Genetic barcodes for species identification and phylogenetic estimation in ghost spiders (Araneae: Anyphaenidae: Amaurobioidinae)
Mariana L. Barone A B , Jeremy D. Wilson A L , Lorena Zapata A , Eduardo M. Soto B , Charles R. Haddad C , Cristian Grismado A , Matías Izquierdo A M , Elizabeth Arias D , Jaime Pizarro-Araya E F G H , Raúl Briones I , Juan Enrique Barriga J , Luciano Peralta K and Martín J. Ramírez A *A
B
C
D
E
F
G
H
I
J
K
L Present address:
M Present address:
Abstract
The identification of spider species presents many challenges, since in most cases the characters used are from genital structures that are only fully developed in the adult stage, hence the identification of immatures is most often not possible. Additionally, these structures usually also present some intra-specific variability, which in some cases makes the identification of closely related species difficult. The genetic barcode technique (DNA barcodes), based on sequencing of the mitochondrial marker cytochrome c oxidase subunit I (COI), has proven a useful, complementary tool to overcome these limitations. In this work, the contribution of DNA barcoding to the taxonomy of the subfamily Amaurobioidinae is explored using the refined single linkage analysis (RESL) algorithm for the delimitation of operational taxonomic units (OTUs), in comparison with the assemble species by automatic partitioning (ASAP) algorithm, and presented in conjunction with an updated molecular phylogenetic analysis of three other markers (28S rRNA, 16S rRNA, Histone H3), in addition to COI. Of a total of 97 included species identified by morphology, 82 species were concordant with the operational taxonomic units obtained from RESL, representing an 85% correspondence between the two methods. Similar results were obtained using the ASAP algorithm. Previous observations of morphological variation within the same species are supported, and this technique provides new information on genetic structure and potentially cryptic species. Most of the discrepancies between DNA barcoding and morphological identification are explained by low geographic sampling or by divergent or geographically structured lineages. After the addition of many specimens with only COI data, the multi-marker phylogenetic analysis is consistent with previous results and the support is improved. The markers COI, closely followed by 28S, are the most phylogenetically informative. We conclude that the barcode DNA technique is a valuable source of data for the delimitation of species of Amaurobioidinae, in conjunction with morphological and geographic data, and it is also useful for the detection of cases that require a more detailed and meticulous study.
Keywords: DNA barcoding, integrative taxonomy, Juan Fernández Archipelago, morphology, phylogenetic information, South America, species delimitation, systematics.
References
Aisen S, Ramírez MJ (2015) A revision and phylogenetic analysis of the spider genus Oxysoma Nicolet (Araneae: Anyphaenidae, Amaurobioidinae). Zootaxa 3997, 1-61.
| Crossref | Google Scholar | PubMed |
Ashfaq M, Blagoev G, Tahir HM, Khan AM, Mukhtar MK, Akhtar S, Butt A, Mansoor S, Hebert PDN (2019) Assembling a DNA barcode reference library for the spiders (Arachnida: Araneae) of Pakistan. PLoS ONE 14, e0217086.
| Crossref | Google Scholar | PubMed |
Astrin JJ, Höfer H, Spelda J, Holstein J, Bayer S, Hendrich L, Huber BA, Kielhorn KH, Krammer HJ, Lemke M, Monje JC, Morinière J, Rulik B, Petersen M, Janssen H, Muster C (2016) Towards a DNA barcode reference database for spiders and harvestmen of Germany. PLoS ONE 11, e0162624.
| Crossref | Google Scholar | PubMed |
Barone ML, Werenkraut V, Ramírez MJ (2016) New species and phylogenetic relationships of the spider genus Coptoprepes using morphological and sequence data (Araneae: Anyphaenidae). Zootaxa 4175, 436-448.
| Crossref | Google Scholar | PubMed |
Barrett RDH, Hebert PDN (2005) Identifying spiders through DNA barcodes. Canadian Journal of Zoology 83, 481-491.
| Crossref | Google Scholar |
Bergsten J, Bilton DT, Fujisawa T, Elliott M, Monaghan MT, Balke M, Hendrich L, Geijer J, Herrmann J, Foster GN, Ribera I, Nilsson AN, Barraclough TG, Vogler AP (2012) The effect of geographical scale of sampling on DNA barcoding. Systematic Biology 61, 851-869.
| Crossref | Google Scholar | PubMed |
Bidegaray-Batista L, Arnedo MA (2011) Gone with the plate: the opening of the Western Mediterranean basin drove the diversification of ground-dweller spiders. BMC Evolutionary Biology 11, 317.
| Crossref | Google Scholar | PubMed |
Blagoev GA, Nikolova NI, Sobel CN, Hebert PDN, Adamowicz SJ (2013) Spiders (Araneae) of Churchill, Manitoba: DNA barcodes and morphology reveal high species diversity and new Canadian records. BMC Ecology 13, 44.
