Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Invertebrate Systematics Invertebrate Systematics Society
Systematics, phylogeny and biogeography
RESEARCH ARTICLE

Solving a taxonomic puzzle: integrative taxonomy reveals new cryptic and polymorphic species of Oscarella in south-eastern Brazil (Homoscleromorpha : Oscarellidae)

Daniele Stillitani A B , Alexander V. Ereskovsky C D E , Thierry Pérez C , César Ruiz C , Marinella S. Laport F , Gabriela Puccinelli F , Cristiane Cassiolato Pires Hardoim G , Philippe Willenz H I and Guilherme Muricy https://orcid.org/0000-0002-1705-3673 A *
+ Author Affiliations
- Author Affiliations

A Museu Nacional, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.

B Instituto de Biofísica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.

C Institut Méditerranéen de Biodiversité et d’Écologie Marine et Continentale, CNRS, IRD, Aix Marseille Université, Station Marine d’Endoume, Marseille, France.

D Biological Faculty, Saint-Petersburg State University, Saint Petersburg, Russia.

E N. K. Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russian Federation.

F Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.

G Instituto de Biociências, Universidade Estadual Paulista, São Vicente, Brazil.

H Taxonomy and Phylogeny, Royal Belgian Institute of Natural Sciences, Brussels, Belgium.

I Laboratoire de Biologie Marine, Université Libre de Bruxelles, Brussels, Belgium.

* Correspondence to: muricy@mn.ufrj.br

Handling Editor: Ana Riesgo

Invertebrate Systematics 36(8) 714-750 https://doi.org/10.1071/IS21056
Submitted: 6 August 2021  Accepted: 28 January 2022   Published: 18 August 2022

© 2022 The Author(s) (or their employer(s)). Published by CSIRO Publishing.

Abstract

The sponge genus Oscarella is very important for the understanding of the early evolution of Metazoa, but the identification of its species is particularly difficult due to the absence of a skeleton and high polymorphism, leading to an underestimate of its diversity. The discovery of nine distinct morphotypes of Oscarella co-existing in cryptic habitats in south-east Brazil represents a taxonomic puzzle that requires an integrative taxonomic approach for species delimitation. Here we combined genetic (cox-1 and cob genes), morphological, anatomical, cytological, microbiological, reproductive and ecological datasets to delimit and describe three new species of Oscarella, one of which is highly polymorphic. Oscarella aurantia, sp. nov. is orange, microlobate, with metachromatic vacuolar cells, granular cells, and microgranular cells. Oscarella carollineae, sp. nov. is intertidal, cream or red, microlobate, with granulo-vacuolar cells, dense globular cells, and granular cells. Oscarella ruthae, sp. nov. is highly polymorphic, with tubular or papillate lobes; colour violet, pink, purple, red, orange or cream, often with shades of cream or green at the base; abundant clusters of vacuolar cells type 1, and rare vacuolar cells type 2 and microgranular cells. No single character was sufficient for species delimitation due to high intraspecific variation. Integration of multiple datasets was essential to delimit species of Oscarella and would also be helpful for the taxonomy of other polymorphic sponges.

ZooBank LSID: urn:lsid:zoobank.org:pub:0CA34949-1C29-46E8-9AB3-E89F73909E37

Keywords: biodiversity, biology, Brazil, Homosclerophorida, Porifera, species delimitation, systematics, Tropical Southwestern Atlantic.


References

Altschul, SF, Madden, TL, Schaffer, AA, Zhang, JH, Zhang, Z, Miller, W, and Lipman, DJ (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research 25, 3389–3402.
Gapped BLAST and PSI-BLAST: a new generation of protein database search programs.Crossref | GoogleScholarGoogle Scholar |

Baccetti, B, Gaino, E, and Sarà, M (1986). A sponge with acrosome: Oscarella lobularis. Journal of Ultrastructure and Molecular Structure Research 94, 195–198.
A sponge with acrosome: Oscarella lobularis.Crossref | GoogleScholarGoogle Scholar |

