Register      Login
Invertebrate Systematics Invertebrate Systematics Society
Systematics, phylogeny and biogeography
RESEARCH ARTICLE

Phylogeny, systematics and rarity assessment of New Zealand endemic Saphydrus beetles and related enigmatic larvae (Coleoptera : Hydrophilidae : Cylominae)

Matthias Seidel https://orcid.org/0000-0002-4913-8778 A B , Yûsuke N. Minoshima https://orcid.org/0000-0002-2575-4082 C , Richard A. B. Leschen https://orcid.org/0000-0001-8549-8933 D and Martin Fikáček https://orcid.org/0000-0002-2078-6798 A B E
+ Author Affiliations
- Author Affiliations

A Department of Zoology, Faculty of Science, Charles University, Viničná 7, CZ-12843 Praha 2, Czech Republic.

B Department of Entomology, National Museum in Prague, Cirkusová 1740, CZ-19300 Praha 9 – Horní Počernice, Czech Republic.

C Natural History Division, Kitakyushu Museum of Natural History and Human History, 2-4-1 Higashida, Yahatahigashi-ku, Kitakyushu-shi, Fukuoka, 805-0071 Japan.

D Manaaki Whenua – Landcare Research, New Zealand Arthropod Collection, Auckland, New Zealand.

E Corresponding author. Email: mfikacek@gmail.com

Invertebrate Systematics 34(3) 260-292 https://doi.org/10.1071/IS19041
Submitted: 23 July 2019  Accepted: 8 January 2020   Published: 24 April 2020

Abstract

The New Zealand endemic beetle genus Saphydrus Sharp, 1884 (Coleoptera : Hydrophilidae : Cylominae) is studied in order to understand its phylogenetic position, species-level systematics, biology and distribution, and to reveal reasons for its rarity. The first complete genus-level phylogeny of Cylominae based on two mitochondrial (cox1, 16S) and two nuclear genes (18S, 28S) covering 18 of 19 genera of the subfamily reveals Saphydrus as an isolated lineage situated in a clade with Cylorygmus (South America), Relictorygmus (South Africa) and Eurygmus (Australia). DNA is used to associate two larval morphotypes with Saphydrus: one of them represents the larvae of S. suffusus Sharp, 1884; the other, characterised by unique characters of the head and prothorax morphology, is revealed as sister but not closely related to Saphydrus. It is described here as Enigmahydrus, gen. nov. with a single species, E. larvalis, sp. nov., whose adult stage remains unknown. Saphydrus includes five species, two of which (S. moeldnerae, sp. nov. and S. tanemahuta, sp. nov.) are described as new. Larvae of Enigmahydrus larvalis and Saphydrus suffusus are described and illustrated in detail based on DNA-identified specimens. Candidate larvae for Saphydrus obesus Sharp, 1884 and S. tanemahuta are illustrated and diagnosed. Specimen data are used to evaluate the range, altitudinal distribution, seasonality and population dynamics over time for all species. Strongly seasonal occurrence of adults combined with other factors (winter occurrence in S. obesus, occurrence at high altitudes in S. tanemahuta) is hypothesised as the primary reason of the rarity for Saphydrus species. By contrast, Enigmahydrus larvalis underwent a strong decline in population number and size since the 1970s and is currently known from a single, locally limited population; we propose the ‘nationally threatened’ status for this species.

http://zoobank.org/urn:lsid:zoobank.org:pub:28D87163-29E8-418C-9380-262D3038023A


References

Archangelsky, M. (1997). Studies on the biology, ecology, and systematics of the immature stages of New World Hydrophiloidea (Coleoptera: Staphyliniformia). Bulletin of the Ohio Biological Survey – New Series 12, 1–207.

Archangelsky, M. (1999). Adaptations of immature stages of Sphaeridiinae (Staphyliniformia, Hydrophiloidea: Hydrophilidae) and state of knowledge of preimaginal Hydrophilidae. Coleopterists Bulletin 53, 64–79.

