Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Invertebrate Systematics Invertebrate Systematics Society
Systematics, phylogeny and biogeography
RESEARCH ARTICLE (Open Access)

A molecular assessment of species boundaries and relationships in the Australian brine shrimp Parartemia (Anostraca: Parartemiidae)

Md Aminul Islam https://orcid.org/0000-0003-3396-5792 A B * , Jennifer Chaplin A , Angus D’Arcy Lawrie A , Mahabubur Rahman A C and Adrian Pinder B
+ Author Affiliations
- Author Affiliations

A Environmental and Conservation Sciences, Murdoch University, Murdoch, WA 6150, Australia.

B Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Kensington, WA 6151, Australia.

C Department of Fisheries and Marine Science, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh.

* Correspondence to: mdaminulmu@gmail.com

Handling Editor: Jo Wolfe

Invertebrate Systematics 38, IS24044 https://doi.org/10.1071/IS24044
Submitted: 2 June 2024  Accepted: 26 October 2024  Published: 11 November 2024

© 2024 The Author(s) (or their employer(s)). Published by CSIRO Publishing. This is an open access article distributed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND)

Abstract

Australian salt lakes contain a diverse range of endemic invertebrates. The brine shrimp Parartemia is among the most speciose and salt-tolerant of these invertebrates. The morphotaxonomy of Parartemia is well established but there has only been limited molecular assessment of the phylogenetic relationships and boundaries of the morphospecies. We used multiple genetic markers (nuclear 28S and mitochondrial 16S and COI) and tree-building methods (Bayesian inference and maximum likelihood) to investigate the phylogeny of Parartemia. We also used species delimitation methods to test the validity of morphological species designations. The data set included all but 2 of the 18 described Parartemia morphospecies, collected from a total of 93 sites from across southern Australia plus some sequences from GenBank. The results identified large amounts of molecular divergence (e.g. COI P-values of up to 25.23%), some groups of closely related species (which also usually shared some morphological similarities) and some distinctive species, although the relationships among divergent lineages were generally not well resolved. The most conservative set of results from the species delimitation analyses suggests that the morphotaxonomy is largely accurate, although many morphospecies comprised divergent genetic lineages separated by COI P-values of up to 17.02%. Two putative new morphospecies, three cryptic species and one synonymy were identified. Our findings improve the knowledge of Parartemia taxonomy and will facilitate the development of future studies and conservation of this taxon.

Keywords: anostraca, cryptic species, extremophiles, high mitochondrial DNA divergence, integrative taxonomy, invertebrate conservation, morphological and molecular species congruence, salt lakes, species delimitation.

References

Anufriieva E, Shadrin N (2013) Historical biogeography of Artemia (Anostraca): some intriguing aspects of diversification. In ‘BioSyst.EU 2013 Global systematics!’, 18–22 February 2013, Vienna, Austria. (Eds A Kroh, B Berning, E Haring, M Harzhauser, H Sattmann, J Walochnik, D Zimmermann, M Zuschin) Abstract volume, p. 12. (NOBIS Austria: Vienna, Austria) Available at https://archive.bgbm.org/BGBM/staff/wiss/Lack/PDF/BioSystEU2013_Abstract_volume.pdf

Asem A, Gajardo G, Hontoria F, Yang C, Shen C-Y, Rastegar-Pouyani N, Padhye SM, Sorgeloos P (2023a) The species problem in Artemia Leach, 1819 (Crustacea: Anostraca), a genus with sexual species and obligate parthenogenetic lineages. Zoological Journal of the Linnean Society 202, zlad192.
| Crossref | Google Scholar |

Asem A, Yang C, Eimanifar A, Hontoria F, Varó I, Mahmoudi F, Fu C-Z, Shen C-Y, Rastegar-Pouyani N, Wang P-Z (2023b) Phylogenetic analysis of problematic Asian species of Artemia Leach, 1819 (Crustacea, Anostraca), with the descriptions of two new species. Journal of Crustacean Biology 43(1), ruad002.
| Crossref | Google Scholar |

Bayly I, Williams W (1966) Chemical and biological studies on some saline lakes of south-east Australia. Marine and Freshwater Research 17(2), 177-228.
| Crossref | Google Scholar |

Bortolus A (2008) Error cascades in the biological sciences: the unwanted consequences of using bad taxonomy in ecology. AMBIO: A Journal of the Human Environment 37(2), 114-118.
| Crossref | Google Scholar | PubMed |

Coleman M, Geddes MC, Trotman C (1998) Divergence of Parartemia and Artemia haemoglobin genes. International Journal of Salt Lake Research 7(2), 171-180.
| Crossref | Google Scholar |

