Supertrees and the Tree of Life: generating a metaphylogeny for a diverse invertebrate family (Insecta : Diptera : Therevidae) using constraint trees and the parsimony ratchet to overcome low taxon overlap
Christine L. Lambkin A B N , John W. H. Trueman C , David K. Yeates A , Kevin C. Holston D E , Donald W. Webb F , Martin Hauser D G , Mark A. Metz D H , Hilary N. Hill I J , Jeffrey H. Skevington K , Longlong Yang I L , Michael E. Irwin D M and Brian M. Wiegmann IA CSIRO Entomology, PO Box 1700, Canberra, ACT 2601, Australia.
B Queensland Museum, PO Box 3300, South Bank, Brisbane, Qld 4101, Australia.
C School of Botany and Zoology, Australian National University, Canberra, ACT 0200, Australia.
D Department of Natural Resources & Environmental Sciences, University of Illinois, 901 West Illinois Street, Urbana, IL 61801, USA.
E Research Division, Entomology, Swedish Museum of Natural History, PO Box 50007, SE-104 05 Stockholm, Sweden.
F Illinois Natural History Survey, Institute of Natural Resource Sustainability, University of Illinois, 1816 South Oak Street, MC-652, Champaign, IL 61820, USA.
G Department of Food and Agriculture, Plant Pest Diagnostics Branch, 3294 Meadowview Road, Sacramento, CA 95832-1448, USA.
H United States National Museum of Natural History, 10th and Constitution Avenue NW, Washington, DC 20013, USA.
I Department of Entomology, North Carolina State University, Raleigh, NC 27695-7613, USA.
J 16 N. Belle Grove Road, Catonsville, MD 21228, USA.
K Canadian National Collection of Insects, Agriculture and Agri-Food Canada, 960 Carling Avenue, K.W. Neatby Building Ottawa, ON K1A 0C6, Canada.
L The Hamner Institute for Health Sciences, 6 Davis Drive, PO Box 12137, Research Triangle Park, NC 27709-2137, USA.
M 15634 E. Wandering Creek Place,Vail, AZ 85641, USA.
N Corresponding author. Email: christine.lambkin@qm.qld.gov.au
Invertebrate Systematics 23(2) 171-191 https://doi.org/10.1071/IS08035
Submitted: 2 September 2008 Accepted: 9 April 2009 Published: 4 June 2009
Abstract
The dipteran family Therevidae (stiletto flies) is cosmopolitan and has been the focus of many taxonomic and phylogenetic studies over the last 25 years. Despite this work, questions remain concerning the relationships between subfamilies, genera and generic groups and membership of those groups. We use the supertree method to produce an inclusive phylogeny for the family Therevidae from 24 phylogenetic studies using matrix representation with parsimony (MRP) analysis. The supertree method, one of the most common approaches to calculating globally inclusive phylogenies from smaller more exclusive analyses, produced the therevid metaphylogeny despite only 34% of the terminal taxa being found in more than one source tree. We describe a method for handling low taxon overlap in supertree analyses, in combination with the parsimony ratchet and constraint tree techniques. The supertree presented here is an overarching phylogenetic hypothesis of the Therevidae, incorporating extensive sampling of major lineages and summarising past phylogenetic work on the family. The inclusive metaphylogeny for 362 therevid taxa robustly retrieves the subfamilies Agapophytinae, Phycinae, Therevinae and Xestomyzinae, and the tribes Cyclotelini and Therevini. The Phycinae and Xestomyzinae form a clade, sister to the remaining Therevidae. The Australasian and South American Taenogera Kröber genus-group is monophyletic and sister to a clade of Therevinae and the Australian endemic Agapophytinae. The Therevinae consists of the Anabarhynchus Macquart genus-group of Australian, South American, New Caledonian and New Zealand taxa as sister to the non-Australasian ‘higher Therevinae’, which contains the tribes Cyclotelini and Therevini. The Therevini includes the Hoplosathe Lyneborg & Zaitzev, Litolinga Irwin & Lyneborg, Baryphora Loew, Pandivirilia Irwin & Lyneborg and Thereva Latreille generic-groups. MRP supertree methods can be used to produce inclusive metaphylogenies in situations where source trees have poor data overlap and low taxon overlap, and are therefore valuable in species-rich groups such as arthropods. These methods may be necessary for constructing the ‘Tree of Life’, representing phylogenetic relationships among the millions of known species. However, our analyses show that in situations of source tree conflict, MRP supertree analyses present only the majority signal. We also show that conflict between source trees can be hidden in MRP supertrees, thus our results emphasise the need to evaluate the resulting clades with reference to the source trees.