Archangelsky, M. (2018). Larval chaetotaxy and morphometry of Oosternum costatum (Coleoptera: Hydrophilidae) including a discussion of larval characters with phylogenetic relevance. Acta Entomologica Musei Nationalis Pragae 58, 499–511.
Larval chaetotaxy and morphometry of Oosternum costatum (Coleoptera: Hydrophilidae) including a discussion of larval characters with phylogenetic relevance.Crossref | GoogleScholarGoogle Scholar |

Archangelsky, M., and Fikáček, M. (2004). Descriptions of the egg case and larva of Anacaena and a review of the knowledge and relationships between larvae of Anacaenini (Coleoptera: Hydrophilidae: Hydrophilinae). European Journal of Entomology 101, 629–636.
Descriptions of the egg case and larva of Anacaena and a review of the knowledge and relationships between larvae of Anacaenini (Coleoptera: Hydrophilidae: Hydrophilinae).Crossref | GoogleScholarGoogle Scholar |

Arriaga-Varela, E., Seidel, M., Deler-Hernández, A., Senderov, V., and Fikáček, M. (2017). A review of the Cercyon Leach (Coleoptera, Hydrophilidae, Sphaeridiinae) of the Greater Antilles. ZooKeys 681, 39–93.
A review of the Cercyon Leach (Coleoptera, Hydrophilidae, Sphaeridiinae) of the Greater Antilles.Crossref | GoogleScholarGoogle Scholar |

Barrell, D. J. A. (2011). Quaternary glaciers of New Zealands. Developments in Quaternary Sciences 15, 1047–1064.
Quaternary glaciers of New Zealands.Crossref | GoogleScholarGoogle Scholar |

Bloom, D. D., Fikáček, M., and Short, A. E. Z. (2014). Clade age and diversification rate variation explain disparity in species richness among water scavenger beetle (Hydrophilidae) lineages. PLoS One 9, e98430.
Clade age and diversification rate variation explain disparity in species richness among water scavenger beetle (Hydrophilidae) lineages.Crossref | GoogleScholarGoogle Scholar | 24887453PubMed |

Bojková, J., and Soldán, T. (2015). Two new species of the genus Prosopistoma (Ephemeroptera: Prosopistomatidae) from Iraq and Algeria. Zootaxa 4018, 109–123.
Two new species of the genus Prosopistoma (Ephemeroptera: Prosopistomatidae) from Iraq and Algeria.Crossref | GoogleScholarGoogle Scholar | 26624031PubMed |

Broun, T. (1880). ‘Manual of the New Zealand Coleoptera.’ (Colonial Museum & Geological Survey Department: Wellington, New Zealand.)

Broun, T. (1893a). ‘Manual of the New Zealand Coleoptera,’ Part V, pp. 975–1320. (Colonial Museum and Geological Survey Department: Wellington, New Zealand.)

Broun, T. (1893b). ‘Manual of the New Zealand Coleoptera,’ Part VII, pp. 1395–1504. (Colonial Museum and Geological Survey Department: Wellington, New Zealand.)

Broun, T. (1921). Descriptions of new genera and species of Coleoptera. Part VI. Bulletin of the New Zealand Institute 1, 475–590.

Byttebier, B., and Torres, P. L. M. (2009). Description of the preimaginal stages of Enochrus (Hugoscottia) variegatus (Steinheil, 1869) and E. (Methydrus) vulgaris (Steinheil, 1869) (Coleoptera: Hydrophilidae), with emphasis on larval morphometry and chaetotaxy. Zootaxa 2139, 1–22.
Description of the preimaginal stages of Enochrus (Hugoscottia) variegatus (Steinheil, 1869) and E. (Methydrus) vulgaris (Steinheil, 1869) (Coleoptera: Hydrophilidae), with emphasis on larval morphometry and chaetotaxy.Crossref | GoogleScholarGoogle Scholar |

Cranston, P. S. (2006). A new genus and species of Chironominae (Diptera: Chironomidae) with wood-mining larvae. Australian Journal of Entomology 45, 227–234.
A new genus and species of Chironominae (Diptera: Chironomidae) with wood-mining larvae.Crossref | GoogleScholarGoogle Scholar |

d’Orchymont, A. (1916). De la place qui doivent occuper dans la classification les sous-familles des Sphaeridiinae et des Hydrophilinae. Bulletin de la Société Entomologique de France 1916, 235–240.

d’Orchymont, A. (1919). Notes complémentaires pour la classification et la phylogénie des “Palpicornia”. Revue Zoologique Africaine 6, 163–168.