Costa FO, DeWaard JR, Boutillier J, Ratnasingham S, Dooh RT, Hajibabaei M, Hebert PD (2007) Biological identifications through DNA barcodes: the case of the Crustacea. Canadian Journal of Fisheries and Aquatic Sciences 64(2), 272-295.
| Crossref | Google Scholar |

Costello MJ, May RM, Stork NE (2013) Can we name Earth’s species before they go extinct? Science 339(6118), 413-416.
| Crossref | Google Scholar | PubMed |

Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9, 772.
| Crossref | Google Scholar | PubMed |

Davis J, Pavlova A, Thompson R, Sunnucks P (2013) Evolutionary refugia and ecological refuges: key concepts for conserving Australian arid zone freshwater biodiversity under climate change. Global Change Biology 19(7), 1970-1984.
| Crossref | Google Scholar | PubMed |

De Deckker P (1983) Australian salt lakes: their history, chemistry, and biota – a review. Hydrobiologia 105(1), 231-244.
| Crossref | Google Scholar |

Di Marco M, Chapman S, Althor G, Kearney S, Besancon C, Butt N, Maina JM, Possingham HP, von Bieberstein KR, Venter O (2017) Changing trends and persisting biases in three decades of conservation science. Global Ecology and Conservation 10, 32-42.
| Crossref | Google Scholar |

Donaldson MR, Burnett NJ, Braun DC, Suski CD, Hinch SG, Cooke SJ, Kerr JT (2016) Taxonomic bias and international biodiversity conservation research. Science Applications Forum 1(1), 105-113.
| Crossref | Google Scholar |

Dugan KA, Lawrence HS, Hares DR, Fisher CL, Budowle B (2002) An improved method for post-PCR purification for mtDNA sequence analysis. Journal of Forensic Science 47(4), 1-8.
| Crossref | Google Scholar | PubMed |

Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32(5), 1792-1797.
| Crossref | Google Scholar | PubMed |

Fišer C, Robinson CT, Malard F (2018) Cryptic species as a window into the paradigm shift of the species concept. Molecular Ecology 27(3), 613-635.
| Crossref | Google Scholar | PubMed |

Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3(5), 294-299.
| Google Scholar | PubMed |

Fujisawa T, Barraclough TG (2013) Delimiting species using single-locus data and the Generalized Mixed Yule Coalescent approach: a revised method and evaluation on simulated data sets. Systematic Biology 62(5), 707-724.
| Crossref | Google Scholar | PubMed |

Gatesy J, DeSalle R, Wahlberg N (2007) How many genes should a systematist sample? Conflicting insights from a phylogenomic matrix characterized by replicated incongruence. Systematic Biology 56(2), 355-363.
| Crossref | Google Scholar | PubMed |

Gaytán Á, Bergsten J, Canelo T, Pérez‐Izquierdo C, Santoro M, Bonal R (2020) DNA Barcoding and geographical scale effect: the problems of undersampling genetic diversity hotspots. Ecology and Evolution 10(19), 10754-10772.
| Crossref | Google Scholar | PubMed |

Geddes M (1973) A new species of Parartemia (Anostraca) from Australia. Crustaceana 25(1), 5-12.
| Crossref | Google Scholar |

Hebert PD, Remigio EA, Colbourne JK, Taylor DJ, Wilson CC (2002) Accelerated molecular evolution in halophilic crustaceans. Evolution 56(5), 909-926.
| Crossref | Google Scholar | PubMed |

International Trust for Zoological Nomenclature (1999) ‘International Code of Zoological Nomenclature (ICZN)’, 4th edn. (ITZN, c/o Natural History Museum: London) Available at http://hdl.handle.net/1885/92062

Jackson S, Baker A, Eldridge M, Fisher D, Frankham G, Lavery T, MacDonald AJ, Menkhorst P, Phillips M, Potter S (2022) The importance of appropriate taxonomy in Australian mammalogy. Australian Mammalogy 45, 13-23.
| Crossref | Google Scholar |

Jansson R (2003) Global patterns in endemism explained by past climatic change. Proceedings of the Royal Society of London – B. Biological Sciences 270(1515), 583-590.
| Crossref | Google Scholar | PubMed |

Jellison R, Williams WD, Timms BV, Alcocer J, Aladin NV (2008) Salt lakes: values, threats and future. In ‘Aquatic ecosystems: trends and global prospects’. (Ed. NVC Polunin) pp. 94–110. (Cambridge University Press) 10.1017/CBO9780511751790.010

Jörger KM, Schrödl M (2013) How to describe a cryptic species? Practical challenges of molecular taxonomy. Frontiers in Zoology 10(1), 59.
| Crossref | Google Scholar | PubMed |

