Register      Login
Invertebrate Systematics Invertebrate Systematics Society
Systematics, phylogeny and biogeography
RESEARCH ARTICLE

Phylogeny of the Rhinocylapus complex (Heteroptera, Miridae, Cylapinae, Fulviini)

Veronica D. Tyts https://orcid.org/0000-0001-5574-5024 A * , Anna A. Namyatova https://orcid.org/0000-0001-9678-3430 B C D and Fedor V. Konstantinov A D
+ Author Affiliations
- Author Affiliations

A Department of Entomology, Faculty of Biology, St Petersburg State University, Universitetskaya nab. 7/9, RU-199034 Saint Petersburg, Russian Federation.

B All-Russian Institute of Plant Protection, Podbelskogo sh. 3, RU-196608 Saint Petersburg, Russian Federation.

C University of Tyumen, Volodarskogo ul. 6, RU-625003 Tyumen, Russian Federation.

D Zoological Institute, Russian Academy of Sciences, Universitetskaya nab. 1, RU-199034 Saint Petersburg, Russian Federation.

* Correspondence to: vtyts@yandex.ru

Handling Editor: Andy Austin

Invertebrate Systematics 36(8) 751-779 https://doi.org/10.1071/IS21061
Submitted: 19 August 2021  Accepted: 13 January 2022   Published: 29 August 2022

© 2022 The Author(s) (or their employer(s)). Published by CSIRO Publishing.

Abstract

Cylapinae Kirkaldy, 1903 is a highly diverse lineage of the plant bug family Miridae Hahn, 1831, confined mainly to the tropics. Despite an increasing amount of recent studies on that group, many species remain undescribed and biological data are lacking for most of the taxa. To date, a molecular-based phylogeny has been published only for Rhinomirini Gorczyca, 2000, one out of five Cylapinae tribes. The tribe was rendered as non-monophyletic and the Rhinocylapus Poppius, 1909 complex was transferred to the Fulviini Uhler, 1886. However, phylogenetic relationships within the complex have remained unresolved. In the present study, morphological and molecular data are employed to generate a significantly improved phylogeny of the group compared with previous work. Topologies were constructed using methods of parsimony, maximum likelihood, and Bayesian inference, and were based on an expanded morphological matrix with 65 encoded characters for 38 species and molecular data for 23 species on four markers (COI, 16S rRNA, 18S rRNA and 28S rRNA). As a result, a more resolved phylogeny of the Rhinocylapus complex is presented. A generic synopsis for the representatives of the complex and key to the genera are provided. Taxonomically and phylogenetically important morphological characters for the Rhinocylapus complex and its subgroupings are discussed. Dorsal habitus images, scanning micrographs of selected morphological structures, and illustrations of male and female genitalia are provided for Proamblia Bergroth, 1910, Punctifulvius Schmitz, 1978, Rhinocylapidius Poppius, 1915, Rhinocylapus Poppius, 1909, Rhinomiridius Poppius, 1909, and Yamatofulvius Yasunaga, 2000.

Keywords: diagnosis, Fulviini, Hemiptera, molecular markers, morphology, phylogenetic analysis, systematics, total-evidence.


References

Bergroth, E (1910). Über die Gattung Bothriomiris Kirk. Wiener Entomologische Zeitung 29, 235–238.
Über die Gattung Bothriomiris Kirk.Crossref | GoogleScholarGoogle Scholar |

Carvalho, JCM (1957). Catalogue of the Miridae of the World. Part I. Subfamilies Cylapinae, Deraeocorinae and Bryocorinae. Arquivos do Museu Nacional, Rio de Janeiro 44, 1–158.

Cassis, G, and Schuh, RT (2012). Systematics, biodiversity, biogeography, and host associations of the Miridae (Insecta: Hemiptera: Heteroptera: Cimicomorpha). Annual Review of Entomology 57, 377–404.
Systematics, biodiversity, biogeography, and host associations of the Miridae (Insecta: Hemiptera: Heteroptera: Cimicomorpha).Crossref | GoogleScholarGoogle Scholar |

Cassis, G, Schwartz, MD, and Moulds, T (2003). Systematics and new taxa of the Vannius complex (Hemiptera: Miridae: Cylapinae) from the Australian region. Memoirs of the Queensland Museum 49, 123–151.

