Register      Login
Invertebrate Systematics Invertebrate Systematics Society
Systematics, phylogeny and biogeography
RESEARCH ARTICLE

Genetic diversity of marine oligochaetous clitellates in selected areas of the South Atlantic as revealed by DNA barcoding

Alessandro L. Prantoni A D , Ricardo Belmonte-Lopes B , Paulo C. Lana A and Christer Erséus C
+ Author Affiliations
- Author Affiliations

A Center for Marine Studies, Federal University of Paraná, Av. Beira Mar, s/n, 83255-976 Pontal do Paraná, Paraná, Brazil.

B Department of Zoology, Laboratory of Evolutionary Dynamics and Complex Systems, Federal University of Paraná, Av. Francisco H. dos Santos, 100, 81531-980 Curitiba, Paraná, Brazil.

C Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, SE-405 30 Göteborg, Sweden.

D Corresponding author. Email: aprantoni@gmail.com

Invertebrate Systematics 32(3) 524-532 https://doi.org/10.1071/IS17029
Submitted: 25 March 2017  Accepted: 9 September 2017   Published: 26 April 2018

Abstract

Marine oligochaetous clitellates are poorly investigated in the South Atlantic Ocean, especially along the east coast of South America. Closely related species are often difficult to distinguish based on morphology. The lack of specialists and modern identification guides have been pointed out as the main reasons for the scarcity of studies in the South Atlantic Ocean as a whole. To increase the knowledge of this group in the South Atlantic, the genetic diversity of a sample of marine oligochaetous clitellates from Brazil, South Africa and Antarctica was assessed by the Automatic Barcode Gap Discovery (ABGD) and the generalised mixed Yule coalescent (GMYC) approaches. In total, 80 cytochrome c oxidase subunit I (COI) sequences were obtained, each with ~658 bp, estimated to represent 32 distinct putative species. ABGD established a barcoding gap between 3% and 14% divergence for uncorrected p-distances and the estimates of GMYC were largely concordant. All the clusters or putative species were genetically associated with previously known species or genera. This study thus confirms the adequacy of the COI barcoding approach combined with a genetic divergence threshold at the order of 10% for marine oligochaetous clitellates.

Additional keywords: COI, DNA barcodes, marine clitellates, southern Atlantic Ocean, species delimitation.


References

Achurra, A., and Erséus, C. (2013). DNA barcoding and species delimitation: the Stylodrilus heringianus case (Annelida: Clitellata: Lumbriculidae). Invertebrate Systematics 27, 118–128.
DNA barcoding and species delimitation: the Stylodrilus heringianus case (Annelida: Clitellata: Lumbriculidae).Crossref | GoogleScholarGoogle Scholar |

Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control 19, 716–723.
A new look at the statistical model identification.Crossref | GoogleScholarGoogle Scholar |

Ardura, A., and Planes, S. (2017). Rapid assessment of non-indigenous species in the era of the eDNA barcoding: a Mediterranean case study. Estuarine, Coastal and Shelf Science 188, 81–87.
Rapid assessment of non-indigenous species in the era of the eDNA barcoding: a Mediterranean case study.Crossref | GoogleScholarGoogle Scholar |

Barraclough, T. G., Hughes, M., Ashford-Hodges, N., and Fujisawa, T. (2009). Inferring evolutionarily significant units of bacterial diversity from broad environmental surveys of single-locus data. Biology Letters 5, 425–428.
Inferring evolutionarily significant units of bacterial diversity from broad environmental surveys of single-locus data.Crossref | GoogleScholarGoogle Scholar |

Bottrill, M. C., Joseph, L. N., Carwardine, J., Bode, M., Cook, C., Game, E. T., Grantham, H., Kark, S., Linke, S., McDonald-Madden, E., Pressey, R. L., Walker, S., Wilson, K. A., and Possingham, H. P. (2008). Is conservation triage just smart decision making? Trends in Ecology & Evolution 23, 649–654.
Is conservation triage just smart decision making?Crossref | GoogleScholarGoogle Scholar |

Boyer, S. L., Baker, J. M., and Giribet, G. (2007). Deep genetic divergences in Aoraki denticulata (Arachnida, Opiliones, Cyphophthalmi): a widespread ‘mite harvestman’ defies DNA taxonomy. Molecular Ecology 16, 4999–5016.
Deep genetic divergences in Aoraki denticulata (Arachnida, Opiliones, Cyphophthalmi): a widespread ‘mite harvestman’ defies DNA taxonomy.Crossref | GoogleScholarGoogle Scholar |

Brinkhurst, R. O. (1963). Notes on the brackish-water and marine species of Tubificidae. Journal of the Marine Biological Association of the United Kingdom 43, 709–715.
Notes on the brackish-water and marine species of Tubificidae.Crossref | GoogleScholarGoogle Scholar |

