Register      Login
Invertebrate Systematics Invertebrate Systematics Society
Systematics, phylogeny and biogeography
RESEARCH ARTICLE (Open Access)

Phylogenomics and biogeography of leptonetid spiders (Araneae : Leptonetidae)

Joel Ledford https://orcid.org/0000-0001-5674-9123 A G , Shahan Derkarabetian https://orcid.org/0000-0002-9163-9277 B , Carles Ribera C , James Starrett D , Jason E. Bond D , Charles Griswold E and Marshal Hedin F
+ Author Affiliations
- Author Affiliations

A Department of Plant Biology, University of California—Davis, Davis, CA 95616-5270, USA.

B Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA.

C Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Universitat de Barcelona, Barcelona, Spain.

D Department of Entomology and Nematology, University of California—Davis, Davis, CA 95616-5270, USA.

E Department of Entomology, California Academy of Sciences, San Francisco, CA 94118, USA.

F Department of Biology, San Diego State University, San Diego, CA 92182-4614, USA.

G Corresponding author. Email: jmledford@ucdavis.edu

Invertebrate Systematics 35(3) 332-349 https://doi.org/10.1071/IS20065
Submitted: 26 August 2020  Accepted: 27 October 2020   Published: 24 March 2021

Journal Compilation © CSIRO 2021 Open Access CC BY-NC-ND

Abstract

Leptonetidae are rarely encountered spiders, usually associated with caves and mesic habitats, and are disjunctly distributed across the Holarctic. Data from ultraconserved elements (UCEs) were used in concatenated and coalescent-based analyses to estimate the phylogenetic history of the family. Our taxon sample included close outgroups, and 90% of described leptonetid genera, with denser sampling in North America and Mediterranean Europe. Two data matrices were assembled and analysed; the first ‘relaxed’ matrix includes the maximum number of loci and the second ‘strict’ matrix is limited to the same set of core orthologs but with flanking introns mostly removed. A molecular dating analysis incorporating fossil and geological calibration points was used to estimate divergence times, and dispersal–extinction–cladogenesis analysis (DEC) was used to infer ancestral distributions. Analysis of both data matrices using maximum likelihood and coalescent-based methods supports the monophyly of Archoleptonetinae and Leptonetinae. However, relationships among Archoleptonetinae, Leptonetinae, and Austrochiloidea are poorly supported and remain unresolved. Archoleptonetinae is elevated to family rank Archoleptonetidae (new rank) and Leptonetidae (new status) is restricted to include only members of the subfamily Leptonetinae; a taxonomic review with morphological diagnoses is provided for both families. Four well supported lineages within Leptonetidae (new status) are recovered: (1) the Calileptoneta group, (2) the Leptoneta group, (3) the Paraleptoneta group, and (4) the Protoleptoneta group. Most genera within Leptonetidae are monophyletic, although Barusia, Cataleptoneta, and Leptoneta include misplaced species and require taxonomic revision. The origin of Archoleptonetidae (new rank), Leptonetidae, and the four main lineages within Leptonetidae date to the Cretaceous. DEC analysis infers the Leptoneta and Paraleptoneta groups to have ancestral distributions restricted to Mediterranean Europe, whereas the Calileptoneta and Protoleptoneta groups include genera with ancestral distributions spanning eastern and western North America, Mediterranean Europe, and east Asia. Based on a combination of biology, estimated divergence times, and inferred ancestral distributions we hypothesise that Leptonetidae was once widespread across the Holarctic and their present distributions are largely the result of vicariance. Given the wide disjunctions between taxa, we broadly interpret the family as a Holarctic relict fauna and hypothesise that they were once part of the Boreotropical forest ecosystem.


References

Agnarsson, I., Coddington, J. A., and Kuntner, M. (2013). Systematics – progress in the study of spider diversity and evolution. In ‘Spider Research in the 21st Century’. (Ed. D. Penney.) Chapter 2, pp. 58–111. (Siri Scientific Press: Manchester, UK.)

Ane, C., Larget, B., Baum, D. A., Smith, S. D., and Rokas, A. (2006). Bayesian estimation of concordance among gene trees. Molecular Biology and Evolution 24, 412–426.
Bayesian estimation of concordance among gene trees.Crossref | GoogleScholarGoogle Scholar | 17095535PubMed |

Baker, C. M., Sheridan, K., Derkarabetian, S., Pérez-González, A., Vélez, S., and Giribet, G. (2020). Molecular phylogeny and biogeography of the temperate Gondwanan family Triaenonychidae (Opiliones: Laniatores) reveals pre-Gondwanan regionalisation, common vicariance, and rare dispersal. Invertebrate Systematics 34, 637–660.
Molecular phylogeny and biogeography of the temperate Gondwanan family Triaenonychidae (Opiliones: Laniatores) reveals pre-Gondwanan regionalisation, common vicariance, and rare dispersal.Crossref | GoogleScholarGoogle Scholar |

Batchelor, C. L., Margold, M., Krapp, M., Murton, D. K., Dalton, A. S., Gibbard, P. L., Stokes, C. R., Murton, J. B., and Manica, A. (2019). The configuration of northern hemisphere ice sheets through the Quaternary. Nature Communications 10, 3713.
The configuration of northern hemisphere ice sheets through the Quaternary.Crossref | GoogleScholarGoogle Scholar | 31420542PubMed |

Brignoli, P. M. (1967a). Considerazioni sul genere Paraleptoneta e descrizione di una nuova specie italiana (Araneae, Leptonetidae). Fragmenta Entomologica 4, 157–169.