| Crossref | Google Scholar | PubMed |
Blagoev GA, deWaard JR, Ratnasingham S, deWaard SL, Lu L, Robertson J, Telfer AC, Hebert PDN (2016) Untangling taxonomy: a DNA barcode reference library for Canadian spiders. Molecular Ecology Resources 16, 325-341.
| Crossref | Google Scholar | PubMed |
Blandenier G (2009) Ballooning of spiders (Araneae) in Switzerland: general results from an eleven-year survey. Arachnology 14, 308-316.
| Crossref | Google Scholar |
Bond JE (2004) Systematics of the Californian euctenizine spider genus Apomastus (Araneae:Mygalomorphae:Cyrtaucheniidae): the relationship between molecular and morphological taxonomy. Invertebrate Systematics 18, 361-376.
| Crossref | Google Scholar |
Castalanelli MA, Teale R, Rix MG, Kennington WJ, Harvey MS, Castalanelli MA, Teale R, Rix MG, Kennington WJ, Harvey MS (2014) Barcoding of mygalomorph spiders (Araneae : Mygalomorphae) in the Pilbara bioregion of Western Australia reveals a highly diverse biota. Invertebrate Systematics 28, 375-385.
| Crossref | Google Scholar |
Ceccarelli FS, Opell BD, Haddad CR, Raven RJ, Soto EM, Ramírez MJ (2016) Around the world in eight million years: historical biogeography and evolution of the spray zone spider Amaurobioides (Araneae: Anyphaenidae). PLoS ONE 11, e0163740.
| Crossref | Google Scholar | PubMed |
Ceccarelli SF, Koch NM, Soto EM, Barone ML, Arnedo MA, Ramírez MJ (2019) The grass was greener: repeated evolution of specialized morphologies and habitat shifts in ghost spiders following grassland expansion in South America. Systematic Biology 68, 63-77.
| Crossref | Google Scholar | PubMed |
Chernomor O, Von Haeseler A, Minh BQ (2016) Terrace aware data structure for phylogenomic inference from supermatrices. Systematic Biology 65, 997-1008.
| Crossref | Google Scholar | PubMed |
Coddington JA, Agnarsson I, Cheng RC, Čandek K, Driskell A, Frick H, Gregorič M, Kostanjšek R, Kropf C, Kweskin M, Lokovšek T, Pipan M, Vidergar N, Kuntner M (2016) DNA barcode data accurately assign higher spider taxa. PeerJ 4, e2201.
| Crossref | Google Scholar | PubMed |
Crespo LC, Domènech M, Enguídanos A, Malumbres-Olarte J, Cardoso P, Moya-Laraño J, Frías-López C, Macías-Hernández N, De Mas E, Mazzuca P, Mora E, Opatova V, Planas E, Ribera C, Roca-Cusachs M, Ruiz D, Sousa P, Tonzo V, Arnedo MA (2018) A DNA barcode-assisted annotated checklist of the spider (Arachnida, Araneae) communities associated to white oak woodlands in Spanish National Parks. Biodiversity Data Journal 6, 29443.
| Crossref | Google Scholar | PubMed |
Domènech M, Malumbres-Olarte J, Enguídanos A, Múrria C, Arnedo MA (2022a) What DNA barcodes reveal: microhabitat preference, hunting strategy and dispersal ability drive genetic variation across Iberian spider species. Insect Conservation and Diversity 15, 248-262.
| Crossref | Google Scholar |
Domènech M, Wangensteen OS, Enguídanos A, Malumbres-Olarte J, Arnedo MA (2022b) For all audiences: incorporating immature stages into standardised spider inventories has a major impact on the assessment of biodiversity patterns. Molecular Ecology Resources 22, 2319-2332.
| Crossref | Google Scholar |
Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3, 294-299.
| Google Scholar | PubMed |
Goloboff PA, Catalano SA (2016) TNT version 1.5, including a full implementation of phylogenetic morphometrics. Cladistics 32, 221-238.
| Crossref | Google Scholar | PubMed |
Hamilton CA, Hendrixson BE, Brewer MS, Bond JE (2014) An evaluation of sampling effects on multiple DNA barcoding methods leads to an integrative approach for delimiting species: a case study of the North American tarantula genus Aphonopelma (Araneae, Mygalomorphae, Theraphosidae). Molecular Phylogenetics and Evolution 71, 79-93.
| Crossref | Google Scholar | PubMed |
Hebert PDN, Cywinska A, Ball SL, DeWaard JR (2003a) Biological identifications through DNA barcodes. Proceedings of the Royal Society of London – B. Biological Sciences 270, 313-321.