Daugherty, C. H., Gibbs, G. W., and Hitchmough, R. A. (1993). Mega-island or micro-continent? New Zealand and its fauna. Trends in Ecology & Evolution 8, 437–442.
Mega-island or micro-continent? New Zealand and its fauna.Crossref | GoogleScholarGoogle Scholar |

Ewers, R. M., Kliskey, A. D., Walker, S., Rutledge, D., Harding, J. S., and Didham, R. K. (2006). Past and future trajectories of forest loss in New Zealand. Biological Conservation 133, 312–325.
Past and future trajectories of forest loss in New Zealand.Crossref | GoogleScholarGoogle Scholar |

Fattorini, S., Cardoso, P., Rigal, F., and Borges, P. V. A. (2012). Use of arthropod rarity for area prioritisation: insights from the Azorean Islands. PLoS One 7, e33995.
Use of arthropod rarity for area prioritisation: insights from the Azorean Islands.Crossref | GoogleScholarGoogle Scholar | 23185338PubMed |

Fikáček, M. (2019a). 20. Hydrophilidae Leach, 1815. In ‘Australian Beetles. Volume 2. Archostemata, Myxophaga, Adephaga, Polyphaga (part)’. (Eds A. Slipinski and J. Lawrence.) pp. 271–337. (CSIRO Publishing: Melbourne, Vic., Australia.)

Fikáček, M. (2019b). 19. Spercheidae Erichson, 1837. In ‘Australian Beetles. Volume 2. Archostemata, Myxophaga, Adephaga, Polyphaga (part)’. (Eds A. Slipinski and J. Lawrence.) pp. 265–270. (CSIRO Publishing: Melbourne, Vic., Australia.)

Fikáček, M., Archangelsky, M., and Torres, P. L. M. (2008). Primary chaetotaxy of the larval head capsule and head appendages of the Hydrophilidae (Coleoptera) based on larva of Hydrobius fuscipes (Linnaeus, 1758). Zootaxa 1874, 16–34.
Primary chaetotaxy of the larval head capsule and head appendages of the Hydrophilidae (Coleoptera) based on larva of Hydrobius fuscipes (Linnaeus, 1758).Crossref | GoogleScholarGoogle Scholar |

Fikáček, M., Minoshima, Y., Vondráček, D., Gunter, N., and Leschen, R. A. B. (2013). Morphology of adults and larvae and integrative taxonomy of southern hemisphere genera Tormus and Afrotormus (Coleoptera: Hydrophilidae). Acta Entomologica Musei Nationalis Pragae 53, 75–126.

Fikáček, M., Minoshima, Y. N., and Newton, A. F. (2014). A review of Andotypus and Austrotypus gen. nov., rygmodine genera with austral disjunction (Hydrophilidae: Rygmodinae). Annales Zoologici 64, 557–596.
A review of Andotypus and Austrotypus gen. nov., rygmodine genera with austral disjunction (Hydrophilidae: Rygmodinae).Crossref | GoogleScholarGoogle Scholar |

Fikáček, M., Maruyama, M., Komatsu, T., von Beeren, C., Vondráček, D., and Short, A. E. Z. (2015). Protosternini (Coleoptera: Hydrophilidae) corroborated as monophyletic and its larva described for the first time: a review of the myrmecophilous genus Sphaerocetum. Invertebrate Systematics 29, 23–36.
Protosternini (Coleoptera: Hydrophilidae) corroborated as monophyletic and its larva described for the first time: a review of the myrmecophilous genus Sphaerocetum.Crossref | GoogleScholarGoogle Scholar |

Fikáček, M., Minoshima, Y. N., and Jäch, M. A. (2018a). Larval morphology of Yateberosus, a New Caledonian endemic subgenus of Laccobius (Coleoptera: Hydrophilidae), with notes on ‘Berosus-like’ larvae in Hydrophiloidea Acta Entomologica Musei Nationalis Pragae 58, 195–206.
Larval morphology of Yateberosus, a New Caledonian endemic subgenus of Laccobius (Coleoptera: Hydrophilidae), with notes on ‘Berosus-like’ larvae in HydrophiloideaCrossref | GoogleScholarGoogle Scholar |