Brignoli, P. M. (1967b). Su alcuni Leptonetidae della Sardegna (Araneae). Rendiconti – Istituto Lombardo di Scienze e Lettere 101, 352–359.

Brignoli, P. M. (1968). Due nuove Paraleptoneta cavernicole dell’Asia Minore (Araneae, Leptonetidae). Fragmenta Entomologica 6, 23–37.

Brignoli, P. M. (1970). Considerazioni biogeografiche sulla famiglia Leptonetidae (Araneae). Bulletin du Muséum National d’Histoire Naturelle 41, 189–195.

Brignoli, P. M. (1971). Note su ragni cavernicoli italiani (Araneae). Fragmenta Entomologica 7, 121–229.

Brignoli, P. M. (1972). Some cavernicolous spiders from Mexico (Araneae). Quaderno Accademia Nazionale dei Lincei. Fondazione Leone Caetani 171, 129–155.

Brignoli, P. M. (1974a). Araignées de Grèce VIII. Quelques Leptonetidae de la Laconie et de l’île de Crète (Arachnida, Araneae). Annales de Spéléologie 29, 63–70.

Brignoli, P. M. (1974b). Notes on spiders, mainly cave-dwelling, of southern Mexico and Guatemala (Araneae). Quaderno. Accademia Nazionale dei Lincei. Fondazione Leone Caetani 171, 195–238.

Brignoli, P. M. (1974c). Ragni di Grecia VII. Raccolte in grotte dell’Attica del Dr P. Strinati (Araneae). Revue Suisse de Zoologie 81, 493–499.
Ragni di Grecia VII. Raccolte in grotte dell’Attica del Dr P. Strinati (Araneae).Crossref | GoogleScholarGoogle Scholar |

Brignoli, P. M. (1977). Spiders of Mexico, III. A new leptonetid from Oaxaca (Araneae, Leptonetidae). Quaderno. Accademia Nazionale dei Lincei. Fondazione Leone Caetani 171, 213–218.

Brignoli, P. M. (1978). Ragni di Turchia IV. Leptonetidae, Dysderidae ed Agelenidae nuovi o interessanti di grotte della Turchia meridionale (Araneae). Quaderni di Speleologia – Circolo Speleologico Romano 3, 37–54.

Brignoli, P. M. (1979a). Spiders from Turkey, VI. Four new species from the coast of the Black Sea (Araneae). Bulletin of the British Arachnological Society 4, 310–313.

Brignoli, P. M. (1979b). Ragni di Grecia XI. Specie nuove o interessanti, cavernicole ed epigee. Revue Suisse de Zoologie 86, 181–202.
Ragni di Grecia XI. Specie nuove o interessanti, cavernicole ed epigee.Crossref | GoogleScholarGoogle Scholar |

Brignoli, P. M. (1979c). Ragni d’Italia XXXI. Specie cavernicole nuove o interessanti (Araneae). Quaderni del Museo di Speleologia – V. Rivera 5, 1–48.

Brignoli, P. M. (1979d). The morphology and relationships of the Leptonetidae (Arachnida, Araneae). The Journal of Arachnology 7, 231–236.

Brignoli, P. M. (1979e). On some cave spiders from Guatemala and the United States (Araneae). Revue Suisse de Zoologie 86, 435–443.
On some cave spiders from Guatemala and the United States (Araneae).Crossref | GoogleScholarGoogle Scholar |

Brikiatis, L. (2014). The De Geer, Thulean and Beringia routes: key concepts for understanding early Cenozoic biogeography. Journal of Biogeography 41, 1036–1054.
The De Geer, Thulean and Beringia routes: key concepts for understanding early Cenozoic biogeography.Crossref | GoogleScholarGoogle Scholar |

Castresana, J. (2000). Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology and Evolution 17, 540–552.
Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis.Crossref | GoogleScholarGoogle Scholar | 10742046PubMed |

Chen, H. M., Jia, Q., and Wang, S. J. (2010). A revision of the genus Qianleptoneta (Araneae: Leptonetidae). Journal of Natural History 44, 2873–2915.
A revision of the genus Qianleptoneta (Araneae: Leptonetidae).Crossref | GoogleScholarGoogle Scholar |

