Register      Login
Invertebrate Systematics Invertebrate Systematics Society
Systematics, phylogeny and biogeography
RESEARCH ARTICLE

Body doubles: an integrative taxonomic approach reveals new sibling species of land planarians

Silvana Vargas do Amaral A B , Giovana Gamino Ribeiro C , Victor Hugo Valiati B C and Ana Maria Leal-Zanchet A B D
+ Author Affiliations
- Author Affiliations

A Instituto de Pesquisas de Planárias, Universidade do Vale do Rio dos Sinos – UNISINOS, São Leopoldo, Brazil.

B Programa de Pós-Graduação em Biologia, Universidade do Vale do Rio dos Sinos – UNISINOS, São Leopoldo, Brazil.

C Laboratório de Biologia Molecular, Universidade do Vale do Rio dos Sinos – UNISINOS, São Leopoldo, Brazil.

D Corresponding author. Email: zanchet@unisinos.br

Invertebrate Systematics 32(3) 533-550 https://doi.org/10.1071/IS17046
Submitted: 26 April 2017  Accepted: 13 September 2017   Published: 4 May 2018

Abstract

Records of cryptic species have continued to emerge in the scientific literature, often revealed by the use of molecular phylogenetic analyses in an integrative taxonomic approach. This study addresses a group of four striped flatworms from the genus Pasipha Ogren & Kawakatsu, showing a pale median stripe on a dark dorsal surface. Based on morphological and molecular analyses from the cytochrome c oxidase subunit I gene (COI), we establish that we are dealing with sibling species that are closely related to P. brevilineata Leal-Zanchet, Rossi & Alvarenga, 2012, a recently described species with a similar colour pattern. Thus, we describe three of the studied flatworms as new species and propose one new unconfirmed candidate species based on molecular data. In addition, sequence analysis revealed 40 nucleotide autapomorphies supporting the species studied herein. Considering anatomical and histological features, the three new species are differentiated from their congeners mainly by details of the copulatory apparatus, such as the occurrence of an epithelium of pseudostratified appearance lining the female atrium and the shape and position of the proximal portion of the prostatic vesicle.

Additional keywords: DNA barcoding, cryptic species, Geoplaninae, integrative taxonomy, land flatworms, phylogeny.


References

Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control 19, 716–723.
A new look at the statistical model identification.Crossref | GoogleScholarGoogle Scholar |

Álvarez-Presas, M., Carbayo, F., Rozas, J., and Riutort, M. (2011). Land planarians (Platyhelminthes) as a model organism for fine scale phylogeographic studies: understanding patterns of biodiversity in the Brazilian Atlantic Forest hotspot. Journal of Evolutionary Biology 24, 887–896.
Land planarians (Platyhelminthes) as a model organism for fine scale phylogeographic studies: understanding patterns of biodiversity in the Brazilian Atlantic Forest hotspot.Crossref | GoogleScholarGoogle Scholar |

Álvarez-Presas, M., Amaral, S. V., Carbayo, F., Leal-Zanchet, A. M., and Riutort, M. (2015). Focus on the details: morphological evidence supports new cryptic land flatworm (Platyhelminthes) species revealed with molecules. Organisms, Diversity & Evolution 15, 379–403.
Focus on the details: morphological evidence supports new cryptic land flatworm (Platyhelminthes) species revealed with molecules.Crossref | GoogleScholarGoogle Scholar |

Amaral, S. V., and Leal-Zanchet, A. M. (2016). Two new species of land flatworms Pasipha Ogren & Kawakatsu (Platyhelminthes: Continenticola) from areas of caducifolious deciduous forest in southern Brazil. Zootaxa 4171, 459–474.
Two new species of land flatworms Pasipha Ogren & Kawakatsu (Platyhelminthes: Continenticola) from areas of caducifolious deciduous forest in southern Brazil.Crossref | GoogleScholarGoogle Scholar |

Amaral, S. V., Ribeiro, G. G., Müller, M. J., Valiati, V. H., and Leal-Zanchet, A. (2018). Tracking the diversity of the flatworm genus Imbira (Platyhelminthes) in the Atlantic Forest. Organisms, Diversity & Evolution , .
Tracking the diversity of the flatworm genus Imbira (Platyhelminthes) in the Atlantic Forest.Crossref | GoogleScholarGoogle Scholar |

Bickford, D., Lohman, D. J., Sodhi, N. S., Ng1, P. K. L., Meier, R., Winker, K., Ingram, K. K., and Das, I. (2007). Cryptic species as a window on diversity and conservation. Trends in Ecology & Evolution 22, 148–155.
Cryptic species as a window on diversity and conservation.Crossref | GoogleScholarGoogle Scholar |

Bouckaert, R., Heled, J., Kühnert, D., Vaughan, T., Wu, C.-H., Xie, D., and Drummond, A. J. (2014). BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Computational Biology 10, e1003537.
BEAST 2: a software platform for Bayesian evolutionary analysis.Crossref | GoogleScholarGoogle Scholar |

