Register      Login
Invertebrate Systematics Invertebrate Systematics Society
Systematics, phylogeny and biogeography
RESEARCH ARTICLE

Groundwater oligochaetes show complex genetic patterns of distribution in the Pilbara region of Western Australia

Louise Brown A E , Terrie Finston A , Garth Humphreys B , Stefan Eberhard C and Adrian Pinder D
+ Author Affiliations
- Author Affiliations

A School of Animal Biology (M092), University of Western Australia, Crawley, WA 6009, Australia.

B Biota Environmental Sciences Pty Ltd, 1/228 Carr Place, Leederville, WA 6007, Australia.

C Subterranean Ecology Pty Ltd, 8/37 Cedric Street, Stirling, WA 6021, Australia.

D Department of Parks and Wildlife, Locked Bag 104, Bentley Delivery Centre, WA 6983, Australia.

E Corresponding author. Email: lbrown83@gmail.com

Invertebrate Systematics 29(5) 405-420 https://doi.org/10.1071/IS14037
Submitted: 18 July 2014  Accepted: 9 July 2015   Published: 30 October 2015

Abstract

Patterns of genetic diversity in the groundwater fauna of Australia have largely focused on obligate stygobites of relatively large size, namely, crustaceans. Oligochaete worms, with their smaller size and broader ecological niches, provide a contrasting model in which to examine such patterns. Genetic diversity in subterranean oligochaetes in the Pilbara region of Western Australia were examined using one nuclear (18S) and two mitochondrial (COI, 12S) regions. The observed variation was assessed at three levels of hydrology – river basin, creek catchment, and individual bore or site – to document geographic patterns. Most species appeared to be restricted to an individual catchment; however, five species, representing three families, were widespread, with some haplotypes being shared between bores, catchments and even basins. General patterns suggest that while hydrology plays a role in the distribution of oligochaete species, it does not always confine them to catchments, in contrast to patterns observed in groundwater isopods and amphipods in the region. We suggest that intrinsic characteristics of oligochaetes, such as body size, shape, reproductive strategy and ecological requirements, may have allowed them greater dispersal within the subterranean biome of the Pilbara. In particular, oligochaetes may occupy subterranean and surface waters, increasing their opportunities for dispersal.

Additional keywords: dispersal, phylogeography, species distribution, stygofauna, subterranean.


References

Avise, J. (1994). ‘Molecular Markers, Natural History and Evolution.’ (Chapman & Hall: New York, NY.)

Barnes, R. D. (1980). ‘Invertebrate Zoology.’ (Saunders College: Philadelphia, PA.) 1089 pp.

Barnett, J. C., and Commander, D. P. (1985). ‘Hydrogeology of the western Fortescue Valley, Pilbara region, Western Australia.’ (Western Australia Geological Survey: Perth.)

Brusca, G., and Brusca, R. (2003). ‘Invertebrates.’ (Sinauer Associates: Sunderland, MA.)

Christensen, B. (1984). Asexual propagation and reproductive strategies in aquatic Oligochaeta. Hydrobiologia 115, 91–95.
Asexual propagation and reproductive strategies in aquatic Oligochaeta.Crossref | GoogleScholarGoogle Scholar |

Cooper, S. J. B., Bradbury, J. H., Saint, K. M., Leys, R., Austin, A. D., and Humphreys, W. F. (2007). Subterranean archipelago in the Australian arid zone: mitochondrial DNA phylogeography of amphipods from central Western Australia. Molecular Ecology 16, 1533–1544.
Subterranean archipelago in the Australian arid zone: mitochondrial DNA phylogeography of amphipods from central Western Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlt1Gmu7w%3D&md5=c6621aaa61c0722738cf3835b1f0f52dCAS |

Cooper, S. J. B., Saint, K. M., Taiti, S., Austin, A. D., and Humphreys, W. F. (2008). Subterranean archipelago: mitochondrial DNA phylogeography of stygobitic isopods (Oniscidea: Haloniscus) from the Yilgarn region of Western Australia. Invertebrate Systematics 22, 195–203.
Subterranean archipelago: mitochondrial DNA phylogeography of stygobitic isopods (Oniscidea: Haloniscus) from the Yilgarn region of Western Australia.Crossref | GoogleScholarGoogle Scholar |