| Crossref | Google Scholar |
Hebert PDN, Ratnasingham S, DeWaard JR (2003b) Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proceedings of the Royal Society of London – B. Biological Sciences 270, S96-S99.
| Crossref | Google Scholar |
Hebert PDN, Penton EH, Burns JM, Janzen DH, Hallwachs W (2004) Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proceedings of the National Academy of Sciences 101(41), 14812-14817.
| Crossref | Google Scholar |
Ivanov V, Lee KM, Mutanen M (2018) Mitonuclear discordance in wolf spiders: genomic evidence for species integrity and introgression. Molecular Ecology 27, 1681-1695.
| Crossref | Google Scholar | PubMed |
Ivanova N V, Grainger CM (2007) COI Amplification. In ‘CCDB Protocols’. (Canadian Centre for DNA Barcoding) Available at https://ccdb.ca/site/wp-content/uploads/2016/09/CCDB_Amplification.pdf [Verified 12 November 2023]
Kalyaanamoorthy S, Minh BQ, Wong TKF, Von Haeseler A, Jermiin LS (2017) ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods 14, 587-589.
| Crossref | Google Scholar | PubMed |
Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Meintjes P, Drummond A (2012) Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28(12), 1647-1649.
| Crossref | Google Scholar |
Kennedy SR, Prost S, Overcast I, Rominger AJ, Gillespie RG, Krehenwinkel H (2020) High-throughput sequencing for community analysis: the promise of DNA barcoding to uncover diversity, relatedness, abundances and interactions in spider communities. Development Genes and Evolution 230, 185-201.
| Crossref | Google Scholar | PubMed |
Kerr KCR, Lijtmaer DA, Barreira AS, Hebert PDN, Tubaro PL (2009) Probing evolutionary patterns in neotropical birds through DNA barcodes. PLoS ONE 4, e4379.
| Crossref | Google Scholar | PubMed |
Knowlton N, Weigt LA (1998) New dates and new rates for divergence across the Isthmus of Panama. Proceedings of the Royal Society of London – B. Biological Sciences 265, 2257-2263.
| Crossref | Google Scholar |
Labarque FM, Soto EM, Ramírez MJ, Arnedo MA (2015) Chasing ghosts: the phylogeny of Amaurobioidinae ghost spiders (Araneae, Anyphaenidae). Zoologica Scripta 44, 550-561.
| Crossref | Google Scholar |
Leavitt DH, Starrett J, Westphal MF, Hedin M (2015) Multilocus sequence data reveal dozens of putative cryptic species in a radiation of endemic Californian mygalomorph spiders (Araneae, Mygalomorphae, Nemesiidae). Molecular Phylogenetics and Evolution 91, 56-67.
| Crossref | Google Scholar | PubMed |
Lopardo L, Uhl G (2014) Testing mitochondrial marker efficacy for DNA barcoding in spiders: a test case using the dwarf spider genus Oedothorax (Araneae: Linyphiidae: Erigoninae). Invertebrate Systematics 28, 501-521.
| Crossref | Google Scholar |
Maddison WP, Li D, Bodner M, Zhang J, Xu X, Liu Q, Liu F (2014) The deep phylogeny of jumping spiders (Araneae, Salticidae). ZooKeys 440, 57-87.
| Crossref | Google Scholar | PubMed |
Magalhaes ILF, Martins PH, Nogueira AA, Santos AJ (2017) Finding hot singles: matching males to females in dimorphic spiders (Araneidae : Micrathena) using phylogenetic placement and DNA barcoding. Invertebrate Systematics 31, 8-36.
| Crossref | Google Scholar |
Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, Von Haeseler A, Lanfear R, Teeling E (2020) IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Molecular Biology and Evolution 37, 1530-1534.
| Crossref | Google Scholar | PubMed |
Oh JH, Kim S, Lee S (2022) DNA barcodes reveal population-dependent cryptic diversity and various cases of sympatry of Korean leptonetid spiders (Araneae: Leptonetidae). Scientific Reports 12, 15528.
| Crossref | Google Scholar | PubMed |
Piacentini LN, Scioscia CL, Carbajal MN, Ott R, Brescovit AD, Ramírez MJ (2017) A revision of the wolf spider genus Diapontia Keyserling, and the relationships of the subfamily Sosippinae (Araneae: Lycosidae). Arthropod Systematics and Phylogeny 75, 387-415.
| Crossref | Google Scholar |
Planas E, Ribera C (2015) Description of six new species of Loxosceles (Araneae: Sicariidae) endemic to the Canary Islands and the utility of DNA barcoding for their fast and accurate identification. Zoological Journal of the Linnean Society 174, 47-73.