Chifman, J., and Kubatko, L. (2014). Quartet inference from SNP data under the coalescent. Bioinformatics 30, 3317–3324.
Quartet inference from SNP data under the coalescent.Crossref | GoogleScholarGoogle Scholar | 25104814PubMed |

Chifman, J., and Kubatko, L. (2015). Identifiability of the unrooted species tree topology under the coalescent model with time-reversible substitution processes, site-specific rate variation, and invariable sites. Journal of Theoretical Biology 374, 35–47.
Identifiability of the unrooted species tree topology under the coalescent model with time-reversible substitution processes, site-specific rate variation, and invariable sites.Crossref | GoogleScholarGoogle Scholar | 25791286PubMed |

Clark, P. U., Dyke, A. S., Shakun, J. D., Carlson, A. E., Clark, J., Wohlfarth, B., Mitrovica, J. X., Hostetler, S. W., and McCabe, A. M. (2009). The last glacial maximum. Science 325, 710.
The last glacial maximum.Crossref | GoogleScholarGoogle Scholar | 19661421PubMed |

Cokendolpher, J. C. (2004). A new Neoleptoneta spider from a cave in Camp Bullis, Bexar County, Texas (Araneae: Leptonetidae). Texas Memorial Museum Speleological Monographs 6, 63–69.

Deltshev, C. (1972). A new genus of Bulgarian cave spiders (Protoleptoneta bulgarica n.g., n. sp.). International Journal of Speleology 4, 275–283.
A new genus of Bulgarian cave spiders (Protoleptoneta bulgarica n.g., n. sp.).Crossref | GoogleScholarGoogle Scholar |

Deltshev, C., and Li, S. Q. (2013). A new species of the genus Cataleptoneta from Belasitsa Mts, Bulgaria (Araneae, Leptonetidae). Dong Wu Fen Lei Xue Bao 38, 514–519.

Demircan, N. (2020). A new species of the genus Cataleptoneta Denis, 1955 (Araneae: Leptonetidae) from a cave in Turkey. Acta Zoologica Bulgarica 72, 187–191.

Denis, J. (1955). Biospeologica 75. Mission Henri Coiffait au Liban (1951), 7. Araignées. Archives de Zoologie Expérimentale et Générale 91, 437–454.

Derkarabetian, S., Starrett, J., Tsurusaki, N., Ubick, D., Castillo, S., and Hedin, M. (2018). A stable phylogenomic classification of Travunioidea (Arachnida, Opiliones, Laniatores) based on sequence capture of ultraconserved elements. ZooKeys 760, 1–36.
A stable phylogenomic classification of Travunioidea (Arachnida, Opiliones, Laniatores) based on sequence capture of ultraconserved elements.Crossref | GoogleScholarGoogle Scholar |

Derkarabetian, S., Benavides, L. R., and Giribet, G. (2019). Sequence capture phylogenomics of historical ethanol‐preserved museum specimens: unlocking the rest of the vault. Molecular Ecology Resources 19, 1531–1544.
Sequence capture phylogenomics of historical ethanol‐preserved museum specimens: unlocking the rest of the vault.Crossref | GoogleScholarGoogle Scholar | 31448547PubMed |

Dermitzakis, M. D., and Papanikolaou, D. J. (1981). Paleogeography and geodynamics of the Aegean region during the Neogene. Annales Géologiques des Pays Helléniques 30, 245–289.

Donoghue, M. J., and Smith, S. A. (2004). Patterns in the assembly of temperate forests around the northern hemisphere. Philosophical Transactions of the Royal Society of London – B. Biological Sciences 359, 1633–1644.
Patterns in the assembly of temperate forests around the northern hemisphere.Crossref | GoogleScholarGoogle Scholar | 15519978PubMed |

Fage, L. (1913). Biospelogica XXIX. Études sur les araignées cavernicoles II. Revision des Leptonetidae. Archives de Zoologie Expérimentale et Générale 10, 479–576.

Fage, L. (1931). Araneae, 5e série, précédée d’un essai sur l’évolution souterraine et son déterminisme. In: Biospeologica, LV. Archives de Zoologie Expérimentale et Générale 71, 91–291.

Fage, L. (1943). Description d’une leptonète de Corse suivie de remarques sur les araignées cavernicoles du genre Stalita. Bulletin du Muséum National d’Histoire Naturelle 2, 171–174.