Čandek, K., and Kuntner, M. (2015). DNA barcoding gap: reliable species identification over morphological and geographical scales. Molecular Ecology Resources 15, 268–277.
DNA barcoding gap: reliable species identification over morphological and geographical scales.Crossref | GoogleScholarGoogle Scholar |

Carstens, B. C., Pelletier, T. A., Reid, N. M., and Satler, J. D. (2013). How to fail at species delimitation. Molecular Ecology 22, 4369–4383.
How to fail at species delimitation.Crossref | GoogleScholarGoogle Scholar |

Coates, K. A. (1990). Marine Enchytraeidae (Oligochaeta, Annelida) of the Albany area, Western Australia. In ‘Proceedings of the Third International Marine Biological Workshop: the Marine Flora and Fauna of Albany’. (Eds F. E. Wells, D. I. Walker, H. Kirkman and R. Lethbridge.) pp. 13–41. (Western Australian Museum: Albany, WA.)

Coates, K. A., and Stacey, D. F. (1993). The marine Enchytraeidae (Oligochaeta, Annelida) of Rottnest Island, Western Australia. In ‘Proceedings of the Fifth International Marine Biological Workshop: the Marine Flora and Fauna of Rottnest Island, Western Australia’. (Eds F. E. Wells, D. I. Walker, H. Kirkman and R. Lethbridge.) pp. 391–414. (Western Australian Museum: Perth, WA.)

Coates, K. A., and Stacey, D. F. (1997). Enchytraeids (Oligochaeta: Annelida) of the lower shore and shallow subtidal of Darwin Harbour, Northern Territory, Australia. In ‘Proceedings of the Sixth International Marine Biological Workshop: the Marine Flora and Fauna of Darwin Harbour, Northern Territory, Australia’. (Eds J. Hanley, G. Caswell, D. Megirian and H. Larson.) pp. 391–414. (Darwin Museums and Art Galleries of the Northern Territory and the Australian Marine Sciences Association: Darwin, NT.)

Collins, R. A., and Cruickshank, R. H. (2012). The seven deadly sins of DNA barcoding. Molecular Ecology Resources 13, 969–975.
The seven deadly sins of DNA barcoding.Crossref | GoogleScholarGoogle Scholar |

Cook, D. G. (1969). The Tubificidae (Annelida, Oligochaeta) of Cape Cod Bay with a taxonomic revision of the genera Phallodrilus Pierantoni, 1902, Limnodriloides Pierantoni, 1903 and Spiridion Knollner, 1935. The Biological Bulletin 136, 9–27.
The Tubificidae (Annelida, Oligochaeta) of Cape Cod Bay with a taxonomic revision of the genera Phallodrilus Pierantoni, 1902, Limnodriloides Pierantoni, 1903 and Spiridion Knollner, 1935.Crossref | GoogleScholarGoogle Scholar |

De Wit, P., and Erséus, C. (2007). Seven new species of Grania (Annelida: Clitellata: Enchytraeidae) from New Caledonia, South Pacific Ocean. Zootaxa 1426, 27–50.
Seven new species of Grania (Annelida: Clitellata: Enchytraeidae) from New Caledonia, South Pacific Ocean.Crossref | GoogleScholarGoogle Scholar |

De Wit, P., and Erséus, C. (2010). Genetic variation and phylogeny of Scandinavian species of Grania (Annelida: Clitellata: Enchytraeidae), with the discovery of a cryptic species. Journal of Zoological Systematics and Evolutionary Research 48, 285–293.
Genetic variation and phylogeny of Scandinavian species of Grania (Annelida: Clitellata: Enchytraeidae), with the discovery of a cryptic species.Crossref | GoogleScholarGoogle Scholar |

De Wit, P., Rota, E., and Erséus, C. (2009). Grania (Annelida: Clitellata: Enchytraeidae) of the Great Barrier Reef, Australia, including four new species and a re-description of Grania trichaeta Jamieson, 1977. Zootaxa 2165, 16–38.

DeSalle, R. (2006). Species discovery versus species identification in DNA barcoding efforts: response to Rubinoff. Conservation Biology 20, 1545–1547.
Species discovery versus species identification in DNA barcoding efforts: response to Rubinoff.Crossref | GoogleScholarGoogle Scholar |

Drummond, A. J., and Rambaut, A. (2007). BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology 7, 214.
BEAST: Bayesian evolutionary analysis by sampling trees.Crossref | GoogleScholarGoogle Scholar |

Du Bois-Reymond Marcus, E. (1950). A marine tubificid from Brazil. Comunicaciones Zoologicas del Museo de Historia Natural de Montevideo 3, 1–6.