Carbayo, F., Álvarez-Presas, M., Olivares, C. T., Marques, F. P. L., Froehlich, E. M., and Riutort, M. (2013). Molecular phylogeny of Geoplaninae (Platyhelminthes) challenges current classification: proposal of taxonomic actions. Zoologica Scripta 42, 508–528.
Molecular phylogeny of Geoplaninae (Platyhelminthes) challenges current classification: proposal of taxonomic actions.Crossref | GoogleScholarGoogle Scholar |

Carbayo, F., Álvarez-Presas, M., Jones, H. D., and Riutort, M. (2016). The true identity of Obama (Platyhelminthes: Geoplanidae) flatworm spreading across Europe. Zoological Journal of the Linnean Society 177, 5–28.
The true identity of Obama (Platyhelminthes: Geoplanidae) flatworm spreading across Europe.Crossref | GoogleScholarGoogle Scholar |

Darriba, D., Taboada, G. L., Doallo, R., and Posada, D. (2012). jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9, 772.
jModelTest 2: more models, new heuristics and parallel computing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFWmsbfP&md5=8455a3ff18c54ee00d48a1421d4dba7aCAS |

Felsenstein, J. (1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.
Confidence limits on phylogenies: an approach using the bootstrap.Crossref | GoogleScholarGoogle Scholar |

Frankham, R., Ballou, J. D., Dudash, M. R., Eldridge, M. D. B., Fenster, C. B., Lacy, R. C., Mendelson, J. R., Porton, I. J., Ralls, K., and Ryder, O. A. (2012). Implications of different concepts for conserving biodiversity. Biological Conservation 153, 25–31.
Implications of different concepts for conserving biodiversity.Crossref | GoogleScholarGoogle Scholar |

Froehlich, E. M. (1955). Sobre espécies brasileiras do gênero Geoplana. Boletim da Faculdade de Filosofia, Ciências e Letras da Universidade de São Paulo. Série Zoologia 19, 289–369.

Fujisawa, T., and Barraclough, T. G. (2013). Delimiting species using single-locus data and the Generalized Mixed Yule Coalescent approach: a revised method and evaluation on simulated data sets. Systematic Biology 62, 707–724.
Delimiting species using single-locus data and the Generalized Mixed Yule Coalescent approach: a revised method and evaluation on simulated data sets.Crossref | GoogleScholarGoogle Scholar |

Guindon, M., and Gascuel, O. (2010). SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Molecular Biology and Evolution 27, 221–224.
SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building.Crossref | GoogleScholarGoogle Scholar |

Hall, T. A. (1999). BioEdit: a user-friendly biological sequences alignment editor and analysis program for Windows 95/98 NT. Nucleid Acids Symposium Series 41, 95–98.
| 1:CAS:528:DC%2BD3cXhtVyjs7Y%3D&md5=51032c35c9b55c2e0a0ae6daa653f17bCAS |

Hebert, P. D., Cywinska, A., Ball, S. L., and deWaard, J. R. (2003). Biological identifications through DNA barcodes. Proceedings of the Royal Society Biology Sciences 270, 1523.
Biological identifications through DNA barcodes.Crossref | GoogleScholarGoogle Scholar |

Kimura, M. (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16, 111–120.
A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXmtFSktg%3D%3D&md5=cdf76744b4b364eb254b209d02ea7b1aCAS |

Lang, A. S., Bocksberger, G., and Stech, M. (2015). Phylogeny and species delimitations in European Dicranum (Dicranaceae, Bryophyta) inferred from nuclear and plastid DNAq. Molecular Phylogenetics and Evolution 92, 217–225.
Phylogeny and species delimitations in European Dicranum (Dicranaceae, Bryophyta) inferred from nuclear and plastid DNAq.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtFemt7bE&md5=39ed469d4eb9750b5301ce01e9989baaCAS |

Lázaro, E. M., Sluys, R., Pala, M., Stocchino, G. A., Baguñà, J., and Riutort, M. (2009). Molecular barcoding and phylogeography of sexual and asexual freshwater planarians of the genus Dugesia in the Western Mediterranean (Platyhelminthes, Tricladida, Dugesiidae). Molecular Phylogenetics and Evolution 52, 835–845.
Molecular barcoding and phylogeography of sexual and asexual freshwater planarians of the genus Dugesia in the Western Mediterranean (Platyhelminthes, Tricladida, Dugesiidae).Crossref | GoogleScholarGoogle Scholar |

Leal-Zanchet, A. M., Rossi, I., Seitenfus, A. L. R., and Alvarenga, J. (2012). Two new species of land flatworms and comments on the genus Pasipha Ogren & Kawakatsu, 1990 (Platyhelminthes: Continenticola). Zootaxa 3583, 1–21.

Leliaert, F., Verbruggen, H., Wysor, B., and De Clerck, O. (2009). DNA taxonomy in morphologically plastic taxa: algorithmic species delimitation in the Boodlea complex (Chlorophyta: Cladophorales). Molecular Phylogenetics and Evolution 53, 122–133.
DNA taxonomy in morphologically plastic taxa: algorithmic species delimitation in the Boodlea complex (Chlorophyta: Cladophorales).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXptlyksL0%3D&md5=e305a6bb92b9ff0da51282a920aec258CAS |

Marcus, E. (1951). Turbellaria brasileiros (9). Boletim da Faculdade de Filosofia, Ciências e Letras da Universidade de São Paulo. Série Zoologia 16, 1–217.