Fikáček, M., Liang, W.-R., Hsiao, Y., Jia, F., and Vondráček, D. (2018b). Biology and morphology of immature stages of banana-associated Protosternum beetles, with comments on the status of Taiwanese endemic P. abnormale (Coleoptera: Hydrophilidae). Zoologischer Anzeiger 277, 85–100.
Biology and morphology of immature stages of banana-associated Protosternum beetles, with comments on the status of Taiwanese endemic P. abnormale (Coleoptera: Hydrophilidae).Crossref | GoogleScholarGoogle Scholar |

Gattolliat, J.-L. (2002). Two new genera of Baetidae (Ephemeroptera; Insecta) from Madagascar. Aquatic Insects 24, 143–159.
Two new genera of Baetidae (Ephemeroptera; Insecta) from Madagascar.Crossref | GoogleScholarGoogle Scholar |

Gillespie, R. G., and Will, K. (2018). Biodiversity of arthropods on islands. In ‘Insect Biodiversity: Science and Society II’, 2nd edn. (Eds R. G. Foottit and P. H. Adler.) pp. 81–104. (Wiley-Blackwell: Hoboken, NJ, USA.)

Giribet, G., and Boyer, S. L. (2010). ‘Moa’s Ark’ or ‘Goodbye Gondwana’: is the origin of New Zealand’s terrestrial invertebrate fauna ancient, recent or both? Invertebrate Systematics 24, 1–8.
‘Moa’s Ark’ or ‘Goodbye Gondwana’: is the origin of New Zealand’s terrestrial invertebrate fauna ancient, recent or both?Crossref | GoogleScholarGoogle Scholar |

Goldberg, J., Trewick, S. A., and Paterson, A. M. (2008). Evolution of New Zealand’s terrestrial fauna: a review of molecular evidence. Philosophical Transactions of the Royal Society of London – B. Biological Sciences 363, 3319–3334.
Evolution of New Zealand’s terrestrial fauna: a review of molecular evidence.Crossref | GoogleScholarGoogle Scholar | 18782728PubMed |

Grainger, N., Harding, J., Drinan, T., Collier, K., Smith, B., Death, R., Makan, T., and Rolfe, J. (2018). Conservation status of New Zealand freshwater invertebrates, 2018. New Zealand Threat Classification Series 28. Department of Conservation, Wellington, New Zealand.

Gray, A., Wilkins, V., Pryce, D., Fowler, L., Key, R. S., Mendel, H., Jervois, M., Hochkirch, A., Cairns-Wicks, R., Dutton, A.-J., and Malan, L. (2019). The status of the invertebrate fauna on the South Atlantic islands of St. Helena: problems, analysis and recommendations. Biodiversity and Conservation 28, 275–296.
The status of the invertebrate fauna on the South Atlantic islands of St. Helena: problems, analysis and recommendations.Crossref | GoogleScholarGoogle Scholar |

Gunter, N. L., Weir, T. A., Slipinski, A., Bocák, L., and Cameron, S. L. (2016). If dung beetles (Scarabaeidae: Scarabaeinae) arose in association with dinosaurs, did they also suffer a mass co-extinction at the K-Pg boundary? PLoS One 11, e0153570.
If dung beetles (Scarabaeidae: Scarabaeinae) arose in association with dinosaurs, did they also suffer a mass co-extinction at the K-Pg boundary?Crossref | GoogleScholarGoogle Scholar | 27145126PubMed |

Hallmann, C. A., Sorg, M., Jongejans, E., Siepel, H., Hofland, N., Schwan, H., Stenmans, W., Müller, A., Sumser, H., Hörren, T., Goulson, D., and de Kroon, H. (2017). More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS One 12, e0185809.
More than 75 percent decline over 27 years in total flying insect biomass in protected areas.Crossref | GoogleScholarGoogle Scholar | 29045418PubMed |

Hansen, M. (1990). Australian Sphaeridiinae (Coleoptera: Hydrophilidae): a taxonomic outline with descriptions of new genera and species. Invertebrate Taxonomy 4, 317–395.
Australian Sphaeridiinae (Coleoptera: Hydrophilidae): a taxonomic outline with descriptions of new genera and species.Crossref | GoogleScholarGoogle Scholar |

Hansen, M. (1991). The hydrophiloid beetles. Phylogeny, classification and a revision of the genera (Coleoptera, Hydrophiloidea). Biologiske Skrifter – Det Kongelige Danske Videnskabernes Selskab 40, 1–368.