Belinky, F, Szitenberg, A, Goldfarb, I, Feldstein, T, Wörheide, G, Ilan, M, and Huchon, D (2012). ALG11 – a new variable DNA marker for sponge phylogeny: comparison of phylogenetic performances with the 18S rDNA and the COI gene. Molecular Phylogenetics and Evolution 63, 702–713.
ALG11 – a new variable DNA marker for sponge phylogeny: comparison of phylogenetic performances with the 18S rDNA and the COI gene.Crossref | GoogleScholarGoogle Scholar |

Boury-Esnault, N, and Rützler, K (1997). Thesaurus of sponge morphology. Smithsonian Contributions to Zoology 596, 1–55.
Thesaurus of sponge morphology.Crossref | GoogleScholarGoogle Scholar |

Boury-Esnault, N, Solé Cava, AM, and Thorpe, JP (1992). Genetic and cytological divergence between colour morphs of the Mediterranean sponge Oscarella lobularis Schmidt (Porifera, Demospongiae, Oscarellidae). Journal of Natural History 26, 271–284.
Genetic and cytological divergence between colour morphs of the Mediterranean sponge Oscarella lobularis Schmidt (Porifera, Demospongiae, Oscarellidae).Crossref | GoogleScholarGoogle Scholar |

Boury-Esnault, N, Muricy, G, Gallissian, MF, and Vacelet, J (1995). Sponges without skeleton: a new Mediterranean genus of Homoscleromorpha (Porifera, Demospongiae). Ophelia 43, 25–43.
Sponges without skeleton: a new Mediterranean genus of Homoscleromorpha (Porifera, Demospongiae).Crossref | GoogleScholarGoogle Scholar |

Boury-Esnault, N, Ereskovsky, AV, Bézac, C, and Tokina, D (2003). Larval development in Homoscleromorpha (Porifera, Demospongiae) first evidence of basal membrane in sponge larvae. Invertebrate Biology 122, 187–202.
Larval development in Homoscleromorpha (Porifera, Demospongiae) first evidence of basal membrane in sponge larvae.Crossref | GoogleScholarGoogle Scholar |

Boury-Esnault, N, Lavrov, DV, Ruiz, CA, and Pérez, T (2013). The integrative taxonomic approach applied to Porifera: a case study of the Homoscleromorpha. Integrative and Comparative Biology 53, 416–427.
The integrative taxonomic approach applied to Porifera: a case study of the Homoscleromorpha.Crossref | GoogleScholarGoogle Scholar |

Boute, N, Exposito, J-Y, Boury-Esnault, N, Vacelet, J, Noro, N, Miyazaki, K, Yoshizato, K, and Garrone, R (1996). Type IV collagen in sponges, the missing link in basement membrane ubiquity. Biology of the Cell 88, 37–44.
Type IV collagen in sponges, the missing link in basement membrane ubiquity.Crossref | GoogleScholarGoogle Scholar |

Cárdenas, P, Pérez, T, and Boury-Esnault, N (2012). Sponge systematics facing new challenges. Advances in Marine Biology 61, 79–209.
Sponge systematics facing new challenges.Crossref | GoogleScholarGoogle Scholar |

Cruz-Barraza, JA, Vega, C, and Carballo, JL (2014). Taxonomy of family Plakinidae (Porifera: Homoscleromorpha) from eastern Pacific coral reefs, through morphology and cox1 and cob mtDNA data. Zoological Journal of the Linnean Society 171, 254–276.
Taxonomy of family Plakinidae (Porifera: Homoscleromorpha) from eastern Pacific coral reefs, through morphology and cox1 and cob mtDNA data.Crossref | GoogleScholarGoogle Scholar |

Darriba, D, Taboada, GL, Doallo, R, and Posada, D (2012). jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9, 772.
jModelTest 2: more models, new heuristics and parallel computing.Crossref | GoogleScholarGoogle Scholar |