Cottontail, V. M., Kalko, E. K. V., Cottontail, I., Wellinghausen, N., and Tschapka, M. (2014). High local diversity of Trypanosoma in a common bat species, and implications for the biogeography and taxonomy of the T. cruzi clade. PLoS One 9, e108603.
High local diversity of Trypanosoma in a common bat species, and implications for the biogeography and taxonomy of the T. cruzi clade.Crossref | GoogleScholarGoogle Scholar | 25268381PubMed |

Creuze Des Châtelliers, M., Juget, J., Lafont, M., and Martin, P. (2009). Subterranean aquatic oligochaeta. Freshwater Biology 54, 678–690.
Subterranean aquatic oligochaeta.Crossref | GoogleScholarGoogle Scholar |

Culver, D. C., Kane, T., and Fong, D. (1995). ‘Adaptation and Natural Selection in Caves.’ (Harvard University Press: Cambridge, MA.)

Eberhard, S. M., Halse, S. A., and Humphreys, W. F. (2006). Stygofauna in the Pilbara region, north-west Western Australia: a systematic review. Journal of the Royal Society of Western Australia 88, 167–176.

Finston, T. L., and Johnson, M. S. (2004). Geographic patterns of genetic diversity in subterranean amphipods of the Pilbara, Western Australia. Marine and Freshwater Research 55, 619–628.
Geographic patterns of genetic diversity in subterranean amphipods of the Pilbara, Western Australia.Crossref | GoogleScholarGoogle Scholar |

Finston, T. L., Johnson, M. S., Humphreys, W. F., Eberhard, S. M., and Halse, S. A. (2007). Cryptic speciation in two widespread subterranean amphipod genera reflects historical drainage patterns in an ancient landscape. Molecular Ecology 16, 355–365.
Cryptic speciation in two widespread subterranean amphipod genera reflects historical drainage patterns in an ancient landscape.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXks1yqsrw%3D&md5=d53a343176c605ba2497bf9ae8de7ab8CAS | 17217350PubMed |

Finston, T. L., Francis, C. J., and Johnson, M. S. (2009). Biogeography of the stygobitic isopod Pygolabis (Malacostraca: Tainisopidae) in the Pilbara, Western Australia: evidence for multiple colonisations of the groundwater. Molecular Phylogenetics and Evolution 52, 448–460.
Biogeography of the stygobitic isopod Pygolabis (Malacostraca: Tainisopidae) in the Pilbara, Western Australia: evidence for multiple colonisations of the groundwater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXms12hsbs%3D&md5=2e87978bff2cca500ea0427b5115b1e1CAS | 19303454PubMed |

Folmer, O., Black, M., Hoen, W., Lutz, R., and Vrijenhoek, R. (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metozoan invertebrates. Molecular Marine Biology and Biotechnology 3, 294–299.
| 1:CAS:528:DyaK2MXjt12gtLs%3D&md5=c84f72a2d796a7fee91c4e2e01175599CAS | 7881515PubMed |

Fujisawa, T., and Barraclough, T. G. (2013). Delimiting species using single-locus data and the generalized mixed yule coalescent (GMYC) approach: a revised method and evaluation on simulated datasets. Systematic Biology 62, 707–724.
Delimiting species using single-locus data and the generalized mixed yule coalescent (GMYC) approach: a revised method and evaluation on simulated datasets.Crossref | GoogleScholarGoogle Scholar | 23681854PubMed |

Guzik, M. T., Abrams, K. M., Cooper, S. J. B., Humphreys, W. F., Cho, J. L., and Austin, A. D. (2008). Phylogeography of the ancient Parabathynellidae (Crustacea: Bathynellacea) from the Yilgarn region of Western Australia. Invertebrate Systematics 22, 205–216.
Phylogeography of the ancient Parabathynellidae (Crustacea: Bathynellacea) from the Yilgarn region of Western Australia.Crossref | GoogleScholarGoogle Scholar |