Hansen, M. (1997). Synopsis of the endemic New Zealand genera of the beetle subfamily Sphaeridiinae (Coleoptera, Hydrophilidae). New Zealand Journal of Zoology 24, 351–370.
Synopsis of the endemic New Zealand genera of the beetle subfamily Sphaeridiinae (Coleoptera, Hydrophilidae).Crossref | GoogleScholarGoogle Scholar |

Hansen, M. (1999). ‘World Catalogue of Insects. Volume 2: Hydrophiloidea (s.str.) (Coleoptera).’ (Apollo Books: Stestrup, Denmark.)

Herrera-Flores, J. A., Stubbs, T. L., and Benton, M. J. (2017). Macroevolutionary patterns in Rhynchocephalis: is the tuatara (Sphenodon punctatus) a living fossil? Palaeontology 60, 319–328.
Macroevolutionary patterns in Rhynchocephalis: is the tuatara (Sphenodon punctatus) a living fossil?Crossref | GoogleScholarGoogle Scholar |

Hoare, R. J. B., Dugdale, J. S., Edwards, E. D., Gibbs, G. W., Patrick, B. H., Hitchmough, R. A., and Rolfe, J. R. (2015). Conservation status of New Zealand butterflies and moths (Lepidoptera), 2015. New Zealand Threat Classification Series 20. Department of Conservation, Wellington, New Zealand.

Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., Duran, C., Thierer, T., Ashton, B., Meintjes, P., and Drummond, A. (2012). Geneious Basics: an integrated and extendable desktop software for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649.
Geneious Basics: an integrated and extendable desktop software for the organization and analysis of sequence data.Crossref | GoogleScholarGoogle Scholar | 22543367PubMed |

Kim, S.-K. (2013). New species of Simulium (Nevermannia) from Korea, with reference to its allied species in the S. vernum species group (Diptera: Simuliidae) in Korea and Japan. Entomological Research 43, 130–134.
New species of Simulium (Nevermannia) from Korea, with reference to its allied species in the S. vernum species group (Diptera: Simuliidae) in Korea and Japan.Crossref | GoogleScholarGoogle Scholar |

Knisch, A. (1924). Hydrophilidae. In ‘Coleopterorum Catalogus. Vol. 14, part 79’. (Eds W. Junk and S. Schenkling.) (W. Junk: Berlin, Germany.)

Lanfear, R., Frandsen, P. B., Wright, A. M., Senfeld, T., and Calcott, B. (2017). PartitionFinder2: New methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Molecular Biology and Evolution 34, 772–773.
PartitionFinder2: New methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses.Crossref | GoogleScholarGoogle Scholar | 28013191PubMed |

Lawrence, J. F., Slipinski, A., Seago, A. E., Thayer, M. K., Newton, A. F., and Marvaldi, A. E. (2011). Phylogeny of the Coleoptera based on morphological characters of adults and larvae. Annales Zoologici 61, 1–217.
Phylogeny of the Coleoptera based on morphological characters of adults and larvae.Crossref | GoogleScholarGoogle Scholar |

Leschen, R. A. B., Lawrence, J. F., Kuschel, G., Thorpe, S., and Wang, Q. (2003). Coleoptera genera of New Zealand. New Zealand Entomologist 26, 15–28.
Coleoptera genera of New Zealand.Crossref | GoogleScholarGoogle Scholar |

Leschen, R. A. B., Marris, J. W. M., Emberson, R. M., Nunn, J., Hitchmough, R. A., and Stringer, I. A. N. (2012). The conservation status of New Zealand Coleoptera. New Zealand Entomologist 35, 91–98.
The conservation status of New Zealand Coleoptera.Crossref | GoogleScholarGoogle Scholar |

Lister, B. C., and García, A. (2018). Climate-driven declines in arthropod abundance restructure a rainforest food web. Proceedings of the National Academy of Sciences of the United States of America 115, E10397–E10406.
Climate-driven declines in arthropod abundance restructure a rainforest food web.Crossref | GoogleScholarGoogle Scholar | 30322922PubMed |

McCafferty, W. P., and Provonsha, A. V. (1988). Revisionary notes on predaceous Heptageniidae based on larval and adult associations (Ephemeroptera). Great Lakes Entomologist 21, 15–17.