Davis, JI, and Nixon, KC (1992). Populations, genetic variation, and the delimitation of phylogenetic species. Systematic Biology 41, 421–435.
Populations, genetic variation, and the delimitation of phylogenetic species.Crossref | GoogleScholarGoogle Scholar |

Dayrat, B (2005). Towards integrative taxonomy. Biological Journal of the Linnean Society 85, 407–415.
Towards integrative taxonomy.Crossref | GoogleScholarGoogle Scholar |

de Voogd NJ, Alvarez B, Boury-Esnault N, Carballo JL, Cárdenas P, Díaz M-C, Dohrmann M, Downey R, Hajdu E, Hooper JNA, Kelly M, Klautau M, Manconi R, Morrow CC, Pisera AB, Ríos P, Rützler K, Schönberg C, Vacelet J, van Soest RWM (2020). Porifera taxon details: Oscarella Vosmaer, 1884. In ‘World Porifera Database’. Available at http://www.marinespecies.org/porifera/porifera.php?p=taxdetails&id=131979 [Verified 28 April 2022]

DeSalle, R, Egan, MG, and Siddall, M (2005). The unholy trinity: taxonomy, species delimitation and DNA barcoding. Philosophical Transactions of the Royal Society of London – B. Biological Sciences 360, 1905–1916.
The unholy trinity: taxonomy, species delimitation and DNA barcoding.Crossref | GoogleScholarGoogle Scholar |

Díaz MC, Busutil L, García-Hernández MR, Pomponi SA (2019) Cuba’s mesophotic coral reefs – sponge photo identification guide, edition 1. Harbor Branch Oceanographic Institute Contribution 2256. (Cooperative Institute for Ocean Exploration, Research, and Technology (CIOERT) at Harbor Branch Oceanographic Institute, Florida Atlantic University (HBOI-FAU), Saint Lucie, FL, USA)

Domingos, C, Lage, A, and Muricy, G (2016). Overview of the biodiversity and distribution of the Class Homoscleromorpha in the Tropical Western Atlantic. Journal of the Marine Biological Association of the United Kingdom 96, 379–389.
Overview of the biodiversity and distribution of the Class Homoscleromorpha in the Tropical Western Atlantic.Crossref | GoogleScholarGoogle Scholar |

Ereskovsky, AV (2006). A new species of Oscarella (Demospongiae: Plakinidae) from the Western Sea of Japan. Zootaxa 1376, 37–51.
A new species of Oscarella (Demospongiae: Plakinidae) from the Western Sea of Japan.Crossref | GoogleScholarGoogle Scholar |

Ereskovsky AV (2010) ‘The comparative embryology of sponges.’ (Springer-Verlag: Dordrecht, Netherlands)

Ereskovsky, AV, and Boury-Esnault, N (2002). Cleavage pattern in Oscarella species (Porifera, Demospongiae, Homoscleromorpha): transmission of maternal cells and symbiotic bacteria. Journal of Natural History 36, 1761–1775.
Cleavage pattern in Oscarella species (Porifera, Demospongiae, Homoscleromorpha): transmission of maternal cells and symbiotic bacteria.Crossref | GoogleScholarGoogle Scholar |

Ereskovsky A, Lavrov A (2021) Porifera. In ‘Invertebrate Histology’. (Ed. EEB LaDouceur) pp. 19–54. (Wiley: New York, NY, USA)
| Crossref |

Ereskovsky, AV, and Tokina, DB (2007). Asexual reproduction in homoscleromorph sponges (Porifera; Homoscleromorpha). Marine Biology 151, 425–434.
Asexual reproduction in homoscleromorph sponges (Porifera; Homoscleromorpha).Crossref | GoogleScholarGoogle Scholar |

Ereskovsky, AV, Borchielini, C, Gazave, E, Ivanišević, J, Lapébie, P, Pérez, T, Renard-Deniel, E, and Vacelet, J (2009a). The homoscleromorph sponge Oscarella lobularis as model in evolutionary and developmental biology. BioEssays 31, 89–97.
The homoscleromorph sponge Oscarella lobularis as model in evolutionary and developmental biology.Crossref | GoogleScholarGoogle Scholar |

Ereskovsky, AV, Sanamyan, K, and Vishnyakov, E (2009b). A new species of the genus Oscarella (Porifera: Homosclerophorida: Plakinidae) from the North-West Pacific. Cahiers de Biologie Marine 50, 369–381.