Faircloth, B. C. (2016). PHYLUCE is a software package for the analysis of conserved genomic loci. Bioinformatics 32, 786–788.
PHYLUCE is a software package for the analysis of conserved genomic loci.Crossref | GoogleScholarGoogle Scholar | 26530724PubMed |

Faircloth, B. C. (2017). Identifying conserved genomic elements and designing universal probe sets to enrich them. Methods in Ecology and Evolution 8, 1103–1112.
Identifying conserved genomic elements and designing universal probe sets to enrich them.Crossref | GoogleScholarGoogle Scholar |

Fernández, R., Kallal, R. J., Dimitrov, D., Ballesteros, J. A., Arnedo, M. A., Giribet, G., and Hormiga, G. (2018). Phylogenomics, diversification dynamics, and comparative transcriptomics across the Spider Tree of Life. Current Biology 28, 1489–1497.
Phylogenomics, diversification dynamics, and comparative transcriptomics across the Spider Tree of Life.Crossref | GoogleScholarGoogle Scholar | 29706520PubMed |

Garcia-Castellanos, D., and Villaseñor, A. (2011). Messinian Salinity Crisis regulated by competing tectonics and erosion at the Gibraltar Arc. Nature 480, 359–363.
Messinian Salinity Crisis regulated by competing tectonics and erosion at the Gibraltar Arc.Crossref | GoogleScholarGoogle Scholar | 22170684PubMed |

Garrison, N. L., Rodriguez, J., Agnarsson, I., Coddington, J. A., Griswold, C. E., Hamilton, C. A., Hedin, M., Kocot, K. M., Ledford, J. M., and Bond, J. E. (2016). Spider phylogenomics: untangling the Spider Tree of Life. PeerJ 4, e1719.
Spider phylogenomics: untangling the Spider Tree of Life.Crossref | GoogleScholarGoogle Scholar | 26925338PubMed |

Gavish-Regev, E., Aharon, S., Armiach, I., and Lubin, Y. D. (2016). Cave survey yields a new spider family record for Israel. Arachnologische Mitteilungen 51, 39–42.
Cave survey yields a new spider family record for Israel.Crossref | GoogleScholarGoogle Scholar |

Gertsch, W. J. (1971). A report on some Mexican cave spiders. Association for Mexican Cave Studies Bulletin 4, 47–111.

Gertsch, W. J. (1974). The spider family Leptonetidae in North America. The Journal of Arachnology 1, 145–203.

Grabherr, M. G., Haas, B. J., Yassour, M., Levin, J. Z., Thompson, D. A., Amit, I., Adiconis, X., Fan, L., Raychowdhury, R., Zeng, Q., and Chen, Z. (2011). Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology 29, 644.
Full-length transcriptome assembly from RNA-Seq data without a reference genome.Crossref | GoogleScholarGoogle Scholar | 21572440PubMed |

Griswold, C. E., Ramírez, M. J., Coddington, J. A., and Platnick, N. I. (2005). Atlas of phylogenetic data for entelegyne spiders (Araneae: Araneomorphae: Entelegynae) with comments on their phylogeny. Proceedings of the California Academy of Sciences 56, 1–324.

Guo, X., Yu, Z. G., and Chen, H. M. (2016). One new spider species of genus Leptonetela (Araneae: Leptonetidae) from cave in Guizhou, China. Sichuan Journal of Zoology 35, 395–399.

Harrison, S. E., Rix, M. G., Harvey, M. S., and Austin, A. D. (2016). An African mygalomorph lineage in temperate Australia: the trapdoor spider genus Moggridgea (Araneae: Migidae) on Kangaroo Island, South Australia. Austral Entomology 55, 208–216.
An African mygalomorph lineage in temperate Australia: the trapdoor spider genus Moggridgea (Araneae: Migidae) on Kangaroo Island, South Australia.Crossref | GoogleScholarGoogle Scholar |

He, A. L., Liu, J. X., Xu, X. A., Yin, H. Q., and Peng, X. J. (2019). Description of three new species of spider genus Leptonetela Kratochvíl, 1978 from caves of Hunan Province, China (Araneae, Leptonetidae). Zootaxa 4554, 584–600.
Description of three new species of spider genus Leptonetela Kratochvíl, 1978 from caves of Hunan Province, China (Araneae, Leptonetidae).Crossref | GoogleScholarGoogle Scholar |

Hedin, M., and McCormack, M. (2017). Biogeographical evidence for common vicariance and rare dispersal in a southern Appalachian harvestman (Sabaconidae, Sabacon cavicolens). Journal of Biogeography 44, 1665–1678.
Biogeographical evidence for common vicariance and rare dispersal in a southern Appalachian harvestman (Sabaconidae, Sabacon cavicolens).Crossref | GoogleScholarGoogle Scholar |

Hedin, M., Derkarabetian, S., Ramírez, M., Vink, C., and Bond, J. (2018a). Phylogenomic reclassification of the world’s most venomous spiders (Mygalomorphae, Atracinae), with implications for venom evolution. Scientific Reports 8, 1636.
Phylogenomic reclassification of the world’s most venomous spiders (Mygalomorphae, Atracinae), with implications for venom evolution.Crossref | GoogleScholarGoogle Scholar | 29374214PubMed |