McGlone, M. S., Duncan, R. P., and Heenan, P. B. (2001). Endemism, species selection and the origin and distribution of the vascular plant flora of New Zealand. Journal of Biogeography 28, 199–216.
Endemism, species selection and the origin and distribution of the vascular plant flora of New Zealand.Crossref | GoogleScholarGoogle Scholar |

McKenna, D. D., Wild, A. L., Kanda, K., Bellamy, C. L., Beutel, R. G., Caterino, M. S., Farnum, C. W., Hawks, D. C., Ivie, M. A., Jameson, M. L., Leschen, R. A. B., Marvaldi, A. E., McHugh, J. V., Newton, A. F., Robertson, J. A., Thayer, M. K., Whiting, M. F., Lawrence, J. F., Slipinski, A., Maddison, D. R., and Farrell, B. D. (2015). The beetle tree of life reveals that Coleoptera survived end-Permian mass extinction to diversify during the Cretaceous terrestrial revolution. Systematic Entomology 40, 835–880.
The beetle tree of life reveals that Coleoptera survived end-Permian mass extinction to diversify during the Cretaceous terrestrial revolution.Crossref | GoogleScholarGoogle Scholar |

McKinney, M. L. (1999). High rates of extinction and threat in poorly studied taxa. Conservation Biology 13, 1273–1281.
High rates of extinction and threat in poorly studied taxa.Crossref | GoogleScholarGoogle Scholar |

Miller, M. A., Pfeiffer, W., and Schwartz, T. (2010). Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In ‘Gateway Computing Environments Workshop’, 14 November 2010, New Orleans, LA, USA. pp. 1–8. (Institute of Electrical and Electronics Engineers: Piscataway, NJ, USA.) 10.1109/GCE.2010.5676129

Minoshima, Y. N. (2018). Larval morphology of Armostus ohyamatensis Hoshina and Satô (Coleoptera: Hydrophilidae: Megasternini). Coleopterists Bulletin 72, 767–778.
Larval morphology of Armostus ohyamatensis Hoshina and Satô (Coleoptera: Hydrophilidae: Megasternini).Crossref | GoogleScholarGoogle Scholar |

Minoshima, Y., and Hayashi, M. (2011). Larval morphology of the Japanese species of the tribes Acidocerini, Hydrobiusini and Hydrophilini (Coleoptera: Hydrophilidae). Acta Entomologica Musei Nationalis Pragae 51, 1–118.

Minoshima, Y. N., and Hayashi, M. (2015). Description of the larval stages of the berosine genera Berosus and Regimbartia based on the Japanese species B. japonicus and R. attenuata (Coleoptera: Hydrophilidae). Acta Entomologica Musei Nationalis Pragae 55, 47–83.

Minoshima, Y. N., Fikáček, M., Gunter, N., and Leschen, R. A. B. (2015). Larval morphology and biology of the New Zealand–Chilean genera Cylomissus Broun and Anticura Spangler (Coleoptera: Hydrophilidae: Rygmodinae). Coleopterists Bulletin 69, 687–712.
Larval morphology and biology of the New Zealand–Chilean genera Cylomissus Broun and Anticura Spangler (Coleoptera: Hydrophilidae: Rygmodinae).Crossref | GoogleScholarGoogle Scholar |

Minoshima, Y. N., Seidel, M., Wood, J. R., Leschen, R. A. B., Gunter, N. L., and Fikáček, M. (2018). Morphology and biology of the flower-visiting water scavenger beetle genus Rygmodus (Coleoptera: Hydrophilidae). Entomological Science 21, 363–384.
Morphology and biology of the flower-visiting water scavenger beetle genus Rygmodus (Coleoptera: Hydrophilidae).Crossref | GoogleScholarGoogle Scholar |

Mortimer, N., and Campbell, H. (2014). ‘Zealandia. Our Continent Revealed.’ (Penguin Books: London.)