Ereskovsky, AV, Dubois, M, Ivanišević, J, Gazave, E, Lapébie, P, Tokina, D, and Pérez, T (2013). Pluri-annual study of the reproduction of two Mediterranean Oscarella species (Porifera, Homoscleromorpha): cycle, sex-ratio, reproductive effort and phenology. Marine Biology 160, 423–438.
Pluri-annual study of the reproduction of two Mediterranean Oscarella species (Porifera, Homoscleromorpha): cycle, sex-ratio, reproductive effort and phenology.Crossref | GoogleScholarGoogle Scholar |

Ereskovsky, AV, Lavrov, DV, and Willenz, P (2014). Five new species of Homoscleromorpha (Porifera) from the Caribbean Sea and re-description of Plakina jamaicensis. Journal of the Marine Biological Association of the United Kingdom 94, 285–307.
Five new species of Homoscleromorpha (Porifera) from the Caribbean Sea and re-description of Plakina jamaicensis.Crossref | GoogleScholarGoogle Scholar |

Ereskovsky, AV, Borisenko, IE, Lapébie, P, Gazave, E, Tokina, DB, and Borchielini, C (2015). Oscarella lobularis (Homoscleromorpha, Porifera) regeneration: epithelial morphogenesis and metaplasia. PLoS One 10, e0134566.
Oscarella lobularis (Homoscleromorpha, Porifera) regeneration: epithelial morphogenesis and metaplasia.Crossref | GoogleScholarGoogle Scholar |

Ereskovsky, AV, Richter, DJ, Lavrov, DV, Schippers, KJ, and Nichols, SA (2017). Transcriptome sequencing and delimitation of sympatric Oscarella species (O. carmela and O. pearsei sp. nov.) from California, USA. PLoS One 12, e0183002.
Transcriptome sequencing and delimitation of sympatric Oscarella species (O. carmela and O. pearsei sp. nov.) from California, USA.Crossref | GoogleScholarGoogle Scholar |

Erpenbeck, D, Breeuwer, JAJ, van der Velde, HC, and van Soest, RWM (2002). Unravelling host and symbiont phylogenies of halichondrid sponges (Demospongiae, Porifera) using a mitochondrial marker. Marine Biology 141, 377–386.
Unravelling host and symbiont phylogenies of halichondrid sponges (Demospongiae, Porifera) using a mitochondrial marker.Crossref | GoogleScholarGoogle Scholar |

Fukami, H, Budd, AF, Levitan, DR, Jara, J, Kersanach, R, and Knowlton, N (2004). Geographic differences in species boundaries among members of the Montastraea annularis complex based on molecular and morphological markers. Evolution 58, 324–337.
Geographic differences in species boundaries among members of the Montastraea annularis complex based on molecular and morphological markers.Crossref | GoogleScholarGoogle Scholar |

Gazave, E, Lapébie, P, Renard, E, Vacelet, J, Rocher, C, Ereskovsky, AV, Lavrov, DV, and Borchielini, C (2010). Molecular phylogeny restores the supra-generic subdivision of homoscleromorph sponges (Porifera, Homoscleromorpha). PLoS One 5, e14290.
Molecular phylogeny restores the supra-generic subdivision of homoscleromorph sponges (Porifera, Homoscleromorpha).Crossref | GoogleScholarGoogle Scholar |

Gazave, E, Lapébie, P, Ereskovsky, AV, Vacelet, J, Renard, E, Cárdenas, P, and Borchielini, C (2012). No longer Demospongiae: Homoscleromorpha formal nomination as a fourth class of Porifera. Hydrobiologia 687, 3–10.
No longer Demospongiae: Homoscleromorpha formal nomination as a fourth class of Porifera.Crossref | GoogleScholarGoogle Scholar |