Envall, I., Källersjö, M., and Erséus, C. (2006). Molecular evidence for the non-monophyletic status of Naidinae (Annelida, Clitellata, Tubificidae). Molecular Phylogenetics and Evolution 40, 570–584.
Molecular evidence for the non-monophyletic status of Naidinae (Annelida, Clitellata, Tubificidae).Crossref | GoogleScholarGoogle Scholar |

Erséus, C. (1976). Marine subtidal Tubificidae and Enchytraeidae (Oligochaeta) of the Bergen area, western Norway. Sarsia 62, 25–48.
Marine subtidal Tubificidae and Enchytraeidae (Oligochaeta) of the Bergen area, western Norway.Crossref | GoogleScholarGoogle Scholar |

Erséus, C. (1979). Taxonomic revision of the marine genus Phallodrilus Pierantoni (Oligochaeta, Tubificidae), with descriptions of thirteen new species. Zoologica Scripta 8, 187–208.
Taxonomic revision of the marine genus Phallodrilus Pierantoni (Oligochaeta, Tubificidae), with descriptions of thirteen new species.Crossref | GoogleScholarGoogle Scholar |

Erséus, C. (1980). Taxonomic studies on the marine genera Aktedrilus Knöllner and Bacescuella Hrabe’ (Oligochaeta, Tubificidae), with descriptions of seven new species. Zoologica Scripta 9, 97–111.
Taxonomic studies on the marine genera Aktedrilus Knöllner and Bacescuella Hrabe’ (Oligochaeta, Tubificidae), with descriptions of seven new species.Crossref | GoogleScholarGoogle Scholar |

Erséus, C. (1981). Taxonomic studies of Phallodrilinae (Oligochaeta, Tubificidae) from the Great Barrier Reef and the Comoro Islands with descriptions of ten new species and one new genus. Zoologica Scripta 10, 15–31.
Taxonomic studies of Phallodrilinae (Oligochaeta, Tubificidae) from the Great Barrier Reef and the Comoro Islands with descriptions of ten new species and one new genus.Crossref | GoogleScholarGoogle Scholar |

Erséus, C. (1983a). Taxonomic studies of the marine genus Marcusaedrilus Righi & Kanner (Oligochaeta, Tubificidae), with descriptions of seven new species from the Caribbean area and Australia. Zoologica Scripta 12, 25–36.
Taxonomic studies of the marine genus Marcusaedrilus Righi & Kanner (Oligochaeta, Tubificidae), with descriptions of seven new species from the Caribbean area and Australia.Crossref | GoogleScholarGoogle Scholar |

Erséus, C. (1983b). Bulletin du Muséum d’Histoire Naturelle 4, 1051–1057.

Erséus, C. (1989). Two new species of the marine genus Limnodriloides and a record of Tubificoides fraseri Brinkhurst (Oligochaeta: Tubificidae) from New Zealand. New Zealand Journal of Marine and Freshwater Research 23, 557–561.
Two new species of the marine genus Limnodriloides and a record of Tubificoides fraseri Brinkhurst (Oligochaeta: Tubificidae) from New Zealand.Crossref | GoogleScholarGoogle Scholar |

Erséus, C. (1990). Marine Oligochaeta of Hong Kong. In ‘Proceedings of the Second International Marine Biological Workshop: the Marine Flora and Fauna of Hong Kong and Southern China, Hong Kong, 1986’. (Ed. B. Morton.) pp. 259–335. (Hong Kong University Press: Hong Kong.)

Erséus, C. (1994). Oligochaeta and Polychaeta: Phyllodocida (Phyllodocidae to Paralacydoniidae). In ‘Taxonomic Atlas of the Benthic Fauna of the Santa Maria Basin and Western Santa Barbara Channel’. (Eds J. A. Blake and B. Hilbing.) pp. 1–55. (Santa Barbara Museum of Natural History: Santa Barbara, CA.)

Erséus, C. (2002). Mangroves and marine oligochaete diversity. Wetlands Ecology and Management 10, 197–202.
Mangroves and marine oligochaete diversity.Crossref | GoogleScholarGoogle Scholar |

Erséus, C. (2005). Phylogeny of oligochaetous Clitellata. Hydrobiologia 536, 357–372.
Phylogeny of oligochaetous Clitellata.Crossref | GoogleScholarGoogle Scholar |

Erséus, C., and Gustafsson, D. (2009). Cryptic speciation in clitellate model organisms. In ‘Annelids in Modern Biology’. (Ed. D. H. Shain.) pp. 1–16. (John Wiley & Sons: Hoboken, NJ.) 10.1002/9780470455203.ch3

Erséus, C., and Lasserre, P. (1976). Taxonomic status and geographic variation the marine enchytraeid genus Grania Southern (Oligochaeta). Zoologica Scripta 5, 121–132.
Taxonomic status and geographic variation the marine enchytraeid genus Grania Southern (Oligochaeta).Crossref | GoogleScholarGoogle Scholar |

Erséus, C., and Lasserre, P. (1978). Redescription of Grania monochaeta (Michaelsen), a marine enchytraeid (Oligochaeta) from South Georgia (SW Atlantic). Zoologica Scripta 6, 299–300.
Redescription of Grania monochaeta (Michaelsen), a marine enchytraeid (Oligochaeta) from South Georgia (SW Atlantic).Crossref | GoogleScholarGoogle Scholar |

Erséus, C., and Rota, E. (2003). New findings and an overview of the oligochaetous Clitellata (Annelida) of the North Atlantic deep sea. Proceedings of the Biological Society of Washington 116, 892–900.