Mortimer, N., Campbell, H. J., Tulloch, A. J., King, P. R., Stagpoole, V. M., Wood, R. A., Rattenbury, M. S., Sutherland, R., Adams, C. J., Collot, J., and Seton, M. (2017). Zealandia: Earth’s hidden continent. GSA Today 27, 27–35.
Zealandia: Earth’s hidden continent.Crossref | GoogleScholarGoogle Scholar |

Muggleton, J., and Benham, B. R. (1975). Isolation and the decline of the large blue butterfly (Maculinea arion) in Great Britain. Biological Conservation 7, 119–128.
Isolation and the decline of the large blue butterfly (Maculinea arion) in Great Britain.Crossref | GoogleScholarGoogle Scholar |

Nguyen, L. T., Schmidt, H. A., von Haeseler, A., and Minh, B. Q. (2015). IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution 32, 268–274.
IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies.Crossref | GoogleScholarGoogle Scholar | 25371430PubMed |

Priddel, D., Carlile, N., Humphrey, M., Fellenberg, S., and Hiscox, D. (2003). Rediscovery of the ‘extinct’ Lord Howe Island stick-insect (Dryococelus australis (Montrouzier)) (Phasmatodea) and recommendations for its conservation. Biodiversity and Conservation 12, 1391–1403.
Rediscovery of the ‘extinct’ Lord Howe Island stick-insect (Dryococelus australis (Montrouzier)) (Phasmatodea) and recommendations for its conservation.Crossref | GoogleScholarGoogle Scholar |

Prum, R. O., Berv, J. S., Dornburg, A., Field, D. J., Townsend, J. P., Lemmon, E. M., and Lemmon, A. R. (2015). A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing. Nature 526, 569–573.
A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing.Crossref | GoogleScholarGoogle Scholar | 26444237PubMed |

Rambaut, A., Drummond, A. J., Xie, D., Baele, G., and Suchard, M. A. (2018). Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Systematic Biology 67, 901–904.
Posterior summarization in Bayesian phylogenetics using Tracer 1.7.Crossref | GoogleScholarGoogle Scholar | 29718447PubMed |

Rawlence, N., Scofield, R. P., McGlone, M. S., and Knapp, M. (2019). History repeats: large scale synchronous biological turnover in avifauna from the Plio-Pleistocene and Late Holocene of New Zealand. Frontiers in Ecology and Evolution 7, 158.
History repeats: large scale synchronous biological turnover in avifauna from the Plio-Pleistocene and Late Holocene of New Zealand.Crossref | GoogleScholarGoogle Scholar |

Rolland, J., Cadotte, M. W., Davies, J., Devictor, V., Lavergne, S., Mouquet, N., Pavoine, S., Rodrigues, A., Thuiller, W., Turcati, L., Winter, M., Zupan, L., Jabot, F., and Morlon, H. (2012). Using phylogenies in conservation: new perspectives. Biology Letters 8, 692–694.
Using phylogenies in conservation: new perspectives.Crossref | GoogleScholarGoogle Scholar | 22130171PubMed |

Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M. A., and Huelsenbeck, J. P. (2012). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61, 539–542.
MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space.Crossref | GoogleScholarGoogle Scholar | 22357727PubMed |

Sánchez-Bayo, F., and Wyckhuys, K. A. G. (2019). Worldwide decline of the entomofauna: a review of its drivers. Biological Conservation 232, 8–27.
Worldwide decline of the entomofauna: a review of its drivers.Crossref | GoogleScholarGoogle Scholar |

Sanmartín, I., and Ronquist, F. (2004). Southern hemisphere biogeography inferred by event-based models: plant versus animal patterns. Systematic Biology 53, 216–243.
Southern hemisphere biogeography inferred by event-based models: plant versus animal patterns.Crossref | GoogleScholarGoogle Scholar | 15205050PubMed |

Sato, S., Inoda, T., Niitsu, S., Kubota, S., Goto, Y., and Kobayashi, Y. (2017). Asymmetric larval head and mandibles of Hydrophilus acuminatus (Insecta: Coleoptera, Hydrophilidae): fine structure and embryonic development. Arthropod Structure & Development 46, 824–842.
Asymmetric larval head and mandibles of Hydrophilus acuminatus (Insecta: Coleoptera, Hydrophilidae): fine structure and embryonic development.Crossref | GoogleScholarGoogle Scholar |

Seidel, M. (2019). Evolutionary history, systematics and biogeography of Southern Hemisphere hydrophilid beetles (Coleoptera). Ph.D. Thesis, Charles University, Prague, Czech Republic.