Hedin, M., Derkarabetian, S., Blair, J., and Paquin, P. (2018b). Sequence capture phylogenomics of eyeless Cicurina spiders from Texas caves, with emphasis on US federally endangered species from Bexar County (Araneae, Hahniidae). ZooKeys 769, 49–76.
Sequence capture phylogenomics of eyeless Cicurina spiders from Texas caves, with emphasis on US federally endangered species from Bexar County (Araneae, Hahniidae).Crossref | GoogleScholarGoogle Scholar |

Hedin, M., Derkarabetian, S., Alfaro, A., Ramírez, M. J., and Bond, J. E. (2019). Phylogenomic analysis and revised classification of atypoid mygalomorph spiders (Araneae, Mygalomorphae), with notes on arachnid ultraconserved element loci. PeerJ 7, e6864.
Phylogenomic analysis and revised classification of atypoid mygalomorph spiders (Araneae, Mygalomorphae), with notes on arachnid ultraconserved element loci.Crossref | GoogleScholarGoogle Scholar | 31110925PubMed |

Inoue, J., Donoghue, P. C. J., and Yang, Z. (2010). The impact of the representation of fossil calibrations on Bayesian estimation of species divergence times. Systematic Biology 59, 74–89.
The impact of the representation of fossil calibrations on Bayesian estimation of species divergence times.Crossref | GoogleScholarGoogle Scholar | 20525621PubMed |

Katoh, D., and Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30, 772–780.
MAFFT multiple sequence alignment software version 7: improvements in performance and usability.Crossref | GoogleScholarGoogle Scholar |

Komatsu, T. (1942). [Spiders from Saisho-do caves]. Acta Arachnologica 7, 54–70.

Komatsu, T. (1970). A new genus and a new species of Japanese spiders (Falcileptoneta n. g. and Sarutana kawasawai n. sp., Leptonetidae). Acta Arachnologica 23, 1–12.
A new genus and a new species of Japanese spiders (Falcileptoneta n. g. and Sarutana kawasawai n. sp., Leptonetidae).Crossref | GoogleScholarGoogle Scholar |

Kratochvíl, J. (1935). Araignées cavernicoles de Krivošije. Práce Moravské Přírodovědecké Společnosti 9, 1–25.

Kratochvíl, J. (1938). Étude sur les araignées cavernicoles du genre Sulcia nov. gen. Práce Moravské Přírodovědecké Společnosti 11, 1–25.

Kratochvíl, J. (1978). Araignées cavernicoles des îles Dalmates. Přírodovědné práce ústavů Československé Akademie Věd v Brně (N. S.) 12, 1–59.

Lavin, M., and Luckow, M. (1993). Origins and relationships of tropical North America in the context of the boreotropics hypothesis. American Journal of Botany 80, 1–14.
Origins and relationships of tropical North America in the context of the boreotropics hypothesis.Crossref | GoogleScholarGoogle Scholar |

Le Peru, B. (2011). The spiders of Europe, a synthesis of data: Volume 1 Atypidae to Theridiidae. Mémoires de la Société Linnéenne de Lyon 2, 1–522.

Ledford, J. M. (2004). A revision of the spider genus Calileptoneta Platnick (Araneae, Leptonetidae), with notes on morphology, natural history and biogeography. The Journal of Arachnology 32, 231–269.
A revision of the spider genus Calileptoneta Platnick (Araneae, Leptonetidae), with notes on morphology, natural history and biogeography.Crossref | GoogleScholarGoogle Scholar |

Ledford, J. M., and Griswold, C. E. (2010). A study of the subfamily Archoleptonetinae (Araneae, Leptonetidae) with a review of the morphology and relationships for the Leptonetidae. Zootaxa 2391, 1–32.
A study of the subfamily Archoleptonetinae (Araneae, Leptonetidae) with a review of the morphology and relationships for the Leptonetidae.Crossref | GoogleScholarGoogle Scholar |

Ledford, J., Paquin, P., Cokendolpher, J., Campbell, J., and Griswold, C. (2011). Systematics of the spider genus Neoleptoneta Brignoli, 1972 (Araneae: Leptonetidae) with a discussion of the morphology and relationships for the North American Leptonetidae. Invertebrate Systematics 25, 334–388.
Systematics of the spider genus Neoleptoneta Brignoli, 1972 (Araneae: Leptonetidae) with a discussion of the morphology and relationships for the North American Leptonetidae.Crossref | GoogleScholarGoogle Scholar |

Ledford, J. M., Paquin, P., Cokendolpher, J. C., Campbell, J., and Griswold, C. (2012). Systematics, conservation and morphology of the spider genus Tayshaneta (Araneae, Leptonetidae) in central Texas Caves. ZooKeys 167, 1–102.
Systematics, conservation and morphology of the spider genus Tayshaneta (Araneae, Leptonetidae) in central Texas Caves.Crossref | GoogleScholarGoogle Scholar |

Lin, Y. C., and Li, S. Q. (2010). Leptonetid spiders from caves of the Yunnan–Guizhou plateau, China (Araneae: Leptonetidae). Zootaxa 2587, 1–93.
Leptonetid spiders from caves of the Yunnan–Guizhou plateau, China (Araneae: Leptonetidae).Crossref | GoogleScholarGoogle Scholar |

Lymberakis, P., and Poulakakis, N. (2010). Three continents claiming an archipelago: the evolution of Aegean’s herpetofaunal diversity. Diversity 2, 233–255.
Three continents claiming an archipelago: the evolution of Aegean’s herpetofaunal diversity.Crossref | GoogleScholarGoogle Scholar |

Machado, A. de B., and Ribera, C. (1986). Araneidos cavernícolas de Portugal: Familia Leptonetidae (Araneae). Actas X Congreso Internacional de Aracnologia, Barcelona 1, 355–366.