Erséus, C., Wetzel, M. J., and Gustavsson, L. M. (2008). ICZN rules – a farewell to Tubificidae (Annelida, Clitellata). Zootaxa 1744, 66–68.
ICZN rules – a farewell to Tubificidae (Annelida, Clitellata).Crossref | GoogleScholarGoogle Scholar |

Erséus, C., Rota, E., Matamoros, L., and De Wit, P. (2010). Molecular phylogeny of Enchytraeidae (Annelida, Clitellata). Molecular Phylogenetics and Evolution 57, 849–858.
Molecular phylogeny of Enchytraeidae (Annelida, Clitellata).Crossref | GoogleScholarGoogle Scholar |

Folmer, O., Black, M., Hoeh, W., Lutz, R., and Vrijenhoek, R. (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular marine biology and biotechnology 3, 294–299.

Fonseca, G., Fontaneto, D., and Di Domenico, M. (2017). Addressing biodiversity shortfalls in meiofauna. Journal of Experimental Marine Biology and Ecology , .
Addressing biodiversity shortfalls in meiofauna.Crossref | GoogleScholarGoogle Scholar |

Fontaneto, D., Herniou, E. A., Boschetti, C., Caprioli, M., Melone, G., Ricci, C., and Barraclough, T. G. (2007). Independently evolving species in asexual bdelloid rotifers. PLoS Biology 5, e87.
Independently evolving species in asexual bdelloid rotifers.Crossref | GoogleScholarGoogle Scholar |

Fujisawa, T., and Barraclough, T. (2013). Delimiting species using single-locus data and the generalized mixed Yule coalescent (GMYC) approach: a revised method and evaluation on simulated datasets. Systematic Biology 62, 707–724.
Delimiting species using single-locus data and the generalized mixed Yule coalescent (GMYC) approach: a revised method and evaluation on simulated datasets.Crossref | GoogleScholarGoogle Scholar |

Gelman, A., and Rubin, D. R. (1992). Inference from iterative simulation using multiple sequences. Statistical Science 7, 457–472.
Inference from iterative simulation using multiple sequences.Crossref | GoogleScholarGoogle Scholar |

Giere, O. (1979). Studies on marine Oligochaeta from Bermuda, with emphasis on new Phallodrilus species (Tubificidae). Cahiers de Biologie Marine 3, 301–314.

Harman, W. J., and Loden, M. S. (1984). Capilloventer atlanticus gen. et sp. n., a member of a new family of marine Oligochaeta from Brazil. Hydrobiologia 115, 51–54.
Capilloventer atlanticus gen. et sp. n., a member of a new family of marine Oligochaeta from Brazil.Crossref | GoogleScholarGoogle Scholar |

Hartzell, P. L., Nghiem, J. V., Richio, K. J., and Shain, D. H. (2005). Distribution and phylogeny of glacier ice worms (Mesenchytraeus solifugus and Mesenchytraeus solifugus rainierensis). Canadian Journal of Zoology 83, 1206–1213.
Distribution and phylogeny of glacier ice worms (Mesenchytraeus solifugus and Mesenchytraeus solifugus rainierensis).Crossref | GoogleScholarGoogle Scholar |

Hebert, P. D. N., Ratnasingham, S., and Waard, J. R. (2003). Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proceedings. Biological Sciences 270, S96–99.
Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species.Crossref | GoogleScholarGoogle Scholar |

Jackson, J. K., Battle, J. M., White, B. P., Pilgrim, E. M., Stein, E. D., Miller, P. E., and Sweeney, B. W. (2014). Cryptic biodiversity in streams: a comparison of macroinvertebrate communities based on morphological and DNA barcode identifications. Freshwater Science 33, 312–324.
Cryptic biodiversity in streams: a comparison of macroinvertebrate communities based on morphological and DNA barcode identifications.Crossref | GoogleScholarGoogle Scholar |

Jamieson, B. G. M. (1977). Marine meiobenthic Oligochaeta from Heron and Wistari Reefs (Great Barrier Reef) of the genera Clitellio, Limnodriloides and Phallodrilus (Tubificidae) and Grania (Enchytraeidae). Zoological Journal of the Linnean Society 61, 329–349.
Marine meiobenthic Oligochaeta from Heron and Wistari Reefs (Great Barrier Reef) of the genera Clitellio, Limnodriloides and Phallodrilus (Tubificidae) and Grania (Enchytraeidae).Crossref | GoogleScholarGoogle Scholar |