Gazave, E, Lavrov, DV, Cabrol, J, Renard, E, Rocher, C, Vacelet, J, Adamska, M, Borchielini, C, and Ereskovsky, AV (2013). Systematics and molecular phylogeny of the family Oscarellidae (Homoscleromorpha) with description of two new Oscarella species. PLoS One 8, e63976.
Systematics and molecular phylogeny of the family Oscarellidae (Homoscleromorpha) with description of two new Oscarella species.Crossref | GoogleScholarGoogle Scholar |

Gloeckner, V, Hentschel, U, Ereskovsky, AV, and Schmitt, S (2013). Unique and species-specific microbial communities in Oscarella lobularis and other Mediterranean Oscarella species (Porifera: Homoscleromorpha). Marine Biology 160, 781–791.
Unique and species-specific microbial communities in Oscarella lobularis and other Mediterranean Oscarella species (Porifera: Homoscleromorpha).Crossref | GoogleScholarGoogle Scholar |

Gloeckner, V, Wehrl, M, Moitinho-Silva, L, Gernert, C, Schupp, P, Pawlik, JR, Lindquist, NL, Erpenbeck, D, Wörheide, G, and Hentschel, U (2014). The HMA-LMA dichotomy revisited: an electron microscopical survey of 56 sponge species. The Biological Bulletin 227, 78–88.
The HMA-LMA dichotomy revisited: an electron microscopical survey of 56 sponge species.Crossref | GoogleScholarGoogle Scholar |

Grenier, M, Ruiz, C, Lage, A, and Pérez, T (2020). New cave-dwelling Plakina (Plakinidae, Homoscleromorpha, Porifera) from Martinique Island (French Antilles). Zootaxa 4729, 92–104.
New cave-dwelling Plakina (Plakinidae, Homoscleromorpha, Porifera) from Martinique Island (French Antilles).Crossref | GoogleScholarGoogle Scholar |

Guindon, S, and Gascuel, O (2003). A simple, fast and accurate method to estimate large phylogenies by maximum-likelihood. Systematic Biology 52, 696–704.
A simple, fast and accurate method to estimate large phylogenies by maximum-likelihood.Crossref | GoogleScholarGoogle Scholar |

Huelsenbeck, JP, and Ronquist, F (2001). MrBayes: Bayesian inference of phylogeny. Bioinformatics 17, 754–755.
MrBayes: Bayesian inference of phylogeny.Crossref | GoogleScholarGoogle Scholar |

Ivanišević, J, Thomas, OP, Lejeusne, C, Chevaldonné, P, and Pérez, T (2011). Metabolic fingerprinting as an indicator of biodiversity: towards understanding inter-specific relationships among Homoscleromorpha sponges. Metabolomics 7, 289–304.
Metabolic fingerprinting as an indicator of biodiversity: towards understanding inter-specific relationships among Homoscleromorpha sponges.Crossref | GoogleScholarGoogle Scholar |

Izumi, T, Ise, Y, Yanagi, K, Shibata, D, and Ueshima, R (2018). First detailed record of symbiosis between a sea anemone and homoscleromorph sponge, with a description of Tempuractis rinkai gen. et sp. nov. (Cnidaria: Anthozoa: Actiniaria: Edwardsiidae). Zoological Science 35, 188–198.
First detailed record of symbiosis between a sea anemone and homoscleromorph sponge, with a description of Tempuractis rinkai gen. et sp. nov. (Cnidaria: Anthozoa: Actiniaria: Edwardsiidae).Crossref | GoogleScholarGoogle Scholar |

Laport, MS, Bauwens, M, Nunes, SO, Willenz, P, George, I, and Muricy, G (2017). Culturable bacterial communities associated to Brazilian Oscarella species (Porifera: Homoscleromorpha) and their antagonistic interactions. Antonie van Leeuwenhoek 110, 489–499.
Culturable bacterial communities associated to Brazilian Oscarella species (Porifera: Homoscleromorpha) and their antagonistic interactions.Crossref | GoogleScholarGoogle Scholar |