Acknowledgements
We thank Olaf Bininda-Emonds (Carl von Ossietzky Universität, Oldenburg) for his assistance. We acknowledge the comments of Shaun Winterton (Queensland Department of Primary Industries and Fisheries, Brisbane) and Steve Gaimari (Californian Department of Forestry and Agriculture, Sacramento) on an early version of the manuscript. We thank two anonymous reviewers for useful and considered comments, Torsten Dikow (Field Museum of Natural History, Chicago) for suggesting TNT, and Claudia Arango (Queensland Museum, Brisbane) for guidance in use of the program. TNT was made available through sponsorship of the Willi Hennig Society. We are extremely grateful for permission to reproduce the excellent photographs taken by J. N. Dell, Georgia, USA; Peter Krogh, Kensington, MD; Nicole Lartigau, Tom Murray, Massachusetts, USA; Dr C. Riley Nelson, Brigham Young University, Utah, USA; Shaun Winterton, QDPIF, Australia; Cor Zonneveld, Netherlands; and the amazing digital illustration prepared by J. Marie Metz through funding from Therevid PEET and Schlinger Foundation. Support for this study was provided by CSIRO Entomology, the National Science Foundation’s Partnerships for Enhancing Expertise in Taxonomy project ‘Therevid PEET, Towards a World Monograph of the Therevidae (Insecta: Diptera) under award numbers NSF DEB 95-21925 and NSF DEB 99-77958’, the National Science Foundation’s Assembling the Tree of Life Project ‘Building the Dipteran Tree of Life: Cooperative Research in Phylogenetics and Bioinformatics of True Flies (Insecta: Diptera)’ award no. EF-0334948, the Schlinger Foundation, and the Queensland Museum. Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the National Science Foundation or the Schlinger Foundation.
Adams E. N.
(1972) Consensus techniques and the comparison of taxonomic trees. Systematic Zoology 21, 390–397.
| Crossref | GoogleScholarGoogle Scholar |
[Verified May 2009].
Grenyer R., Purvis A.
(2003) A composite species-level phylogeny of the ‘Insectivora’ (Mammalia: Order Lipotyphla Haeckel, 1866). Journal of the Zoological Society of London 260, 245–257.
| Crossref | GoogleScholarGoogle Scholar |
[Verified May 2009].
Springer M. S., de Jong W. W.
(2001) Which mammalian supertree to bark up? Science 291, 1709–1711.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
Stoner C. J.,
Bininda-Emonds O. R. P., Caro T.
(2003) The adaptive significance of coloration in lagomorphs. Biological Journal of the Linnean Society. Linnean Society of London 79, 309–328.
| Crossref | GoogleScholarGoogle Scholar |
Summers K.,
McKeon C. S., Heying H.
(2006) The evolution of parental care and egg size: a comparative analysis in frogs. Proceedings of the Royal Society B: Biological Sciences 273, 687–692.
| Crossref |
Thomas G. H.,
Wills M. A., Székely T.
(2004) A supertree approach to shorebird phylogeny. BMC Evolutionary Biology 4, 28.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
van der Linde K., Houle D.
(2008) A supertree analysis and literature review of the genus Drosophila and closely related genera (Diptera: Drosophilidae). Insect Systematics & Evolution 39, 241–267.
Webb D. W.
(2007) A new genus and new species of Nearctic Therevidae (Insecta: Diptera) from southern New Mexico. Zootaxa 1495, 41–46.
Webb D. W., Irwin M. E.
(1991) A revision of the Nearctic species of Dialineura Rondani and Pallicephala Irwin and Lyneborg (Diptera: Therevidae: Therevinae). Proceedings of the Entomological Society of Washington 93, 868–898.
Webb D. W., Irwin M. E.
(1995) The new world genus Chromolepida Cole (Diptera, Therevidae, Therevinae). Proceedings of the Entomological Society of Washington 97, 197–224.
Webb D. W., Irwin M. E.
(1999) Revision of Tabuda Walker and Tabudamima Irwin and Lyneborg, with the description of a new genus Incoxoverpa Webb and Irwin (Diptera: Therevidae: Therevinae). Annals of the Entomological Society of America 92, 644–674.
Webb D. W., Metz M. A.
(2003) The Nearctic species of Pandivirilia Irwin and Lyneborg (Diptera: Therevidae: Therevinae). Annals of the Entomological Society of America 96, 369–402.
| Crossref | GoogleScholarGoogle Scholar |
Webb D. W., Metz M. A.
(2006) A revision of the New World genera Brachylinga Irwin and Lyneborg and Lysilinga Irwin and Lyneborg (Diptera: Therevidae: Therevinae) with the description of a new genus, Elcaribe Webb. Zootaxa 1288, 1–241.
Webb D. W., Metz M. A.