Kang S, Sultana T, Loktev VB, Wongratanacheewin S, Sohn W-M, Eom KS, Park J-K (2008) Molecular identification and phylogenetic analysis of nuclear rDNA sequences among three opisthorchid liver fluke species (Opisthorchiidae: Trematoda). Parasitology International 57(2), 191-197.
| Crossref | Google Scholar | PubMed |

Kapli P, Lutteropp S, Zhang J, Kobert K, Pavlidis P, Stamatakis A, Flouri T (2017) Multi-rate Poisson tree processes for single-locus species delimitation under maximum likelihood and Markov chain Monte Carlo. Bioinformatics 33(11), 1630-1638.
| Crossref | Google Scholar | PubMed |

Ketmaier V, Pirollo D, De Matthaeis E, Tiedemann R, Mura G (2008) Large-scale mitochondrial phylogeography in the halophilic fairy shrimp Phallocryptus spinosa (Milne-Edwards, 1840) (Branchiopoda: Anostraca). Aquatic Sciences 70(1), 65-76.
| Crossref | Google Scholar |

Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16(2), 111-120.
| Crossref | Google Scholar | PubMed |

Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution 35(6), 1547-1549.
| Crossref | Google Scholar | PubMed |

Lawrie ADA, Chaplin J, Pinder A (2021) Corrigendum to: biology and conservation of the unique and diverse halophilic macroinvertebrates of Australian salt lakes. Marine and Freshwater Research 72(11), 1695.
| Crossref | Google Scholar |

Lawrie ADA, Chaplin J, Kirkendale L, Whisson C, Pinder A, Mlambo MC (2023) Phylogenetic assessment of the halophilic Australian gastropod Coxiella and South African Tomichia resolves taxonomic uncertainties, uncovers new species and supports a Gondwanan link. Molecular Phylogenetics and Evolution 184, 107810.
| Crossref | Google Scholar | PubMed |

Linder F (1941) Contributions to the morphology and the taxonomy of the Branchiopoda Anostraca. Zoologiska Bidrag från Uppsala 20, 101-302.
| Google Scholar |

Luo A, Ling C, Ho SY, Zhu C-D (2018) Comparison of methods for molecular species delimitation across a range of speciation scenarios. Systematic Biology 67(5), 830-846.
| Crossref | Google Scholar | PubMed |

Mace GM (2004) The role of taxonomy in species conservation. Philosophical Transactions of the Royal Society of London – B. Biological Sciences. 359(1444), 711-719.
| Crossref | Google Scholar | PubMed |

McMaster K, Savage A, Finston T, Johnson MS, Knott B (2007) The recent spread of Artemia parthenogenetica in Western Australia. Hydrobiologia 576(1), 39-48.
| Crossref | Google Scholar |

Meusel F, Schwentner M (2017) Molecular and morphological delimitation of Australian Triops species (Crustacea: Branchiopoda: Notostraca) – large diversity and little morphological differentiation. Organisms Diversity & Evolution 17(1), 137-156.
| Crossref | Google Scholar |

Michonneau F (2016) Using GMYC for species delineation. (University of Washington: Seattle, WA, USA). Available at https://francoismichonneau.net/gmyc-tutorial

Mora C, Tittensor DP, Adl S, Simpson AG, Worm B (2011) How many species are there on Earth and in the ocean? PLoS Biology 9(8), e1001127.
| Crossref | Google Scholar | PubMed |

Moritz C (2002) Strategies to protect biological diversity and the evolutionary processes that sustain it. Systematic Biology 51(2), 238-254.
| Crossref | Google Scholar | PubMed |

Muñoz J, Pacios F (2010) Global biodiversity and geographical distribution of diapausing aquatic invertebrates: the case of the cosmopolitan brine shrimp, Artemia (Branchiopoda, Anostraca). Crustaceana 83(4), 465-480.
| Crossref | Google Scholar |

Muñoz J, Gómez A, Green AJ, Figuerola J, Amat F, Rico C (2008) Phylogeography and local endemism of the native Mediterranean brine shrimp Artemia salina (Branchiopoda: Anostraca). Molecular Ecology 17(13), 3160-3177.
| Crossref | Google Scholar | PubMed |

Padial JM, De la Riva I (2006) Taxonomic inflation and the stability of species lists: the perils of ostrich’s behavior. Systematic Biology 55(5), 859-867.
| Crossref | Google Scholar | PubMed |

Padial JM, Miralles A, De la Riva I, Vences M (2010) The integrative future of taxonomy. Frontiers in Zoology 7(1), 16.
| Crossref | Google Scholar | PubMed |