Lavrov, DV, Wang, X, and Kelly, M (2008). Reconstructing ordinal relationships in the Demospongiae using mitochondrial genomic data. Molecular Phylogenetics and Evolution 49, 111–124.
Reconstructing ordinal relationships in the Demospongiae using mitochondrial genomic data.Crossref | GoogleScholarGoogle Scholar |

Maldonado, M, and Riesgo, A (2008). Reproductive output in a Mediterranean population of the homosclerophorid Corticium candelabrum (Porifera, Demospongiae), with notes on the ultrastructure and behavior of the larva. Marine Ecology 29, 298–316.
Reproductive output in a Mediterranean population of the homosclerophorid Corticium candelabrum (Porifera, Demospongiae), with notes on the ultrastructure and behavior of the larva.Crossref | GoogleScholarGoogle Scholar |

Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In ‘Proceedings of the Gateway Computing Environments Workshop (GCE) 2010’, 14 November 2010, New Orleans, LA, USA. INSPEC Accession Number 11705685. (IEEE)
| Crossref |

Muricy, G (1999). An evaluation of morphological and cytological datasets for the phylogeny of Homosclerophorida (Porifera: Demospongiae). Memoirs of the Queensland Museum 44, 399–409.

Muricy G, Díaz MC (2002) Order Homosclerophorida Dendy, 1905, family Plakinidae Schulze, 1880. In ‘Systema Porifera. A guide to the classification of sponges. Vol. 1’. (Eds JNA Hooper, RWM van Soest) pp. 71–82. (Kluwer Academic/Plenum Publishers: New York, NY, USA)

Muricy, G, and Pearse, JS (2004). A new species of Oscarella (Demospongiae: Plakinidae) from California. Proceedings of the California Academy of Sciences 55, 598–612.

Muricy, G, Boury-Esnault, N, Bézac, C, and Vacelet, J (1996). Cytological evidence for cryptic speciation in Mediterranean Oscarella species (Porifera, Homoscleromorpha). Canadian Journal of Zoology 74, 881–896.
Cytological evidence for cryptic speciation in Mediterranean Oscarella species (Porifera, Homoscleromorpha).Crossref | GoogleScholarGoogle Scholar |

Muricy, G, Boury-Esnault, N, Bézac, C, and Vacelet, J (1998). Taxonomic revision of the Mediterranean Plakina Schulze (Porifera, Demospongiae, Homoscleromorpha). Zoological Journal of the Linnean Society 124, 169–203.
Taxonomic revision of the Mediterranean Plakina Schulze (Porifera, Demospongiae, Homoscleromorpha).Crossref | GoogleScholarGoogle Scholar |

Muricy G, Lopes DA, Hajdu E, Carvalho MS, Moraes FC, Klautau M, Menegola C, Pinheiro US (2011) ‘Catalogue of Brazilian Porifera.’ Série Livros 46. (Museu Nacional: Rio de Janeiro, Brazil)

Muricy, G, Domingos, C, Lage, A, Lanna, E, Hardoim, CCP, Laport, MS, and Zilberberg, C (2019). Integrative taxonomy widens our knowledge of the diversity, distribution and biology of the genus Plakina (Homosclerophorida: Plakinidae). Invertebrate Systematics 33, 367–401.
Integrative taxonomy widens our knowledge of the diversity, distribution and biology of the genus Plakina (Homosclerophorida: Plakinidae).Crossref | GoogleScholarGoogle Scholar |

Padial, JM, Miralles, A, de la Riva, I, and Vences, M (2010). The integrative future of taxonomy. Frontiers in Zoology 7, 16.
The integrative future of taxonomy.Crossref | GoogleScholarGoogle Scholar |

Pérez, T, and Ruiz, C (2018). Description of the first Caribbean Oscarellidae (Porifera: Homoscleromorpha). Zootaxa 4369, 501–514.
Description of the first Caribbean Oscarellidae (Porifera: Homoscleromorpha).Crossref | GoogleScholarGoogle Scholar |