Katoh, K., and Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30, 772–780.
MAFFT multiple sequence alignment software version 7: improvements in performance and usability.Crossref | GoogleScholarGoogle Scholar |

Kekkonen, M., and Hebert, P. D. N. (2014). DNA barcode-based delineation of putative species: efficient start for taxonomic workflows. Molecular Ecology Resources 14, 706–715.
DNA barcode-based delineation of putative species: efficient start for taxonomic workflows.Crossref | GoogleScholarGoogle Scholar |

Kekkonen, M., Mutanen, M., Kaila, L., Nieminen, M., and Hebert, P. D. N. (2015). Delineating species with DNA barcodes: a case of taxon dependent method performance in moths. PLoS One 10, e0122481.
Delineating species with DNA barcodes: a case of taxon dependent method performance in moths.Crossref | GoogleScholarGoogle Scholar |

Klinth, M. J., Martinsson, S., and Erséus, C. (2016). Phylogeny and species delimitation of north European Lumbricillus (Clitellata, Enchytraeidae). Zoologica Scripta , .
Phylogeny and species delimitation of north European Lumbricillus (Clitellata, Enchytraeidae).Crossref | GoogleScholarGoogle Scholar |

Knöllner, F. H. (1935). Ökologische und systematische Untersuchungen über litorale und marine Oligochäten der Kieler Bucht. Zoologische Jahrbucher. Abteilung fur Systematik, Ökologie und Geographie der Tiere 66, 425–512.

Kossmagk-Stephan, K.-J (1983). Marine Oligochaeta from a sandy beach of the island of Sylt (North Sea) with description of four new enchytraeid species. Akademie der Wissenschaften und der Literatur Mainz Mathematisch – Naturwissenschaftlichen Klasse Mikrofauna des Meeresbodens 89, 1–28.

Lanfear, R., Calcott, B., Ho, S. Y. W., and Guindon, S. (2012). PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution 29, 1695–1701.
PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses.Crossref | GoogleScholarGoogle Scholar |

Lasserre, P. (1967). Oligochétes marins des côtes de France. II. Roscoff, penpoull, étangs saumâtres de Concarneau: systématique, écologie. Cahiers de Biologie Marine 8, 273–293.

Leasi, F., and Norenburg, J. L. (2014). The necessity of DNA taxonomy to reveal cryptic diversity and spatial distribution of meiofauna, with a focus on Nemertea. PLoS One 9, e104385.
The necessity of DNA taxonomy to reveal cryptic diversity and spatial distribution of meiofauna, with a focus on Nemertea.Crossref | GoogleScholarGoogle Scholar |

Liu, Y., Fend, S. V., Martinsson, S., and Erséus, C. (2017a). Extensive cryptic diversity in the cosmopolitan sludge worm Limnodrilus hoffmeisteri (Clitellata, Naididae). Organisms, Diversity & Evolution 17, 477–495.
Extensive cryptic diversity in the cosmopolitan sludge worm Limnodrilus hoffmeisteri (Clitellata, Naididae).Crossref | GoogleScholarGoogle Scholar |

Liu, Y., Fend, S. V., Martinsson, S., Luo, X., Ohtaka, A., and Erséus, C. (2017b). Multi-locus phylogenetic analysis of the genus Limnodrilus (Annelida: Clitellata: Naididae). Molecular Phylogenetics and Evolution 112, 244–257.
Multi-locus phylogenetic analysis of the genus Limnodrilus (Annelida: Clitellata: Naididae).Crossref | GoogleScholarGoogle Scholar |

Lou, M., and Golding, G. B. (2012). The effect of sampling from subdivided populations on species identification with DNA barcodes using a Bayesian statistical approach. Molecular Phylogenetics and Evolution 65, 765–773.
The effect of sampling from subdivided populations on species identification with DNA barcodes using a Bayesian statistical approach.Crossref | GoogleScholarGoogle Scholar |

Luo, A., Qiao, H., Zhang, Y., Shi, W., Ho, S. Y. W., Xu, W., Zhang, A., and Zhu, C. (2010). Performance of criteria for selecting evolutionary models in phylogenetics: a comprehensive study based on simulated datasets. BMC Evolutionary Biology 10, 242.
Performance of criteria for selecting evolutionary models in phylogenetics: a comprehensive study based on simulated datasets.Crossref | GoogleScholarGoogle Scholar |

Marcus, E. (1965). Naidomorpha aus brasilianischem Brackwasser. Beiträge zur Neotropischen Fauna 4, 61–83.
Naidomorpha aus brasilianischem Brackwasser.Crossref | GoogleScholarGoogle Scholar |

Martin, P., Martínez-Ansemil, E., Pinder, A., Timm, T., and Wetzel, M. J. (2008). Global diversity of oligochaetous clitellates (‘Oligochaeta’; Clitellata) in freshwater. Hydrobiologia 595, 117–127.
Global diversity of oligochaetous clitellates (‘Oligochaeta’; Clitellata) in freshwater.Crossref | GoogleScholarGoogle Scholar |