Cascini, M, Mitchell, KJ, Cooper, A, and Phillips, MJ (2019). Reconstructing the evolution of giant extinct kangaroos: comparing the utility of DNA, morphology, and total evidence. Systematic Biology 68, 520–537.
Reconstructing the evolution of giant extinct kangaroos: comparing the utility of DNA, morphology, and total evidence.Crossref | GoogleScholarGoogle Scholar |

Chérot, F, and Gorczyca, J (1999). A new genus and four new species of Cylapinae from Indonesia, Laos and Thailand (Heteroptera, Miridae). Nouvelle Revue d’Entomologie, Nouvelle Série 16, 215–230.

Davis, NT (1955). Morphology of the female organs of reproduction in the Miridae (Hemiptera). Annals of the Entomological Society of America 48, 132–150.
Morphology of the female organs of reproduction in the Miridae (Hemiptera).Crossref | GoogleScholarGoogle Scholar |

Felsenstein, J (1981). A likelihood approach to character weighting and what it tells us about parsimony and compatibility. Biological Journal of the Linnean Society. Linnean Society of London 16, 183–196.
A likelihood approach to character weighting and what it tells us about parsimony and compatibility.Crossref | GoogleScholarGoogle Scholar |

Giribet, G, Carranza, S, Baguna, J, Riutort, M, and Ribera, C (1996). First molecular evidence for the existence of a Tardigrada + Arthropoda clade. Molecular biology and evolution 13, 76–84.
First molecular evidence for the existence of a Tardigrada + Arthropoda clade.Crossref | GoogleScholarGoogle Scholar |

Goloboff, PA, Farris, JS, and Nixon, KC (2008). TNT, a free program for phylogenetic analysis. Cladistics 24, 774–786.
TNT, a free program for phylogenetic analysis.Crossref | GoogleScholarGoogle Scholar |

Gorczyca J (2000) ‘A systematic study on Cylapinae with a revision of the Afrotropical Region (Heteroptera, Miridae).’ (Wydawnictwo Uniwersytetu Śląskiego: Katowice, Poland)

Gorczyca, J (2001). Rhinomiriella tuberculata n. gen., n. sp., the first report of Rhinomirini from Australia (Heteroptera: Miridae: Cylapinae). Genus 12, 415–419.

Gorczyca, J (2006). The catalogue of the subfamily Cylapinae Kirkaldy, 1903 of the world (Hemiptera, Heteroptera, Miridae). Monographs of the Upper Silesian Museum 5, 1–100.

Gorczyca, J, and Chérot, F (1998). A revision of the Rhinomiris-complex (Heteroptera: Miridae: Cylapinae). Polskie Pismo Entomologiczne 67, 23–64.

Gorczyca, J, Wolski, A, and Taszakowski, A (2020). The first record of the genus Fulvius Stål, 1862 (Heteroptera: Miridae: Cylapinae) from continental China with description of a new species. Bonn Zoological Bulletin 69, 123–130.

Gossner MM, Damken C (2018) Diversity and ecology of saproxylic Hemiptera. In ‘Saproxylic Insects. Zoological Monographs, vol 1’. (Ed. M Ulyshen) pp. 263–317. (Springer: Cham, Switzerland)

Hoang, DT, Chernomor, O, von Haeseler, A, Minh, BQ, and Vinh, LS (2018). UFBoot2: Improving the ultrafast bootstrap approximation. Molecular Biology and Evolution 35, 518–522.
UFBoot2: Improving the ultrafast bootstrap approximation.Crossref | GoogleScholarGoogle Scholar |

Jung, S, and Lee, S (2012). Molecular phylogeny of the plant bugs (Heteroptera: Miridae) and the evolution of feeding habits. Cladistics 28, 50–79.
Molecular phylogeny of the plant bugs (Heteroptera: Miridae) and the evolution of feeding habits.Crossref | GoogleScholarGoogle Scholar |

Kerzhner IM (1988) Family Miridae. In ‘Keys to the insects of the Far East of the USSR, Vol. 2’. (Ed. PA Lehr) pp. 778–857. (Nauka: Leningrad, Russian Federation) [In Russian]

Kerzhner IM, Josifov M (1999) Miridae Hahn, 1833. In ‘Catalogue of the Heteroptera of the Palaearctic Region, vol. 3, Cimicomorpha II’. (Eds B Aukema, C Rieger) pp. 1–576. (The Netherlands Entomological Society: Amsterdam, Netherlands)

Kerzhner, IM, and Konstantinov, FV (1999). Structure of the aedeagus in Miridae (Heteroptera) and its bearing to suprageneric classification. Acta Societatis Zoologicae Bohemicae 63, 117–137.