Halse, S. A., Scanlon, M. D., Cocking, J. S., Barron, H. J., Richardson, J. B., and Eberhard, S. M. (2014). Pilbara stygofauna: deep groundwater of an arid landscape contains globally significant radiation of biodiversity. Records of the Western Australian Museum , 443–483.
Pilbara stygofauna: deep groundwater of an arid landscape contains globally significant radiation of biodiversity.Crossref | GoogleScholarGoogle Scholar |

Hedin, M. (2015). High-stakes species delimitation in eyeless cave spiders (Cicurina, Dictynidae, Araneae) from central Texas. Molecular Ecology 24, 346–361.
High-stakes species delimitation in eyeless cave spiders (Cicurina, Dictynidae, Araneae) from central Texas.Crossref | GoogleScholarGoogle Scholar | 25492722PubMed |

Hillis, D., and Dixon, M. (1991). Ribosomal DNA: molecular evolution and phylogenetic inference. The Quarterly Review of Biology 66, 411–453.
Ribosomal DNA: molecular evolution and phylogenetic inference.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK387ltVKmsQ%3D%3D&md5=75433c603b2f5bf92799d6de8825b310CAS | 1784710PubMed |

Humphreys, W. F. (1999). Relict stygofaunas living in sea salt, karst and calcrete habitats in arid northwestern Australia contain may ancient lineages. In: ‘The Other 99%. The Conservation and Biodiversity of Invertebrates’. (Eds W. Ponder and D. Lunney.) pp. 219–227. (Royal Zoological Society of New South Wales: NSW, Australia.)

Johnson, S. L., and Wright, A. H. (2001). Central Pilbara groundwater study. In: ‘Hydrological Records Series, Report HG 8’. (Waters and Rivers Commission: Perth, WA.)

Kambhampati, S., and Smith, P. (1995). PCR primers for the amplification of four insect mitochondrial gene fragments. Insect Molecular Biology 4, 233–236.
PCR primers for the amplification of four insect mitochondrial gene fragments.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK28vitlWmuw%3D%3D&md5=44aabe03b1a0193e31ed06a3635f8315CAS | 8825760PubMed |

Karanovic, T. (2004). The genus Metacyclops Kiefer (Crustacea: Copepoda: Cyclopoida) in Australia, with description of two new species. Records of the Western Australian Museum 22, 193–212.

Kumar, S., Tamura, K., and Nei, M. (2004). MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Briefings in Bioinformatics 5, 150–163.
MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXntFGqu7s%3D&md5=fcf85db3397316a6d3597bba5ac4d8baCAS | 15260895PubMed |

Leys, R., Watts, C. H. S., and Cooper, S. J. B. (2003). Evolution of subterranean diving beetles (Coleoptera, Dytiscidae, Hydroporini, Bidessini) in the arid zone of Australia. Evolution 57, 2819–2834.
| 14761060PubMed |

McKenzie, N. L., van Leeuwen, S., and Pinder, A. M. (2009). Introduction to the Pilbara biodiversity survey, 2002–2007. Records of the Western Australian Museum , 3–89.
Introduction to the Pilbara biodiversity survey, 2002–2007.Crossref | GoogleScholarGoogle Scholar |

Nei, M. (1987). ‘Molecular Evolutionary Genetics.’ (Columbia University Press: New York, NY.)

Nei, M., and Tajima, F. (1981). DNA polymorphism detectable by restriction endonucleases. Genetics 97, 145–163.
| 1:CAS:528:DyaL3MXksFKmu7c%3D&md5=5fed6b54f368cc12d320aef777632020CAS | 6266912PubMed |

Nicholas, K., Nicholas, H., and Deerfield, D. (1997). GeneDoc: analysis and visualization of genetic variation. Embnew News 4, 14.

Pinder, A. M. (2001). Notes on the diversity and distribution of Australian Naididae and Phreodrilidae (Oligochaeta: Annelida). Hydrobiologia 463, 49–64.
Notes on the diversity and distribution of Australian Naididae and Phreodrilidae (Oligochaeta: Annelida).Crossref | GoogleScholarGoogle Scholar |

Pinder, A. M. (2003). New species and records of Phreodrilidae (Annelida: Clitellata) from Western Australia. Records of the Western Australian Museum 21, 307–313.

