates junctional endocytosis to accelerate intestinal invasion. PLoS Pathog. 6, e1000900.
Listeria monocytogenes Internalin B activates junctional endocytosis to accelerate intestinal invasion.Crossref | GoogleScholarGoogle Scholar | 20485518PubMed |

[2]  Toledo-Arana, A. et al. (2009) The Listeria transcriptional landscape from saprophytism to virulence. Nature 459, 950–956.
The Listeria transcriptional landscape from saprophytism to virulence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmtVOrsbg%3D&md5=86c4fd5aceb7afa05699ea025c589d87CAS | 19448609PubMed |

[3]  Loh, E. et al. (2009) A trans-acting riboswitch controls expression of the virulence regulator PrfA in Listeria monocytogenes. Cell 139, 770–779.
A trans-acting riboswitch controls expression of the virulence regulator PrfA in Listeria monocytogenes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFylsbbK&md5=045fb764cf1765db5a6b77bf6894ae9dCAS | 19914169PubMed |

[4]  Chaturongakul, S. et al. (2011) Transcriptomic and phenotypic analyses identify coregulated, overlapping regulons among PrfA, CtsR, HrcA, and the alternative sigma factors σB, σC, σH, and σL in Listeria monocytogenes. Appl. Environ. Microbiol. 77, 187–200.
Transcriptomic and phenotypic analyses identify coregulated, overlapping regulons among PrfA, CtsR, HrcA, and the alternative sigma factors σB, σC, σH, and σL in Listeria monocytogenes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXisVOqur4%3D&md5=0bdf30852de7169c6e97a4814d2916daCAS | 21037293PubMed |

[5]  Yates, J.R. et al. (2009) Proteomics by mass spectrometry: approaches, advances, and applications. Annu. Rev. Biomed. Eng. 11, 49–79.
Proteomics by mass spectrometry: approaches, advances, and applications.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVKmt7fP&md5=52b2696cb23d7b4e8699a6e1b45e72fdCAS | 19400705PubMed |

[6]  Pham, T.V. et al. (2010) On the beta-binomial model for analysis of spectral count data in label-free tandem mass spectrometry-based proteomics. Bioinformatics 26, 363–369.
On the beta-binomial model for analysis of spectral count data in label-free tandem mass spectrometry-based proteomics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1Onsr4%3D&md5=5a8858c6d577211f8f8cbd5c8836cef0CAS | 20007255PubMed |

[7]  Li, M. et al. (2010) Comparative shotgun proteomics using spectral count data and quasi-likelihood modeling. J. Proteome Res. 9, 4295–4305.
Comparative shotgun proteomics using spectral count data and quasi-likelihood modeling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXovFems7s%3D&md5=b80209ba5f85b1587ad3641c1cca471fCAS | 20586475PubMed |

[8]  Griffin, N.M. et al. (2010) Label-free, normalized quantification of complex mass spectrometry data for proteomic analysis. Nat. Biotechnol. 28, 83–89.
Label-free, normalized quantification of complex mass spectrometry data for proteomic analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFGjsLvL&md5=3a055d2b82c3ecb7289fff517a896eafCAS | 20010810PubMed |

[9]  Kocharunchitt, C. et al. (2012) Integrated transcriptomic and proteomic analysis of the physiological response of Escherichia coli O157:H7 Sakai to steady-state conditions of cold and water activity stress. Mol. Cell. Proteomics 11, M111.0091019.

[10]  Bowman, J.P. et al. (2012) Investigation of the Listeria monocytogenes Scott A acid tolerance response and associated physiological and phenotypic features via whole proteome analysis. J. Proteome Res. 11, 2409–2426.
Investigation of the Listeria monocytogenes Scott A acid tolerance response and associated physiological and phenotypic features via whole proteome analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjtVWhsLs%3D&md5=d94ec310d6330b3765eef36a4d439926CAS | 22372944PubMed |

[11]  Nilsson, R.E. et al. (2013) MudPIT profiling reveals a link between anaerobic metabolism and the alkaline adaptive response of Listeria monocytogenes EGD-e. PLoS ONE 8, e54157.
MudPIT profiling reveals a link between anaerobic metabolism and the alkaline adaptive response of Listeria monocytogenes EGD-e.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVGks7Y%3D&md5=2675b29a98f5b4a46d919b3c020f49b0CAS | 23342094PubMed |

[12]  Cussiol, J.R. et al. (2010) Ohr (organic hydroperoxide resistance protein) possesses a previously undescribed activity, lipoyl-dependent peroxidase. J. Biol. Chem. 285, 21943–21950.
Ohr (organic hydroperoxide resistance protein) possesses a previously undescribed activity, lipoyl-dependent peroxidase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXos1Wnsr0%3D&md5=6fe4f654b28eca522432433f5780d432CAS | 20463026PubMed |