Pinceel T, Vanschoenwinkel B, Waterkeyn A, Vanhove MP, Pinder A, Timms BV, Brendonck L (2013) Fairy shrimps in distress: a molecular taxonomic review of the diverse fairy shrimp genus Branchinella (Anostraca: Thamnocephalidae) in Australia in the light of ongoing environmental change. Hydrobiologia 700(1), 313-327.
| Crossref | Google Scholar |

Pinder A, Timms BV, Campagna V (2009) Salt-loving shrimps threatened by salinisation? Information sheet 20/2009, science division. (Department of Environment and Conservation, Western Australia) Available at https://library.dbca.wa.gov.au/static/Journals/080525/080525-20.pdf

Puillandre N, Brouillet S, Achaz G (2021) ASAP: assemble species by automatic partitioning. Molecular Ecology Resources 21(2), 609-620.
| Crossref | Google Scholar | PubMed |

Rahman M (2024) Taxonomy, phylogeography and ecology of giant ostracods from Australian salt lakes, focusing on the genus Australocypris. PhD thesis, Murdoch University, Perth, WA, Australia.

Rahman M, Chaplin J, Pinder A (2023) The biology of giant ostracods (Crustacea, Cyprididae), a review focusing on the Mytilocypridinae from Australian inland waters. Marine and Freshwater Research 74(1), 1-19.
| Crossref | Google Scholar |

Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA (2018) Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Systematic Biology 67(5), 901-904.
| Crossref | Google Scholar | PubMed |

Raupach MJ, Radulovici AE (2015) Looking back on a decade of barcoding crustaceans. ZooKeys 539, 53-81.
| Crossref | Google Scholar | PubMed |

Remigio E, Hebert P, Savage A (2001) Phylogenetic relationships and remarkable radiation in Parartemia (Crustacea: Anostraca), the endemic brine shrimp of Australia: evidence from mitochondrial DNA sequences. Biological Journal of the Linnean Society 74(1), 59-71.
| Crossref | Google Scholar |

Rogers DC (2013) Anostraca catalogus (Crustacea: Branchiopoda). Raffles Bulletin of Zoology 61(2), 525-546.
| Google Scholar |

Rogers DC (2014) Two new cryptic anostracan (Branchiopoda: Streptocephalidae, Chirocephalidae) species. Journal of Crustacean Biology 34(6), 862-874.
| Crossref | Google Scholar |

Rogers DC (2015) A conceptual model for anostracan biogeography. Journal of Crustacean Biology 35(5), 686-699.
| Crossref | Google Scholar |

Rogers DC, Aguilar A (2020) Molecular evaluation of the fairy shrimp family Branchinectidae (Crustacea: Anostraca) supports peripatric speciation and complex divergence patterns. Zoological Studies 59, 14.
| Crossref | Google Scholar | PubMed |

Rogers DC, Timms BV (2014) Anostracan (Crustacea: Branchiopoda) zoogeography III. Australian bioregions. Zootaxa 3881(5), 453-487.
| Crossref | Google Scholar | PubMed |

Rozas J, Ferrer-Mata A, Sánchez-DelBarrio JC, Guirao-Rico S, Librado P, Ramos-Onsins SE, Sánchez-Gracia A (2017) DnaSP 6: DNA sequence polymorphism analysis of large data sets. Molecular Biology and Evolution 34(12), 3299-3302.
| Crossref | Google Scholar | PubMed |

Ruebhart DR, Cock IE, Shaw GR (2008) Invasive character of the brine shrimp Artemia franciscana Kellogg 1906 (Branchiopoda: Anostraca) and its potential impact on Australian inland hypersaline waters. Marine and Freshwater Research 59(7), 587-595.
| Crossref | Google Scholar |

Saccò M, White NE, Harrod C, Salazar G, Aguilar P, Cubillos CF, Meredith K, Baxter BK, Oren A, Anufriieva E (2021) Salt to conserve: a review on the ecology and preservation of hypersaline ecosystems. Biological Reviews 96(6), 2828-2850.
| Crossref | Google Scholar | PubMed |

Sayce O (1903) The Phyllopoda of Australia, including descriptions of some new genera and species. Proceedings of the Royal Society of Victoria 15, 224-261.
| Google Scholar |

Schwentner M, Timms BV, Richter S (2011) An integrative approach to species delineation incorporating different species concepts: a case study of Limnadopsis (Branchiopoda: Spinicaudata). Biological Journal of the Linnean Society 104(3), 575-599.
| Crossref | Google Scholar |