Pérez, T, Ivanišević, J, Dubois, M, Pedel, L, Thomas, OP, Tokina, D, and Ereskovsky, AV (2011). Oscarella balibaloi, a new sponge species (Homoscleromorpha: Plakinidae) from the Western Mediterranean Sea: Cytological description, reproductive cycle and ecology. Marine Ecology 32, 174–187.
Oscarella balibaloi, a new sponge species (Homoscleromorpha: Plakinidae) from the Western Mediterranean Sea: Cytological description, reproductive cycle and ecology.Crossref | GoogleScholarGoogle Scholar |

Pita, L, Rix, L, Slaby, BM, Franke, A, and Hentschel, U (2018). The sponge holobiont in a changing ocean: from microbes to ecosystems. Microbiome 6, 46.
The sponge holobiont in a changing ocean: from microbes to ecosystems.Crossref | GoogleScholarGoogle Scholar |

Pöppe, J, Sutcliffe, P, Hooper, JNA, Wörheide, G, and Erpenbeck, D (2010). CO1 barcoding reveals new clades and radiation patterns of Indo-Pacific sponges of the family Irciniidae (Demospongiae: Dictyoceratida). PLoS One 5, e9950.
CO1 barcoding reveals new clades and radiation patterns of Indo-Pacific sponges of the family Irciniidae (Demospongiae: Dictyoceratida).Crossref | GoogleScholarGoogle Scholar |

Reynolds, ES (1963). The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. The Journal of Cell Biology 17, 208–212.
The use of lead citrate at high pH as an electron-opaque stain in electron microscopy.Crossref | GoogleScholarGoogle Scholar |

Rodríguez, F, Oliver, JL, Marin, A, and Medina, JR (1990). The general stochastic-model of nucleotide substitution. Journal of Theoretical Biology 142, 485–501.
The general stochastic-model of nucleotide substitution.Crossref | GoogleScholarGoogle Scholar |

Ronquist, F, and Huelsenbeck, JP (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574.
MrBayes 3: Bayesian phylogenetic inference under mixed models.Crossref | GoogleScholarGoogle Scholar |

Ronquist, F, Teslenko, M, van der Mark, P, Ayres, DL, Darling, A, Höhna, S, Larget, B, Liu, L, Suchard, MA, and Huelsenbeck, JP (2012). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61, 539–542.
MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space.Crossref | GoogleScholarGoogle Scholar |

Ruiz, C, Ivaniševic, J, Chevaldonné, P, Ereskovsky, AV, Boury-Esnault, N, Vacelet, J, Thomas, OP, and Pérez, T (2015). Integrative taxonomic description of Plakina kanaky, a new polychromatic sponge species from New Caledonia (Porifera: Homoscleromorpha). Marine Ecology 36, 1129–1143.
Integrative taxonomic description of Plakina kanaky, a new polychromatic sponge species from New Caledonia (Porifera: Homoscleromorpha).Crossref | GoogleScholarGoogle Scholar |

Ruiz, C, Muricy, G, Lage, A, Domingos, C, Chenesseau, S, and Pérez, T (2017). Descriptions of new sponge species and genus, including aspiculate Plakinidae, overturn the Homoscleromorpha classification. Zoological Journal of the Linnean Society 179, 707–724.

Schulze, FE (1880). Untersuchungen über den Bau und die Entwicklung der Spongien. Neunte Mittheilung. Die Plakiniden. Zeitschrift für wissenschaftliche Zoologie 34, 407–451.