Martinsson, S., and Erséus, C. (2017). Cryptic speciation and limited hybridization within Lumbricus earthworms (Clitellata: Lumbricidae). Molecular Phylogenetics and Evolution 106, 18–27.
Cryptic speciation and limited hybridization within Lumbricus earthworms (Clitellata: Lumbricidae).Crossref | GoogleScholarGoogle Scholar |

Martinsson, S., Achurra, A., Svensson, M., and Erséus, C. (2013). Integrative taxonomy of the freshwater worm Rhyacodrilus falciformis s.l. (Clitellata: Naididae), with the description of a new species. Zoologica Scripta 42, 612–622.
Integrative taxonomy of the freshwater worm Rhyacodrilus falciformis s.l. (Clitellata: Naididae), with the description of a new species.Crossref | GoogleScholarGoogle Scholar |

Martinsson, S., Cui, Y., Martin, P. J., Pinder, A., Quinlan, K., Wetzel, M. J., and Erséus, C. (2015a). DNA-barcoding of invasive European earthworms (Clitellata: Lumbricidae) in south-western Australia. Biological Invasions 17, 2527–2532.
DNA-barcoding of invasive European earthworms (Clitellata: Lumbricidae) in south-western Australia.Crossref | GoogleScholarGoogle Scholar |

Martinsson, S., Rota, E., and Erséus, C. (2015b). Revision of Cognettia (Clitellata, Enchytraeidae): re-establishment of Chamaedrilus and description of cryptic species in the sphagnetorum complex. Systematics and Biodiversity 13, 257–277.
Revision of Cognettia (Clitellata, Enchytraeidae): re-establishment of Chamaedrilus and description of cryptic species in the sphagnetorum complex.Crossref | GoogleScholarGoogle Scholar |

Martinsson, S., Rhodén, C., and Erséus, C. (2015c). Barcoding gap, but no support for cryptic speciation in the earthworm Aporrectodea longa (Clitellata: Lumbricidae). Mitochondrial DNA Part A 28, 147–155.
Barcoding gap, but no support for cryptic speciation in the earthworm Aporrectodea longa (Clitellata: Lumbricidae).Crossref | GoogleScholarGoogle Scholar |

Matamoros, L., Rota, E., and Erséus, C. (2012). Cryptic diversity among the achaetous Marionina (Annelida, Clitellata, Enchytraeidae). Systematics and Biodiversity 10, 509–525.
Cryptic diversity among the achaetous Marionina (Annelida, Clitellata, Enchytraeidae).Crossref | GoogleScholarGoogle Scholar |

Michaelsen, W. (1888). Die Oligochaeten von Süd-Georgien nach Ausbeute der deutschen Station von 1882–83. Jahrbuch der Hamburgischen Wissenschaftliche Anstalten 5, 53–73.

Miller, M. A., Pfeiffer, W., and Schwartz, T. (2010). Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In Gateway Computing Environments Workshop (GCE)’. pp. 1–8. (IEEE: New Orleans, LA, USA) 10.1109/GCE.2010.5676129

Moore, J. P. (1902). Some Bermuda Oligochaeta, with a description of a new species. Proceedings. Academy of Natural Sciences of Philadelphia 54, 80–84.

Moore, J. P. (1905). Some marine Oligochaeta of New England. Proceedings. Academy of Natural Sciences of Philadelphia 57, 373–399.

Morais, G. C., Camargo, M. G., and Lana, P. (2016). Intertidal assemblage variation across a subtropical estuarine gradient: how good conceptual and empirical models are? Estuarine, Coastal and Shelf Science 170, 91–101.
Intertidal assemblage variation across a subtropical estuarine gradient: how good conceptual and empirical models are?Crossref | GoogleScholarGoogle Scholar |

Negrello Filho, O. A., Underwood, A. J., and Chapman, M. G. (2006). Recolonization of infauna on a tidal flat: an experimental analysis of modes of dispersal. Journal of Experimental Marine Biology and Ecology 328, 240–250.
Recolonization of infauna on a tidal flat: an experimental analysis of modes of dispersal.Crossref | GoogleScholarGoogle Scholar |

Neigel, J. E., and Avise, J. C. (1986). Phylogenetic relationships of mitochondrial DNA under various demographic models of speciation. In ‘Evolutionary Processes and Theory’. (Eds E. Nevo and S. Karlin.) pp. 515–534. (Academic Press: London.)

Nylander, J. A. A., Wilgenbusch, J. C., Warren, D. L., and Swofford, D. L. (2008). AWTY (are we there yet?): a system for graphical exploration of MCMC convergence in Bayesian phylogenetics. Bioinformatics 24, 581–583.
AWTY (are we there yet?): a system for graphical exploration of MCMC convergence in Bayesian phylogenetics.Crossref | GoogleScholarGoogle Scholar |

Pierantoni, U. (1903a). Due nuovi generi di Oligochaeti marini rinvenuti nel Gulfo di Napoli. Bollettino Della Società dei Naturalisti in Napoli 16, 113–117.