(2008) A revision of the New World genus Penniverpa Irwin and Lyneborg (Diptera: Therevidae: Therevinae). Zootaxa 1720, 1–45.
Wiegmann B. M.,
Yeates D. K.,
Thorne J. L., Kishino H.
(2003) Time flies, a new molecular time-scale for brachyceran fly evolution without a clock. Systematic Biology 52, 745–756.
| PubMed |
Wiens J. J.
(2003) Missing data, incomplete taxa, and phylogenetic accuracy. Systematic Biology 52, 528–538.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Wiens J. J.
(2006) Missing data and the design of phylogenetic analyses. Journal of Biomedical Informatics 39, 34–42.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
Wiens J. J., Reeder T. W.
(1995) Combining data sets with different number of taxa for phylogenetic analysis. Systematic Biology 44, 548–558.
Wilkinson M.
(1995) Coping with abundant missing entries in phylogenetic inference using parsimony. Systematic Biology 44, 501–514.
Wilkinson M.,
Cotton J. A., Thorley J. L.
(2004) The information content of trees and their matrix representations. Systematic Biology 53, 989–1001.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Winterton S. L.
(2000) Phylogenetic revision of Acupalpa Kröber (Diptera: Therevidae). Insect Systematics & Evolution 31, 225–240.
Winterton S. L.
(2006) New species of Eupsilocephala Kröber from Australia (Diptera: Therevidae). Zootaxa 1372, 17–25.
Winterton S. L.
(2007a) New species of Laxotela Winterton & Irwin from Australia (Diptera: Therevidae: Agapophytinae). Zootaxa 1407, 57–64.
Winterton S. L.
(2007b) New species of Nanexila Winterton & Irwin and Taenogera Kröber from Australia (Diptera: Therevidae). Zootaxa 1413, 55–64.
Winterton S. L., Irwin M. E.
(1999)
Laxotela – a new genus of Therevidae (Diptera) from Australia. Entomologica Scandinavica 30, 299–310.
Winterton S. L., Irwin M. E.
(2001) Phylogenetic revision of Agapophytus Guérin (Diptera: Therevidae: Agapophytinae). Invertebrate Taxonomy 15, 467–526.
| Crossref | GoogleScholarGoogle Scholar |
Winterton S. L.,
Irwin M. E., Yeates D. K.
(1999a) Phylogenetic revision of the Taenogera Kröber genus-group (Diptera: Therevidae) with descriptions of two new genera. Australian Journal of Entomology 38, 274–290.
| Crossref | GoogleScholarGoogle Scholar |
Winterton S. L.,
Irwin M. E., Yeates D. K.
(1999b) Systematics of Nanexila Winterton & Irwin, gen. nov. (Diptera: Therevidae) from Australia. Invertebrate Taxonomy 13, 237–308.
| Crossref | GoogleScholarGoogle Scholar |
Winterton S. L.,
Skevington J. H.,
Irwin M. E., Yeates D. K.
(2000) Phylogenetic revision of Bonjeania Irwin & Lyneborg (Diptera: Therevidae). Systematic Entomology 25, 295–324.
| Crossref | GoogleScholarGoogle Scholar |
Winterton S. L.,
Yang L.,
Wiegmann B. M., Yeates D. K.
(2001) Phylogenetic revision of the Agapophytinae subf. n. (Diptera: Therevidae) based on molecular and morphological evidence. Systematic Entomology 26, 173–211.
| Crossref | GoogleScholarGoogle Scholar |
Wüster W.,
Ferguson J. E.,
Quijada-Mascareñas J. A.,
Pook C. E.,
da Graça Salomão M., Thorpe R. S.
(2005) Tracing an invasion: landbridges, refugia, and the phylogeography of the Neotropical rattlesnake (Serpentes: Viperidae: Crotalus durissus). Molecular Ecology 14, 1095–1108.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Yang L.,
Wiegmann B. M.,
Yeates D. K., Irwin M. E.
(2000) Higher-level phylogeny of the Therevidae (Diptera: Insecta) based on 28S ribosomal and elongation factor-1α gene sequences. Molecular Phylogenetics and Evolution 15, 440–451.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
Yeates D. K.,
Irwin M. E., Wiegmann B. M.
(2003) Ocoidae, a new family of asiloid flies (Diptera: Brachycera: Asiloidea), based on Ocoa chilensis gen. and sp.n. from Chile, South America. Systematic Entomology 28, 417–431.
| Crossref | GoogleScholarGoogle Scholar |
Yeates D. K.,
Wiegmann B. M.,
Courtney G. W.,
Meier R.,
Lambkin C., Pape T.
(2007) Phylogeny and systematics of Diptera: two decades of progress and prospects. Linnaeus Tercentenary: Progress in Invertebrate Taxonomy. Zootaxa 1668, 565–590.