Seidel, M., Arriaga-Varela, E., and Fikáček, M. (2016). Establishment of Cylominae Zaitzev, 1908 as a valid name for the subfamily Rygmodinae Orchymont, 1916 with an updated list of genera (Coleoptera: Hydrophilidae). Acta Entomologica Musei Nationalis Pragae 56, 159–165.

Seidel, M., Minoshima, Y. N., Arriaga-Varela, E., and Fikáček, M. (2018). Breaking a disjunct distribution: a review of the southern hemisphere genera Cylorygmus and Relictorygmus gen. nov. (Hydrophilidae: Cylominae). Annales Zoologici 68, 375–402.
Breaking a disjunct distribution: a review of the southern hemisphere genera Cylorygmus and Relictorygmus gen. nov. (Hydrophilidae: Cylominae).Crossref | GoogleScholarGoogle Scholar |

Sharma, P. P., and Wheeler, W. C. (2013). Revenant clades in historical biogeography: the geology of New Zealand predisposes endemic clades to root age shifts. Journal of Biogeography 40, 1609–1618.
Revenant clades in historical biogeography: the geology of New Zealand predisposes endemic clades to root age shifts.Crossref | GoogleScholarGoogle Scholar |

Sharp, D. (1884). Revision of the Hydrophilidae of New Zealand. The Transactions of the Entomological Society of London 1884, 465–480.

Shirayama, Y., Kaku, T., and Higgins, R. P. (1993). Double-sided microscopic observation of meiofauna using an HS-slide. Benthos Research 1993, 41–44.
Double-sided microscopic observation of meiofauna using an HS-slide.Crossref | GoogleScholarGoogle Scholar |

Short, A. E. Z., and Fikáček, M. (2013). Molecular phylogeny, evolution and classification of the Hydrophilidae (Coleoptera). Systematic Entomology 38, 723–752.
Molecular phylogeny, evolution and classification of the Hydrophilidae (Coleoptera).Crossref | GoogleScholarGoogle Scholar |

Thogmartin, W. E., Wiederholt, R., Oberhauser, K., Drum, R. G., Diffendorfer, J. E., Altizer, S., Taylor, O. R., Pleasants, J., Semmens, D., Semmens, B., Erickson, R., Libby, K., and Lopez-Hoffman, L. (2017). Monarch butterfly population decline in North America: identifying the threatening processes. Royal Society Open Science 4, 170760.
Monarch butterfly population decline in North America: identifying the threatening processes.Crossref | GoogleScholarGoogle Scholar | 28989778PubMed |

Thomas, J. A. (2005). Monitoring change in the abundance and distribution of insects using butterflies and other indicator groups. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 360, 339–357.
Monitoring change in the abundance and distribution of insects using butterflies and other indicator groups.Crossref | GoogleScholarGoogle Scholar | 15814349PubMed |

Tippett, J. M., and Kamp, P. J. J. (1995). Geomorphic evolution of the Southern Alps, New Zealand. Earth Surface Processes and Landforms 20, 177–192.
Geomorphic evolution of the Southern Alps, New Zealand.Crossref | GoogleScholarGoogle Scholar |

Toussaint, E. F. A., and Short, A. E. Z. (2018). Transoceanic stepping-stones between Cretaceous waterfalls? The enigmatic biogeography of pantropical Oocyclus cascade beetles. Molecular Phylogenetics and Evolution 127, 416–428.
Transoceanic stepping-stones between Cretaceous waterfalls? The enigmatic biogeography of pantropical Oocyclus cascade beetles.Crossref | GoogleScholarGoogle Scholar |

Townsend, A. J., de Lange, P. J., Diffy, C. A. J., Miskelly, C. M., Molloy, J., and Norton, D. A. (2008). ‘New Zealand Threat Classification System Manual.’ (Science & Technical Publishing, Department of Conservation: Wellington, New Zealand.)

Wallis, G. P., and Trewick, S. A. (2009). New Zealand phylogeography: evolution on a small continent. Molecular Ecology 18, 3548–3580.
New Zealand phylogeography: evolution on a small continent.Crossref | GoogleScholarGoogle Scholar | 19674312PubMed |

Ward, D., Early, J., Schnitzler, F. R., Hitchmough, R., Rolfe, J., and Stringer, I. (2014). Conservation statusn of New Zealand Hymenoptera, 2014. New Zealand Threat Classification Series 20. Department of Conservation, Wellington, New Zealand.