Schwentner M, Clavier S, Fritsch M, Olesen J, Padhye S, Timms BV, Richter S (2013) Cyclestheria hislopi (Crustacea: Branchiopoda): a group of morphologically cryptic species with origins in the Cretaceous. Molecular Phylogenetics and Evolution 66(3), 800-810.
| Crossref | Google Scholar | PubMed |

Schwentner M, Timms BV, Richter S (2014) Evolutionary systematics of the Australian Eocyzicus fauna (Crustacea: Branchiopoda: Spinicaudata) reveals hidden diversity and phylogeographic structure. Journal of Zoological Systematics and Evolutionary Research 52(1), 15-31.
| Crossref | Google Scholar |

Schwentner M, Just F, Richter S (2015) Evolutionary systematics of the Australian Cyzicidae (Crustacea, Branchiopoda, Spinicaudata) with the description of a new genus. Zoological Journal of the Linnean Society 173(2), 271-295.
| Crossref | Google Scholar |

Seidel RA, Lang BK, Berg DJ (2009) Phylogeographic analysis reveals multiple cryptic species of amphipods (Crustacea: Amphipoda) in Chihuahuan Desert springs. Biological Conservation 142(10), 2303-2313.
| Crossref | Google Scholar |

Stork NE (1997) Measuring global biodiversity and its decline. In ‘Biodiversity II: understanding and protecting our biological resources’. (Eds ML Reaka-Kudla, DE Wilson, EO Wilson) pp. 41–68. (Joseph Henry Press: Washington, DC, USA)

Suchard MA, Lemey P, Baele G, Ayres DL, Drummond AJ, Rambaut A (2018) Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evolution 4(1), vey016.
| Crossref | Google Scholar | PubMed |

Timms BV (2005) Salt lakes in Australia: present problems and prognosis for the future. Hydrobiologia 552(1), 1-15.
| Crossref | Google Scholar |

Timms BV (2009) Study of the saline lakes of the Esperance Hinterland, Western Australia, with special reference to the roles of acidity and episodicity. Natural Resources and Environmental Issues 15(1), 215-225.
| Google Scholar |

Timms BV (2010) Six new species of the brine shrimp Parartemia Sayce 1903 (Crustacea: Anostraca: Artemiina) in Western Australia. Zootaxa 2715(1), 1-35.
| Crossref | Google Scholar |

Timms BV (2012) An identification guide to the brine shrimps (Crustacea: Anostraca: Artemiina) of Australia. Museum Victoria Science Reports 16, 1-36.
| Crossref | Google Scholar |

Timms BV (2014) A review of the biology of Australian halophilic anostracans (Branchiopoda: Anostraca). Journal of Biological Research – Thessaloniki 21(1), 21.
| Crossref | Google Scholar | PubMed |

Timms BV, Hudson P (2009) The brine shrimps (Artemia and Parartemia) of South Australia, including descriptions of four new species of Parartemia (Crustacea: Anostraca: Artemiina). Zootaxa 2248(1), 47-68.
| Crossref | Google Scholar |

Timms BV, Pinder AM, Campagna VS (2009) The biogeography and conservation status of the Australian endemic brine shrimp Parartemia (Crustacea, Anostraca, Parartemiidae). Conservation Science Western Australia 7(2), 413-427.
| Google Scholar |

Trifinopoulos J, Nguyen L-T, von Haeseler A, Minh BQ (2016) W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Research 44(W1), W232-W235.
| Crossref | Google Scholar | PubMed |

Troudet J, Grandcolas P, Blin A, Vignes-Lebbe R, Legendre F (2017) Taxonomic bias in biodiversity data and societal preferences. Scientific Reports 7(1), 9132.
| Crossref | Google Scholar | PubMed |

Weekers PH, Murugan G, Vanfleteren JR, Belk D, Dumont HJ (2002) Phylogenetic analysis of anostracans (Branchiopoda: Anostraca) inferred from nuclear 18S ribosomal DNA (18S rDNA) sequences. Molecular Phylogenetics and Evolution 25(3), 535-544.
| Crossref | Google Scholar | PubMed |

Whitfield JB, Kjer KM (2008) Ancient rapid radiations of insects: challenges for phylogenetic analysis. Annual Review of Entomology 53, 449-472.
| Crossref | Google Scholar | PubMed |

Wiens JJ, Moen DS (2008) Missing data and the accuracy of Bayesian phylogenetics. Journal of Systematics and Evolution 46(3), 307-314.
| Crossref | Google Scholar |

Williams WD (2002) Environmental threats to salt lakes and the likely status of inland saline ecosystems in 2025. Environmental Conservation 29(2), 154-167.
| Crossref | Google Scholar |