Kim, J, Lim, J, and Jung, S (2019). A taxonomic review of the fungal-inhabiting plant bugs (Hemiptera: Heteroptera: Miridae: Cylapinae) from the Korean Peninsula. Journal of Asia-Pacific Biodiversity 12, 249–256.
A taxonomic review of the fungal-inhabiting plant bugs (Hemiptera: Heteroptera: Miridae: Cylapinae) from the Korean Peninsula.Crossref | GoogleScholarGoogle Scholar |

Konstantinov, FV (2003). Male genitalia in Miridae (Heteroptera) and their significance for suprageneric classification of the family. Part I: general review, Isometopinae and Psallopinae. Belgian. Journal of Entomology 5, 3–36.

Lee, MS, and Palci, A (2015). Morphological phylogenetics in the genomic age. Current Biology 25, R922–R929.
Morphological phylogenetics in the genomic age.Crossref | GoogleScholarGoogle Scholar |

Lewis, PO (2001). A likelihood approach to estimating phylogeny from discrete morphological character data. Systematic Biology 50, 913–925.
A likelihood approach to estimating phylogeny from discrete morphological character data.Crossref | GoogleScholarGoogle Scholar |

Li, W, Łączyński, P, Escalona, HE, Eberle, J, Huo, L, Chen, X, Huang, W, Chen, B, Ahrens, D, Ślipiński, A, and Tomaszewska, W (2020). Combined molecular and morphological data provide insights into the evolution and classification of Chilocorini ladybirds (Coleoptera: Coccinellidae). Systematic Entomology 45, 447–463.
Combined molecular and morphological data provide insights into the evolution and classification of Chilocorini ladybirds (Coleoptera: Coccinellidae).Crossref | GoogleScholarGoogle Scholar |

Menard, KL, Schuh, RT, and Woolley, JB (2013). Total-evidence phylogenetic analysis and reclassification of the Phylinae (Insecta: Heteroptera: Miridae), with the recognition of new tribes and subtribes and a redefinition of Phylini. Cladistics 30, 391–427.
Total-evidence phylogenetic analysis and reclassification of the Phylinae (Insecta: Heteroptera: Miridae), with the recognition of new tribes and subtribes and a redefinition of Phylini.Crossref | GoogleScholarGoogle Scholar |

Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In ‘Proceedings of the Gateway Computing Environments Workshop (GCE)’, 14 November 2010, New Orleans, LA, USA. INSPEC Accession Number 11705685. (IEEE)
| Crossref |

Namyatova, AA, and Cassis, G (2016). Revision of the staphylinoid and ground-dwelling genus Carvalhoma Slater & Gross (Insecta: Heteroptera: Miridae: Cylapinae) of Australia. European Journal of Taxonomy 253, 1–27.
Revision of the staphylinoid and ground-dwelling genus Carvalhoma Slater & Gross (Insecta: Heteroptera: Miridae: Cylapinae) of Australia.Crossref | GoogleScholarGoogle Scholar |

Namyatova, AA, and Cassis, G (2019a). Total-evidence phylogeny of the Rhinomirini, taxonomic review of its subgroupings (Insecta: Heteroptera: Miridae: Cylapinae) and description of new Australian taxa. Zoological Journal of the Linnean Society 187, 1196–1252.
Total-evidence phylogeny of the Rhinomirini, taxonomic review of its subgroupings (Insecta: Heteroptera: Miridae: Cylapinae) and description of new Australian taxa.Crossref | GoogleScholarGoogle Scholar |

Namyatova, AA, and Cassis, G (2019b). First record of the subfamily Psallopinae (Heteroptera: Miridae) from Australia and discussion of its systematic position and diagnostic characters. Austral Entomology 58, 156–170.
First record of the subfamily Psallopinae (Heteroptera: Miridae) from Australia and discussion of its systematic position and diagnostic characters.Crossref | GoogleScholarGoogle Scholar |

Namyatova, AA, and Cassis, G (2021). Five new genera of the subfamily Cylapinae (Insecta, Heteroptera, Miridae) from Australia. ZooKeys 1012, 95.
Five new genera of the subfamily Cylapinae (Insecta, Heteroptera, Miridae) from Australia.Crossref | GoogleScholarGoogle Scholar |