| Crossref | Google Scholar |
Pompozzi G, Petrakova L, Pekar AS (2018) Evolution of ant-eating specialization in the basal lineage of Zodariidae (Araneae): the trophic ecology of South American Leprolochus birabeni Mello-Leitão. Biological Journal of the Linnean Society 124, 21-31.
| Crossref | Google Scholar |
Puillandre N, Brouillet S, Achaz G (2021) ASAP: assemble species by automatic partitioning. Molecular Ecology Resources 21, 609-620.
| Crossref | Google Scholar | PubMed |
Ramírez MJ (1997) Revisión y filogenia de los géneros Ferrieria y Acanthoceto (Araneae: Anyphaenidae, Amaurobioidinae). Iheringia, Série. Zoologia 82, 173-203 [In Spanish].
| Google Scholar |
Ramírez MJ (2003) The spider subfamily Amaurobioidinae (Araneae, Anyphaenidae): a phylogenetic revision at the generic level. Bulletin of the American Museum of Natural History 277, 1-262.
| Crossref | Google Scholar |
Ratnasingham S, Hebert PDN (2007) BOLD: the Barcode of Life Data System: barcoding. Molecular Ecology Notes 7, 355-364.
| Crossref | Google Scholar | PubMed |
Ratnasingham S, Hebert PDN (2013) A DNA-based registry for all animal species: the Barcode Index Number (BIN) system. PLoS ONE 8, e66213.
| Crossref | Google Scholar | PubMed |
Rivera-Quiroz FA, Álvarez-Padilla F (2023) Integration or minimalism: twenty-one new species of ghost spiders (Anyphaenidae: Anyphaena) from Mexico. European Journal of Taxonomy 865, 1-94.
| Crossref | Google Scholar |
Robinson E, Blagoev G, Hebert P, Adamowicz S (2009) Prospects for using DNA barcoding to identify spiders in species-rich genera. ZooKeys 16, 27-46.
| Crossref | Google Scholar |
Rubio GD, Ramírez MJ (2015) Taxonomic revision of the American spider genus Arachosia (Araneae: Anyphaenidae). Zootaxa 3932, 1-105.
| Crossref | Google Scholar | PubMed |
Saccone C, De Giorgi C, Gissi C, Pesole G, Reyes A (1999) Evolutionary genomics in Metazoa: the mitochondrial DNA as a model system. Gene 238, 195-209.
| Crossref | Google Scholar | PubMed |
Sim KA, Buddle CM, Wheeler TA (2014) Species boundaries of Pardosa concinna and P. lapponica (Araneae: Lycosidae) in the northern Nearctic: morphology and DNA barcodes. Zootaxa 3884, 169-178.
| Crossref | Google Scholar | PubMed |
Soto EM, Ramírez MJ (2012) Revision and phylogenetic analysis of the spider genus Philisca Simon (Araneae: Anyphaenidae, Amaurobioidinae). Zootaxa 3443, 1-65 Available at www.mapress.com/zootaxa/.
| Google Scholar |
Soto EM, Labarque FM, Ceccarelli FS, Arnedo MA, Pizarro-Araya J, Ramírez MJ (2017) The life and adventures of an eight-legged castaway: colonization and diversification of Philisca ghost spiders on Robinson Crusoe Island (Araneae, Anyphaenidae). Molecular Phylogenetics and Evolution 107, 132-141.
| Crossref | Google Scholar | PubMed |
Talavera G, Lukhtanov V, Pierce NE, Vila R (2022) DNA barcodes combined with multilocus data of representative taxa can generate reliable higher-level phylogenies. Systematic Biology 71, 382-395.
| Crossref | Google Scholar | PubMed |
Wilson JD, Zapata LV, Barone ML, Cotoras DD, Poy D, Ramírez MJ (2021) Geometric morphometrics reveal sister species in sympatry and a cline in genital morphology in a ghost spider genus. Zoologica Scripta 50, 485-499.
| Crossref | Google Scholar |
Xu X, Liu F, Chen J, Li D, Kuntner M (2015) Integrative taxonomy of the primitively segmented spider genus Ganthela (Araneae: Mesothelae: Liphistiidae): DNA barcoding gap agrees with morphology. Zoological Journal of the Linnean Society 175, 288-306.
| Crossref | Google Scholar |
Zhang DX, Hewitt GM (1997) Assessment of the universality and utility of a set of conserved mitochondrial primers in insects. Insect Molecular Biology 6, 143-150.
| Crossref | Google Scholar | PubMed |
Zhang JX, Maddison WP (2013) Molecular phylogeny, divergence times and biogeography of spiders of the subfamily Euophryinae (Araneae: Salticidae). Molecular Phylogenetics and Evolution 68, 81-92.
| Crossref | Google Scholar | PubMed |