Magalhaes, I. L., Azevedo, G. H., Michalik, P., and Ramírez, M. J. (2020). The fossil record of spiders revisited: implications for calibrating trees and evidence for a major faunal turnover since the Mesozoic. Biological Reviews of the Cambridge Philosophical Society 95, 184–217.
The fossil record of spiders revisited: implications for calibrating trees and evidence for a major faunal turnover since the Mesozoic.Crossref | GoogleScholarGoogle Scholar |

Mammola, S., and Isaia, M. (2017). Spiders in caves. Proceedings of the Royal Society of London – B. Biological Sciences 284, 20170193.
Spiders in caves.Crossref | GoogleScholarGoogle Scholar |

Milne, R. I., and Abbott, R. J. (2002). The origin and evolution of Tertiary relict floras. Advances in Botanical Research 38, 281–314.
The origin and evolution of Tertiary relict floras.Crossref | GoogleScholarGoogle Scholar |

Minh, B. Q., Schmidt, H. A., Chernomor, O., Schrempf, D., Woodhams, M. D., von Haeseler, A., and Lanfear, R. (2020a). IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Molecular Biology and Evolution 37, 1530–1534.
IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era.Crossref | GoogleScholarGoogle Scholar | 32011700PubMed |

Minh, B., Hahn, M., and Lanfear, R. (2020b). New methods to calculate concordance factors for phylogenomic datasets. Molecular Biology and Evolution 37, 2727–2733.
New methods to calculate concordance factors for phylogenomic datasets.Crossref | GoogleScholarGoogle Scholar | 32365179PubMed |

Nguyen, L. T., Schmidt, H. A., von Haeseler, A., and Minh, B. Q. (2015). IQ-TREE: A fast and effective stochastic algorithm for estimating maximum likelihood phylogenies. Molecular Biology and Evolution 32, 268–274.
IQ-TREE: A fast and effective stochastic algorithm for estimating maximum likelihood phylogenies.Crossref | GoogleScholarGoogle Scholar | 25371430PubMed |

Papadopoulou, A., Anastasiou, I., and Vogler, A. P. (2010). Revisiting the insect mitochondrial molecular clock: the mid-Aegean trench calibration. Molecular Biology and Evolution 27, 1659–1672.
Revisiting the insect mitochondrial molecular clock: the mid-Aegean trench calibration.Crossref | GoogleScholarGoogle Scholar | 20167609PubMed |

Paradis, E., Claude, J., and Strimmer, K. (2004). APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290.
APE: analyses of phylogenetics and evolution in R language.Crossref | GoogleScholarGoogle Scholar | 14734327PubMed |

Platnick, N. I. (1986). On the tibial and patellar glands, relationships, and American genera of the spider family Leptonetidae (Arachnida, Araneae). American Museum Novitates 2855, 1–16.

Platnick, N. I., Coddington, J. A., Forster, R. R., and Griswold, C. E. (1991). Spinneret morphology and the phylogeny of haplogyne spiders (Araneae, Araneomorphae). American Museum Novitates 3016, 1–73.

Portik, D. M., and Wiens, J. J. (2020). Do alignment and trimming methods matter for phylogenomic (UCE) analyses? Systematic Biology , syaa064.
Do alignment and trimming methods matter for phylogenomic (UCE) analyses?Crossref | GoogleScholarGoogle Scholar | 32797207PubMed |

Ramírez, M. J. (2000). Respiratory system morphology and the phylogeny of haplogyne spiders (Araneae, Araneomorphae). The Journal of Arachnology 28, 149–157.
Respiratory system morphology and the phylogeny of haplogyne spiders (Araneae, Araneomorphae).Crossref | GoogleScholarGoogle Scholar |

Ramírez, M. J. (2014). The morphology and phylogeny of dionychan spiders (Araneae: Araneomorphae). Bulletin of the American Museum of Natural History 390, 1–374.
The morphology and phylogeny of dionychan spiders (Araneae: Araneomorphae).Crossref | GoogleScholarGoogle Scholar |