Namyatova, AA, Konstantinov, FV, and Cassis, G (2016). Phylogeny and systematics of the subfamily Bryocorinae based on morphology with emphasis on the tribe Dicyphini sensu Schuh. Systematic Entomology 41, 3–40.
Phylogeny and systematics of the subfamily Bryocorinae based on morphology with emphasis on the tribe Dicyphini sensu Schuh.Crossref | GoogleScholarGoogle Scholar |

Namyatova, AA, Contos, P, and Cassis, G (2018). New species, taxonomy, phylogeny, and distribution of the tropical tribe Bothriomirini (Insecta: Heteroptera: Miridae: Cylapinae). Insect Systematics & Evolution 50, 83–146.
New species, taxonomy, phylogeny, and distribution of the tropical tribe Bothriomirini (Insecta: Heteroptera: Miridae: Cylapinae).Crossref | GoogleScholarGoogle Scholar |

Needleman, SB, and Wunsch, CD (1970). A general method applicable to the search for similarities in the amino acid sequence of two proteins. Journal of Molecular Biology 48, 443–453.
A general method applicable to the search for similarities in the amino acid sequence of two proteins.Crossref | GoogleScholarGoogle Scholar |

Nguyen, LT, Schmidt, HA, von Haeseler, A, and Minh, BQ (2015). IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution 32, 268–274.
IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies.Crossref | GoogleScholarGoogle Scholar |

Nixon, KC (1999). The parsimony ratchet, a aew method for rapid parsimony analysis. Cladistics 15, 407–414.
The parsimony ratchet, a aew method for rapid parsimony analysis.Crossref | GoogleScholarGoogle Scholar |

Pattengale, ND, Alipour, M, Bininda-Emonds, OR, Moret, BM, and Stamatakis, A (2010). How many bootstrap replicates are necessary? Journal of Computational Biology 17, 337–354.
How many bootstrap replicates are necessary?Crossref | GoogleScholarGoogle Scholar |

Poppius, B (1909). Zur Kenntnis der Miriden-Unterfamilie Cylapina Reut. Acta Societatis Scientiarum Fennicae 37, 1–46.

Poppius, B (1914). Neue orientalische Cylapinen. Wiener Entomologische Zeitung 33, 124–130.
Neue orientalische Cylapinen.Crossref | GoogleScholarGoogle Scholar |

Poppius, B (1915). H. Sauter’s Formosa-Ausbeute: Nabidae, Anthocoridae, Termatophylidae, Miridae, Isometopidae und Ceratocombidae (Hemiptera). Archiv für Naturgeschichte 80A, 1–80.

Ronquist, F, Teslenko, M, Van Der Mark, P, Ayres, DL, Darling, A, Höhna, S, et al. (2012). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61, 539–542.
MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space.Crossref | GoogleScholarGoogle Scholar |

Sadowska-Woda, I, Chérot, F, and Gorczyca, J (2006). Contribution to the study of the female genitalia of twelve Fulvius species (Heteroptera, Miridae, Cylapinae). Denisia 19, 617–636.

Sadowska-Woda, I, Malm, T, and  Chérot, F (2008). A preliminary phylogenetic analysis of the genus Fulvius Stal (Hemiptera: Miridae: Cylapinae) based on molecular data. Insect Systematics & Evolution 39, 407–417.
A preliminary phylogenetic analysis of the genus Fulvius Stal (Hemiptera: Miridae: Cylapinae) based on molecular data.Crossref | GoogleScholarGoogle Scholar |

San Jose, M, Doorenweerd, C, Leblanc, L, Barr, N, Geib, S, and Rubinoff, D (2018). Incongruence between molecules and morphology: A seven-gene phylogeny of Dacini fruit flies paves the way for reclassification (Diptera: Tephritidae). Molecular Phylogenetics and Evolution 121, 139–149.
Incongruence between molecules and morphology: A seven-gene phylogeny of Dacini fruit flies paves the way for reclassification (Diptera: Tephritidae).Crossref | GoogleScholarGoogle Scholar |

Schmitz, G (1978). Description de deux nouveaux genres asiatiques de Fulviini Uhler, 1886 (Heteroptera: Miridae). Bulletin et Annales de la Société Royale Belge d’Entomologie 114, 183–195.