Monaghan, M. T., Wild, R., Elliot, M., Fujisawa, T., Balke, M., Inward, D. J. G., and Vogler, A. P. (2009). Accelerated species Inventory on Madagascar using coalescent-based models of species Delineation. Systematic Biology 58, 298–311.
Accelerated species Inventory on Madagascar using coalescent-based models of species Delineation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1Wqu7%2FO&md5=9df7e3be72f42089712f2470b98012faCAS |

Negrete, L., and Brusa, F. (2016). Land flatworms of the genus Pasipha (Platyhelminthes, Geoplanidae) in Argentina, with description of three new species. Zootaxa 4137, 187–210.
Land flatworms of the genus Pasipha (Platyhelminthes, Geoplanidae) in Argentina, with description of three new species.Crossref | GoogleScholarGoogle Scholar |

Puillandre, N., Koua, D., Favreau, P., Oliveira, B. M., and Stöcklin, R. (2012). Molecular phylogeny, classification and evolution of conopeptides. Journal of Molecular Evolution 74, 297–309.
Molecular phylogeny, classification and evolution of conopeptides.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFWnur7L&md5=8557174cbd8a3d18b3f254c7e2f4633cCAS |

Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M. A., and Huelsenbeck, J. P. (2012). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61, 539–542.
MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space.Crossref | GoogleScholarGoogle Scholar |

Rossi, I., Amaral, S. V., Ribeiro, G. G., Cauduro, G. P., Fick, I., Valiati, V. H., and Leal-Zanchet, A. M. (2015). Two new Geoplaninae species (Platyhelminthes: Continenticola) from Southern Brazil based on an integrative taxonomic approach. Journal of Natural History 50, 1–29.
Two new Geoplaninae species (Platyhelminthes: Continenticola) from Southern Brazil based on an integrative taxonomic approach.Crossref | GoogleScholarGoogle Scholar |

Saez, A. G., and Lozano, E. (2005). Body doubles. Nature 433, 111.
Body doubles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjt1Srug%3D%3D&md5=c51ddc1dd2cd96c2631afc594ea54ad9CAS |

Seitenfus, A. L. R., and Leal-Zanchet, A. M. (2004). Uma introdução à morfologia e taxonomia de planárias terrestres (Platyhelminthes, Tricladida, Terricola). Acta Biologica Leopoldensia 26, 187–202.

Sluys, R., Mateos, E., Riutort, M., and Álvarez-Presas, M. (2016). Towards a comprehensive, integrative analysis of the diversity of European microplaninid land flatworms (Platyhelminthes, Tricladida, Microplaninae), with the description of two peculiar new species. Systematics and Biodiversity 14, 9–31.
Towards a comprehensive, integrative analysis of the diversity of European microplaninid land flatworms (Platyhelminthes, Tricladida, Microplaninae), with the description of two peculiar new species.Crossref | GoogleScholarGoogle Scholar |

Stamatakis, A. (2006). RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688–2690.
RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFKlsbfI&md5=bf1c47d07b064fc1a91a82830ae5d513CAS |

Swofford, D. L. (2002). ‘PAUP*. Phylogenetic Analysis Using Parsimony (*and other methods). Version 4.0b10.’ (Sinauer Associates: Sunderland, MA, USA.)

Talavera, G., Dinca, V., and Vila, R. (2013). Factors affecting species delimitations with the GMYC model: insights from a butterfly survey. Methods in Ecology and Evolution 4, 1101–1110.
Factors affecting species delimitations with the GMYC model: insights from a butterfly survey.Crossref | GoogleScholarGoogle Scholar |

Tamura, K., Stecher, G., Peterson, D., Filipski, A., and Kumar, S. (2013). MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Molecular Biology and Evolution 30, 2725–2729.
MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVKhurzP&md5=213a455e206e1c198319858e32755a17CAS |

Vieites, D. R., Wollenberg, K. C., Andreone, F., Kohler, J., Glaw, F., and Vences, M. (2009). Vast underestimation of Madagascar’s biodiversity evidenced by an integrative amphibian inventory. Proceedings of the National Academy of Sciences of the United States of America 106, 8267–8272.
Vast underestimation of Madagascar’s biodiversity evidenced by an integrative amphibian inventory.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmvVWmt74%3D&md5=e3df9beeb0e0c1007c2e34ebd0c7584aCAS |

Winsor, L. (1998). Aspects of taxonomy and functional histology in terrestrial flatworms (Tricladida: Terricola). Pedobiologia 42, 412–432.

Zhang, J. J., Kapli, P., Pavlidis, P., and Stamatakis, A. (2013). A general species delimitation method with applications to phylogenetic placements. Bioinformatics 29, 2869–2876.
A general species delimitation method with applications to phylogenetic placements.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslWnsbzL&md5=22e5335edf32329a52137c1f7040bdd8CAS |