Ramírez, M. J., Magalhaes, I. L. F., Derkarabetian, S., Ledford, J., Griswold, C. E., Wood, H. M., and Hedin, M. (2021). Sequence capture phylogenomics of true spiders reveals convergent evolution of respiratory systems Systematic Biology 70, 14–20.
Sequence capture phylogenomics of true spiders reveals convergent evolution of respiratory systemsCrossref | GoogleScholarGoogle Scholar | 32497195PubMed |

Rannala, B., and Yang, Z. (2007). Inferring speciation times under an episodic molecular clock. Systematic Biology 56, 453–466.
Inferring speciation times under an episodic molecular clock.Crossref | GoogleScholarGoogle Scholar | 17558967PubMed |

Ree, R. H., and Smith, S. A. (2008). Maximum likelihood inference of geographic range evolution by dispersal, local extinction, and cladogenesis. Systematic Biology 57, 4–14.
Maximum likelihood inference of geographic range evolution by dispersal, local extinction, and cladogenesis.Crossref | GoogleScholarGoogle Scholar | 18253896PubMed |

Ribera, C. (1978). Leptoneta comasi n. sp. (Araneae, Leptonetidae) una nueva especie cavernicola del Levante Español. Miscelánea Zoológica 4, 25–29.

Ribera, C. (1988). La familia Leptonetidae (Arachnida, Araneae) in la Península Ibérica. Technische Universität Berlin Dokumentation Kongresse und Tagungen 38, 267–281.

Ribera, C., and Lopez, A. (1982). Résultats d’une campagne biospéologique en Tunisie et description d’une espèce nouvelle de Leptonetidae (Araneae): Paraleptoneta bellesi. Revue Arachnologique 4, 57–64.

Sanmartín, I., Enghoff, H., and Ronquist, F. (2001). Patterns of animal dispersal, vicariance and diversification in the Holarctic. Biological Journal of the Linnean Society. Linnean Society of London 73, 345–390.
Patterns of animal dispersal, vicariance and diversification in the Holarctic.Crossref | GoogleScholarGoogle Scholar |

Selden, P. A., and Ren, D. (2017). A review of Burmese amber arachnids. The Journal of Arachnology 45, 324–343.
A review of Burmese amber arachnids.Crossref | GoogleScholarGoogle Scholar |

Seo, B. K. (2015a). Ten new species of the genus Falcileptoneta (Araneae, Leptonetidae) from Korea. Korean Journal of Environmental Biology 33, 290–305.
Ten new species of the genus Falcileptoneta (Araneae, Leptonetidae) from Korea.Crossref | GoogleScholarGoogle Scholar |

Seo, B. K. (2015b). Four new species of the genera Masirana and Longileptoneta (Araneae, Leptonetidae) from Korea. Korean Journal of Environmental Biology 33, 306–313.
Four new species of the genera Masirana and Longileptoneta (Araneae, Leptonetidae) from Korea.Crossref | GoogleScholarGoogle Scholar |

Seo, B. K. (2016a). Four new species of the genus Longileptoneta (Araneae, Leptonetidae) from Korea. Journal of Species Research 5, 584–589.
Four new species of the genus Longileptoneta (Araneae, Leptonetidae) from Korea.Crossref | GoogleScholarGoogle Scholar |

Seo, B. K. (2016b). Four new species of the genus Falcileptoneta (Araneae, Leptonetidae) from Korea. Journal of Species Research 5, 590–595.
Four new species of the genus Falcileptoneta (Araneae, Leptonetidae) from Korea.Crossref | GoogleScholarGoogle Scholar |

Shao, L. L., and Li, S. Q. (2018). Early Cretaceous greenhouse pumped higher taxa diversification in spiders. Molecular Phylogenetics and Evolution 127, 146–155.
Early Cretaceous greenhouse pumped higher taxa diversification in spiders.Crossref | GoogleScholarGoogle Scholar |

Simon, E. (1872). Notice complémentaire sur les arachnides cavernicoles et hypogés. Annales de la Société Entomologique de France 5, 473–488.

Stamatakis, A. (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313.
RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies.Crossref | GoogleScholarGoogle Scholar | 24451623PubMed |

Starrett, J., Derkarabetian, S., Hedin, M., Bryson, R. W., McCormack, J. E., and Faircloth, B. C. (2017). High phylogenetic utility of an ultraconserved element probe set designed for Arachnida. Molecular Ecology Resources 17, 812–823.
High phylogenetic utility of an ultraconserved element probe set designed for Arachnida.Crossref | GoogleScholarGoogle Scholar | 27768256PubMed |

Talavera, G., and Castresana, J. (2007). Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Systematic Biology 56, 564–577.
Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments.Crossref | GoogleScholarGoogle Scholar | 17654362PubMed |

Tangelder, I. R. M. (1988). The biogeography of the Holarctic Nephrotoma dorsalis species-group (Diptera, Tipulidae). Beaufortia 38, 1–35.