Schuh, RT (1976). Pretarsal structure in the Miridae (Hemiptera) with a cladistic analysis of relationships within the family. American Museum Novitates 2601, 1–39.

Schuh RT (1995) ‘Plant bugs of the World (Insecta: Heteroptera: Miridae).’ (New York Entomological Society: New York, NY, USA)

Schuh, RT, and Schwartz, MD (1984). Carvalhoma (Hemiptera: Miridae): revised subfamily placement. Journal of the New York Entomological Society 92, 48–52.

Schuh, RT, and Pedraza, P (2010). Wallabicoris, new genus (Hemiptera: Miridae: Phylinae: Phylini) from Australia, with the description of 37 new species and an analysis of host associations. Bulletin of the American Museum of Natural History 338, 1–118.
Wallabicoris, new genus (Hemiptera: Miridae: Phylinae: Phylini) from Australia, with the description of 37 new species and an analysis of host associations.Crossref | GoogleScholarGoogle Scholar |

Schuh, RT, Weirauch, C, and Wheeler, WC (2009). Phylogenetic relationships within the Cimicomorpha (Hemiptera: Heteroptera): a total-evidence analysis. Systematic Entomology 34, 15–48.
Phylogenetic relationships within the Cimicomorpha (Hemiptera: Heteroptera): a total-evidence analysis.Crossref | GoogleScholarGoogle Scholar |

Schwartz, MD (2011). Revision and phylogenetic analysis of the North American genus Slaterocoris Wagner with new synonymy, the description of five new species and a new genus from Mexico, and a review of the genus Scalponotatus Kelton (Heteroptera: Miridae: Orthotylinae). Bulletin of the American Museum of Natural History 354, 1–290.
Revision and phylogenetic analysis of the North American genus Slaterocoris Wagner with new synonymy, the description of five new species and a new genus from Mexico, and a review of the genus Scalponotatus Kelton (Heteroptera: Miridae: Orthotylinae).Crossref | GoogleScholarGoogle Scholar |

Scotland, RW, Olmstead, RG, and Bennett, JR (2003). Phylogeny reconstruction: The role of morphology. Systematic Biology 52, 539–548.
Phylogeny reconstruction: The role of morphology.Crossref | GoogleScholarGoogle Scholar |

Smith, TF, and Waterman, MS (1981). Identification of common molecular subsequences. Journal of Molecular Biology 147, 195–197.
Identification of common molecular subsequences.Crossref | GoogleScholarGoogle Scholar |

Stamatakis, A (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313.
RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies.Crossref | GoogleScholarGoogle Scholar |

Stöver, BC, and Müller, KF (2010). TreeGraph 2: combining and visualizing evidence from different phylogenetic analyses. BMC Bioinformatics 11, 7.
TreeGraph 2: combining and visualizing evidence from different phylogenetic analyses.Crossref | GoogleScholarGoogle Scholar |

Tyts, VD, Namyatova, AA, Damken, C, Wahab, RA, and Konstantinov, FV (2020). Tatupa grafei, a new genus and species of Cylapinae (Heteroptera, Miridae). ZooKeys 946, 37–52.
Tatupa grafei, a new genus and species of Cylapinae (Heteroptera, Miridae).Crossref | GoogleScholarGoogle Scholar |

Vishnevskaya, MS, Saifitdinova, AF, and Lukhtanov, VA (2016). Karyosystematics and molecular taxonomy of the anomalous blue butterflies (Lepidoptera, Lycaenidae) from the Balkan Peninsula. Comparative Cytogenetics 10, 1–85.
Karyosystematics and molecular taxonomy of the anomalous blue butterflies (Lepidoptera, Lycaenidae) from the Balkan Peninsula.Crossref | GoogleScholarGoogle Scholar |

Wheeler, QD, and Wheeler, AG (1994). Mycophagous Miridae? Associations of Cylapinae (Heteroptera) with pyrenomycete fungi (Euascomycetes: Xylariaceae). Journal of the New York Entomological Society 102, 114–117.

Whiting, MF, Carpenter, JC, Wheeler, QD, and Wheeler, WC (1997). The Strepsiptera problem: phylogeny of the holometabolous insect orders inferred from 18S and 28S ribosomal DNA sequences and morphology. Systematic biology 46, 1–68.