Schuster, A, Lopez, JV, Becking, LE, Kelly, M, Pomponi, SA, Wörheide, G, Erpenbeck, D, and Cárdenas, P (2017). Evolution of group I introns in Porifera: new evidence for intron mobility and implications for DNA barcoding. BMC Evolutionary Biology 17, 82.
Evolution of group I introns in Porifera: new evidence for intron mobility and implications for DNA barcoding.Crossref | GoogleScholarGoogle Scholar |

Solé Cava, AM, Boury-Esnault, N, Vacelet, J, and Thorpe, JP (1992). Biochemical genetic divergence and systematics in sponges of the genera Corticium and Oscarella (Demospongiae: Homoscleromorpha) in the Mediterranean Sea. Marine Biology 113, 299–304.
Biochemical genetic divergence and systematics in sponges of the genera Corticium and Oscarella (Demospongiae: Homoscleromorpha) in the Mediterranean Sea.Crossref | GoogleScholarGoogle Scholar |

Sollas WJ (1888) ‘Report on the Tetractinellida collected by H.M.S. Challenger during the years 1873–1876. Vol. 25.’ (Majesty’s Stationery Office: London, UK)

Sperling, EA, Rosengarten, ED, Moreno, MA, and Dellaporta, SM (2012). The complete mitochondrial genome of the verongid sponge Aplysina cauliformis: implications for DNA barcoding in demosponges. Hydrobiologia 687, 61–69.
The complete mitochondrial genome of the verongid sponge Aplysina cauliformis: implications for DNA barcoding in demosponges.Crossref | GoogleScholarGoogle Scholar |

Stamatakis, A (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313.
RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies.Crossref | GoogleScholarGoogle Scholar |

Stecher, G, Tamura, K, and Kumar, S (2020). Molecular Evolutionary Genetics Analysis (MEGA) for MacOS. Molecular Biology and Evolution 37, 1237–1239.
Molecular Evolutionary Genetics Analysis (MEGA) for MacOS.Crossref | GoogleScholarGoogle Scholar |

Stillitani D, Willenz P, Muricy G, Laport MS (2022) Collecting information and identification of Oscarella from Cabo Frio, Brazil (Porifera, Homoscleromorpha, Oscarellidae). Pangaea.
| Crossref |

Topsent, E (1895). Étude monographique des spongiaires de France. II. Carnosa. Archives de Zoologie Expérimentale et Générale 3, 493–590.

Vargas, S, Schuster, A, Sacher, K, Büttner, G, Schätzle, S, Läuchli, B, Hall, K, Hooper, JNA, Erpenbeck, D, and Wörheide, G (2012). Barcoding sponges: An overview based on comprehensive sampling. PLoS One 7, e39345.
Barcoding sponges: An overview based on comprehensive sampling.Crossref | GoogleScholarGoogle Scholar |

Vishnyakov, AE, and Ereskovsky, AV (2009). Bacterial symbionts as an additional cytological marker for identification of sponges without a skeleton. Marine Biology 156, 1625–1632.
Bacterial symbionts as an additional cytological marker for identification of sponges without a skeleton.Crossref | GoogleScholarGoogle Scholar |

Wang, X, and Lavrov, DV (2007). Mitochondrial genome of the homoscleromorph Oscarella carmela (Porifera, Demospongiae) reveals unexpected complexity in the common ancestor of sponges and other animals. Molecular Biology and Evolution 24, 363–373.
Mitochondrial genome of the homoscleromorph Oscarella carmela (Porifera, Demospongiae) reveals unexpected complexity in the common ancestor of sponges and other animals.Crossref | GoogleScholarGoogle Scholar |

Wang, X, and Lavrov, DV (2008). Seventeen new complete mtDNA sequences reveal extensive mitochondrial genome evolution within the Demospongiae. PLoS One 3, e2723.
Seventeen new complete mtDNA sequences reveal extensive mitochondrial genome evolution within the Demospongiae.Crossref | GoogleScholarGoogle Scholar |

Wörheide G, Erpenbeck D, Menke C (2007) The Sponge Barcoding Project: aiding in the identification and description of poriferan taxa. In ‘Porifera Research: Biodiversity, Innovation and Sustainability’. (Eds MR Custódio, G Lôbo-Hajdu, E Hajdu, G Muricy) pp. 123–128. (Museu Nacional: Rio de Janeiro, Brazil)