Pierantoni, U. (1903b). Altri nuovi oligocheti del Golfo di Napoli (Limnodriloides n. gen). Bollettino Della Società dei Naturalisti in Napoli 17, 185–192.

Pons, J., Barraclough, T., Gomez-Zurita, J., Cardoso, A., Duran, D., Hazell, S., Kamoun, S., Sumlin, W., and Vogler, A. (2006). Sequence-based species delimitation for the DNA taxonomy of undescribed insects. Systematic Biology 55, 595–609.
Sequence-based species delimitation for the DNA taxonomy of undescribed insects.Crossref | GoogleScholarGoogle Scholar |

Prantoni, A. L., Di Domenico, M., and Lana, P. C. (2014). A taxonomic overview of marine and estuarine oligochaetes from Brazil. Marine Biodiversity 44, 275–278.
A taxonomic overview of marine and estuarine oligochaetes from Brazil.Crossref | GoogleScholarGoogle Scholar |

Prantoni, A. L., De Wit, P., and Erséus, C. (2016). First reports of Grania (Clitellata: Enchytraeidae) from Africa and South America: molecular phylogeny and descriptions of nine new species. Zoological Journal of the Linnean Society 176, 485–510.
First reports of Grania (Clitellata: Enchytraeidae) from Africa and South America: molecular phylogeny and descriptions of nine new species.Crossref | GoogleScholarGoogle Scholar |

Puillandre, N., Lambert, A., Brouillet, S., and Achaz, G. (2012a). ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Molecular Ecology 21, 1864–1877.
ABGD, Automatic Barcode Gap Discovery for primary species delimitation.Crossref | GoogleScholarGoogle Scholar |

Puillandre, N., Modica, M. V., Zhang, Y., Sirovich, L., Boisselier, M. C., Cruaud, C., Holford, M., and Samadi, S. (2012b). Large-scale species delimitation method for hyperdiverse groups. Molecular Ecology 21, 2671–2691.
Large-scale species delimitation method for hyperdiverse groups.Crossref | GoogleScholarGoogle Scholar |

R Development Core Team (2015). ‘R: a language and environment for statistical computing. R Foundation for Statistical Computing.’ Available at http://www.R-project [Verified November 2015]

Righi, G. (1968). Sobre alguns Oligochaeta do Brasil. Revista Brasileira de Biologia 28, 369–382.

Righi, G., and Kanner, E. (1979). Marine Oligochaeta (Tubifidae and Enchytraeidae) from the Caribbean Sea. Studies on the Fauna of Curaçao and other Caribbean Islands 58, 44–68.

Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D., Darling, A., Hohna, S., Larget, B., Liu, L., Suchard, M. A., and Huelsenbeck, J. P. (2012). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Software for Systematics and Evolution 61, 539–542.
MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space.Crossref | GoogleScholarGoogle Scholar |

Rota, E., and Erséus, C. (1996). Six new species of Grania (Oligochaeta, Enchytraeidae) from the Ross Sea, Antarctica. Antarctic Science 8, 169–183.
Six new species of Grania (Oligochaeta, Enchytraeidae) from the Ross Sea, Antarctica.Crossref | GoogleScholarGoogle Scholar |

Rota, E., and Erséus, C. (1997). A re-examination of Grania monochaeta (Michaelsen) (Oligochaeta: Enchytraeidae), with descriptions of two new species from subantarctic South Georgia. Journal of Natural History 31, 27–42.
A re-examination of Grania monochaeta (Michaelsen) (Oligochaeta: Enchytraeidae), with descriptions of two new species from subantarctic South Georgia.Crossref | GoogleScholarGoogle Scholar |

Rota, E., and Erséus, C. (2003). New records of Grania (Clitellata, Enchytraeidae) in the Northeast Atlantic (from Tromsø to the Canary Islands), with descriptions of seven new species. Sarsia 88, 210–243.
New records of Grania (Clitellata, Enchytraeidae) in the Northeast Atlantic (from Tromsø to the Canary Islands), with descriptions of seven new species.Crossref | GoogleScholarGoogle Scholar |

Rubinoff, D., Cameron, S., and Will, K. (2006). A genomic perspective on the shortcomings of mitochondrial DNA for ‘barcoding’ identification. Journal of Heredity 97, 581–594.
A genomic perspective on the shortcomings of mitochondrial DNA for ‘barcoding’ identification.Crossref | GoogleScholarGoogle Scholar |