Pinder, A. M. (2008). Phreodrilidae (Clitellata: Annelida) in north-western Australia with descriptions of two new species. Records of the Western Australian Museum 24, 459–468.

Pinder, A. M., Halse, S. A., Shiel, R. J., and McRae, J. M. (2010). An arid zone awash with diversity: patterns in the distribution of aquatic invertebrates in the Pilbara region of Western Australia. Records of the Western Australian Museum , 205–246.
An arid zone awash with diversity: patterns in the distribution of aquatic invertebrates in the Pilbara region of Western Australia.Crossref | GoogleScholarGoogle Scholar |

Pons, J., Barraclough, T. G., Gomez-Zurita, J., Cardoso, A., Duran, D. P., Hazell, S., Kamoun, S., Sumlin, W. D., and Vogler, A. P. (2006). Sequence based species delimitation for DNA taxonomy of undescribed insects. Systematic Biology 55, 595–609.
Sequence based species delimitation for DNA taxonomy of undescribed insects.Crossref | GoogleScholarGoogle Scholar | 16967577PubMed |

Posada, D., and Crandall, K. A. (1998). MODELTEST: testing the model of DNA substitution. Bioinformatics 14, 817–818.
MODELTEST: testing the model of DNA substitution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXktlCltw%3D%3D&md5=718ab7cf5a23f1b7a2bd92c5ee779bcaCAS | 9918953PubMed |

Ronquist, F., and Huelsenbeck, J. (2003). MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574.
MRBAYES 3: Bayesian phylogenetic inference under mixed models.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXntlKms7k%3D&md5=6c22440a111ffd7c39b671a54462b45bCAS | 12912839PubMed |

Semeniuk, V. (1996). Coastal forms and Quaternary processes along the arid Pilbara coast of northwestern Australia. Palaeogeography, Palaeoclimatology, Palaeoecology 123, 49–84.
Coastal forms and Quaternary processes along the arid Pilbara coast of northwestern Australia.Crossref | GoogleScholarGoogle Scholar |

Simon, C., Frati, A., Beckenbach, A., Crespi, B., Liu, H., and Flook, P. (1994). Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Annals of the Entomological Society of America 87, 651–701.
Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXis1Wiu7g%3D&md5=2841a8ddd2ecccad310722bcd729b341CAS |

Swofford, D. L. (2001). ‘PAUP*, Phylogenetic Analysis Using Parsimony (*and Other Methods), Version 4.0b10.’ (Sinauer Associates, Sunderland, MA.)

Tang, D., Barron, H., and Goater, S. (2008). A new genus as species of Ridgewayiidae (Copepoda: Calanoida) from subterranean waters of northwestern Australia. Journal of Crustacean Biology 28, 551–563.
A new genus as species of Ridgewayiidae (Copepoda: Calanoida) from subterranean waters of northwestern Australia.Crossref | GoogleScholarGoogle Scholar |

Thurgate, M. E., Gough, J. S., Spate, A., and Eberhard, S. M. (2001a). Subterranean biodiversity in New South Wales: from rags to riches. Records of the Western Australian Museum 64, 37–47.

Thurgate, M. E., Gough, J. S., Clarke, A. K., Serov, P., and Spate, A. (2001b). Stygofauna diversity and distribution in eastern Australian cave and karst areas. Records of the Western Australian Museum 64, 49–62.

Vandel, A. (1965). ‘Biospeleology: the Biology of Cavernicolous Animals.’ (Pergamon Press: London, UK.)

Zhang, J., Kapli, P., Pavlidis, P., and Stamatakis, A. (2013). A general species delimitation method with applications to phylogenetic placements. Bioinformatics 29, 2869–2876.
A general species delimitation method with applications to phylogenetic placements.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslWnsbzL&md5=237594892ba48b5fbb2ebd0770baaccbCAS | 23990417PubMed |