Wiens, JJ (2004). The role of morphological data in phylogeny reconstruction. Systematic Biology 53, 653–661.
The role of morphological data in phylogeny reconstruction.Crossref | GoogleScholarGoogle Scholar |

Wolski, A (2010). Revision of the Rhinocylapus-group (Hemiptera: Heteroptera: Miridae: Cylapinae). Zootaxa 2653, 1–36.
Revision of the Rhinocylapus-group (Hemiptera: Heteroptera: Miridae: Cylapinae).Crossref | GoogleScholarGoogle Scholar |

Wolski, A (2013). Revision of the plant bug genus Cylapocoris Carvalho (Hemiptera: Heteroptera: Miridae: Cylapinae), with descriptions of seven new species from Costa Rica, Brazil, Ecuador, and Venezuela. Zootaxa 3721, 501–528.
Revision of the plant bug genus Cylapocoris Carvalho (Hemiptera: Heteroptera: Miridae: Cylapinae), with descriptions of seven new species from Costa Rica, Brazil, Ecuador, and Venezuela.Crossref | GoogleScholarGoogle Scholar |

Wolski, A, and Gorczyca, J (2011). Rhinocylapoides brachypterus, a new cylapine genus and species from Malaysia (Hemiptera: Heteroptera: Miridae). Zootaxa 3040, 19–24.
Rhinocylapoides brachypterus, a new cylapine genus and species from Malaysia (Hemiptera: Heteroptera: Miridae).Crossref | GoogleScholarGoogle Scholar |

Wolski, A, and Gorczyca, J (2012). Plant bugs of the tribe Bothriomirini (Hemiptera: Heteroptera: Miridae: Cylapinae) from the Oriental Region: descriptions of eight new species and keys to Oriental genera and species of Bothriomiris Kirkaldy, Dashymenia Poppius, and Dashymeniella Poppius. Zootaxa 3412, 1–41.
Plant bugs of the tribe Bothriomirini (Hemiptera: Heteroptera: Miridae: Cylapinae) from the Oriental Region: descriptions of eight new species and keys to Oriental genera and species of Bothriomiris Kirkaldy, Dashymenia Poppius, and Dashymeniella Poppius.Crossref | GoogleScholarGoogle Scholar |

Wolski, A, and Gorczyca, J (2014). Revision of the plant bug genus Xenocylapidius (Hemiptera, Heteroptera, Miridae, Cylapinae), with descriptions of five new species from Australia and New Caledonia. ZooKeys 459, 73.
Revision of the plant bug genus Xenocylapidius (Hemiptera, Heteroptera, Miridae, Cylapinae), with descriptions of five new species from Australia and New Caledonia.Crossref | GoogleScholarGoogle Scholar |

Wolski, A, and Henry, TJ (2012). Revision of the new world species of Peritropis Uhler (Heteroptera: Miridae: Cylapinae). Insect Systematics & Evolution 43, 213–270.
Revision of the new world species of Peritropis Uhler (Heteroptera: Miridae: Cylapinae).Crossref | GoogleScholarGoogle Scholar |

Wolski, A, and Henry, TJ (2015). Review and a new subfamily placement of the plant bug genus Isometocoris Carvalho and Sailer, 1954 (Hemiptera: Heteroptera: Miridae), with the description of a new species from Brazil. Proceedings of the Entomological Society of Washington 117, 407–418.
Review and a new subfamily placement of the plant bug genus Isometocoris Carvalho and Sailer, 1954 (Hemiptera: Heteroptera: Miridae), with the description of a new species from Brazil.Crossref | GoogleScholarGoogle Scholar |

Yasunaga, T (2000). The mirid subfamily Cylapinae (Heteroptera: Miridae), or fungal inhabiting plant bugs in Japan. Tijdschrift voor Entomologie 143, 183–209.
The mirid subfamily Cylapinae (Heteroptera: Miridae), or fungal inhabiting plant bugs in Japan.Crossref | GoogleScholarGoogle Scholar |

Yasunaga T (2001) Family Miridae Hahn, plant bugs. In ‘A Field Guide to Japanese Bugs II. Terrestrial Heteropterans.’ (Eds T Yasunaga, M Takai, T Kawasawa) pp. 112–276. (Zenkoku Noson Kyoiku Kyokai Publ. Co. Ltd: Tokyo, Japan) [In Japanese]

Yasunaga, T, and Miyamoto, S (2006). Second report on the Japanese cylapine plant bugs (Heteroptera, Miridae, Cylapinae), with descriptions of five new species. Denisia 19, 721–735.