Sandrini-Neto, L., and Lana, P. C. (2014). Does mollusc shell debris determine patterns of macrofaunal recolonisation on a tidal flat? Experimental evidence from reciprocal transplantations. Journal of Experimental Marine Biology and Ecology 452, 9–21.
Does mollusc shell debris determine patterns of macrofaunal recolonisation on a tidal flat? Experimental evidence from reciprocal transplantations.Crossref | GoogleScholarGoogle Scholar |

Schindel, D. E., and Miller, S. E. (2005). DNA barcoding a useful tool for taxonomists. Nature 435, 17.
DNA barcoding a useful tool for taxonomists.Crossref | GoogleScholarGoogle Scholar |

Schwarz, G. (1978). Estimating the dimension of the model. Annals of Statistics 6, 461–464.
Estimating the dimension of the model.Crossref | GoogleScholarGoogle Scholar |

Siddall, M. E., Apakupakul, K., Burreson, E. M., Coates, K. A., Erséus, C., Källersjö, M., Gelder, S. R., and Trapido-Rosenthal, H. (2001). Validating Livanow’s hypothesis: molecular data agree that leeches, branchiobdellidans and Acanthobdella peledina are a monophyletic group of oligochaetes. Molecular Phylogenetics and Evolution 21, 346–351.
Validating Livanow’s hypothesis: molecular data agree that leeches, branchiobdellidans and Acanthobdella peledina are a monophyletic group of oligochaetes.Crossref | GoogleScholarGoogle Scholar |

Smith, M. A., and Fisher, B. L. (2009). Invasions, DNA barcodes, and rapid biodiversity assessment using ants of Mauritius. Frontiers in Zoology 6, 31.
Invasions, DNA barcodes, and rapid biodiversity assessment using ants of Mauritius.Crossref | GoogleScholarGoogle Scholar |

Southern, R. (1913). Oligochaeta. Proceedings of the Royal Irish Academy 31, 1–14.

Souza, F. M., Brauko, K. M., Lana, P. C., Muniz, P., and Camargo, M. G. (2013). The effect of urban sewage on benthic macrofauna: a multiple spatial scale approach. Marine Pollution Bulletin 67, 234–240.
The effect of urban sewage on benthic macrofauna: a multiple spatial scale approach.Crossref | GoogleScholarGoogle Scholar |

Staden, R., Judge, D. P., and Bonfield, J. K. (2003). Analysing sequences using the Staden package and EMBOSS. In ‘Introduction to Bioinformatics: a Theoretical and Practical Approach’. (Eds S. A. Krawetz and D. D. Womble.) pp. 393–410. (Human Press: Totawa, NJ.)

Sundberg, P., Kvist, S., and Strand, M. (2016). Evaluating the utility of single-locus DNA barcoding for the identification of ribbon worms (phylum Nemertea). PLoS One 11, .
Evaluating the utility of single-locus DNA barcoding for the identification of ribbon worms (phylum Nemertea).Crossref | GoogleScholarGoogle Scholar |

Tamura, K., Stecher, G., Peterson, D., Filipski, A., and Kumar, S. (2013). MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution 30, 2725–2729.
MEGA6: molecular evolutionary genetics analysis version 6.0.Crossref | GoogleScholarGoogle Scholar |

Taylor, H. R., and Harris, W. E. (2012). An emergent science on the brink of irrelevance: a review of the past 8 years of DNA barcoding. Molecular Ecology Resources 12, 377–388.
An emergent science on the brink of irrelevance: a review of the past 8 years of DNA barcoding.Crossref | GoogleScholarGoogle Scholar |

Templeton, A. R. (1989). The meaning of species and speciation: a genetic perspective. In ‘Speciation and its Consequences’. (Eds D. Otte and J. A. Endler.) pp. 3–27. (Sinauer Associates: Sunderland, MA.)

Vivien, R., Wyler, S., Lafont, M., and Pawlowski, J. (2015). Molecular barcoding of aquatic oligochaetes: implications for biomonitoring. PLoS One 10, e0125485.
Molecular barcoding of aquatic oligochaetes: implications for biomonitoring.Crossref | GoogleScholarGoogle Scholar |

Wilgenbusch, J. C., Warren, D. L., and Swofford, D. L. (2004). AWTY: a system for graphical exploration of MCMC convergence in Bayesian phylogenetic inference. Available at: http://ceb.csit.fsu.edu/awty [Verified November 2015].

Will, K. W., and Rubinoff, D. (2004). Myth of the molecule: DNA barcodes for species cannot replace morphology for identification and classification. Cladistics 20, 47–55.
Myth of the molecule: DNA barcodes for species cannot replace morphology for identification and classification.Crossref | GoogleScholarGoogle Scholar |

Zhou, H., Fend, S. V., Gustafson, D. L., De Wit, P., and Erséus, C. (2010). Molecular phylogeny of Nearctic species of Rhynchelmis (Annelida). Zoologica Scripta 39, 378–393.
Molecular phylogeny of Nearctic species of Rhynchelmis (Annelida).Crossref | GoogleScholarGoogle Scholar |