Tiffney, B. H. (1985). Perspectives on the origin of the floristic similarity between eastern Asia and eastern North America. Journal of the Arnold Arboretum 66, 73–94.
Perspectives on the origin of the floristic similarity between eastern Asia and eastern North America.Crossref | GoogleScholarGoogle Scholar |

Tong, Y. F., and Li, S. Q. (2007). Description of Rhyssoleptoneta latitarsa gen. nov. et sp. nov. (Araneae, Leptonetidae) from Hebei Province, China. Dong Wu Fen Lei Xue Bao 32, 35–37.

US Fish and Wildlife Service (2020). US Endangered Species List for Arachnida. Available at https://www.fws.gov/endangered/species/us-species.html [Verified 19 August 2020].

Wang, C. X., and Li, S. Q. (2010). Two new species of the spider genus Cataleptoneta from Balkan Peninsula (Araneae, Leptonetidae). Zootaxa 2730, 57–68.
Two new species of the spider genus Cataleptoneta from Balkan Peninsula (Araneae, Leptonetidae).Crossref | GoogleScholarGoogle Scholar |

Wang, C. X., and Li, S. Q. (2011). A further study on the species of the spider genus Leptonetela (Araneae: Leptonetidae). Zootaxa 2841, 1–90.
A further study on the species of the spider genus Leptonetela (Araneae: Leptonetidae).Crossref | GoogleScholarGoogle Scholar |

Wang, C. X., Xu, X., and Li, S. Q. (2017). Integrative taxonomy of Leptonetela spiders (Araneae, Leptonetidae), with descriptions of 46 new species. Zoological Research 38, 321–448.
| 29280363PubMed |

Wheeler, W. C., Coddington, J. A., Crowley, L. M., Dimitrov, D., Goloboff, P. A., Griswold, C. E., Hormiga, G., Prendini, L., Ramírez, M. J., Sierwald, P., Almeida‐Silva, L., Alvarez‐Padilla, F., Arnedo, M. A., Benavides Silva, L. R., Benjamin, S. P., Bond, J. E., Grismado, C. J., Hasan, E., Hedin, M., Izquierdo, M. A., Labarque, F. M., Ledford, J., Lopardo, L., Maddison, W. P., Miller, J. A., Piacentini, L. N., Platnick, N. I., Polotow, D., Silva‐Dávila, D., Scharff, N., Szűts, T., Ubick, D., Vink, C. J., Wood, H. M., and Zhang, J. (2017). The spider tree of life: phylogeny of Araneae based on target‐gene analyses from an extensive taxon sampling. Cladistics 33, 574–616.
The spider tree of life: phylogeny of Araneae based on target‐gene analyses from an extensive taxon sampling.Crossref | GoogleScholarGoogle Scholar |

Wolfe, J. A. (1975). Some aspects of plant geography of the northern hemisphere during the Late Cretaceous and Tertiary. Annals of the Missouri Botanical Garden 62, 264–279.
Some aspects of plant geography of the northern hemisphere during the Late Cretaceous and Tertiary.Crossref | GoogleScholarGoogle Scholar |

Wood, H. M., González, V. L., Lloyd, M., Coddington, J., and Scharff, N. (2018). Next-generation museum genomics: phylogenetic relationships among palpimanoid spiders using sequence capture techniques (Araneae: Palpimanoidea). Molecular Phylogenetics and Evolution 127, 907–918.
Next-generation museum genomics: phylogenetic relationships among palpimanoid spiders using sequence capture techniques (Araneae: Palpimanoidea).Crossref | GoogleScholarGoogle Scholar | 29966686PubMed |

Wunderlich, J. (2008). The dominance of ancient spider families of the Araneae: Haplogyne in the Cretaceous, and the late diversification of advanced ecribellate spiders of the Entelegynae after the Cretaceous – tertiary boundary extinction events, with descriptions of new family. Beiträge zur Araneologie 5, 524–675.

Wunderlich, J. (2012). On the fossil spider (Araneae) fauna in Cretaceous ambers, with descriptions of new taxa from Burmese (Burma) and Jordan, and on the relationships of the superfamily Leptonetoidea. Beiträge zur Araneologie 7, 157–232.

Xu, M. J., Kim, S. T., Yoo, J. S., Nam, E. J., and Li, S. Q. (2019). Three new species of the genus Falcileptoneta Komatsu, 1970 (Araneae, Leptonetidae) from Korea. ZooKeys 872, 1–12.
Three new species of the genus Falcileptoneta Komatsu, 1970 (Araneae, Leptonetidae) from Korea.Crossref | GoogleScholarGoogle Scholar |

Yang, Z. (2007). PAML 4: phylogenetic analysis by maximum likelihood. Molecular Biology and Evolution 24, 1586–1591.
PAML 4: phylogenetic analysis by maximum likelihood.Crossref | GoogleScholarGoogle Scholar | 17483113PubMed |

Yang, Z., and Rannala, B. (2006). Bayesian estimation of species divergence times under a molecular clock using multiple fossil calibrations with soft bounds. Molecular Biology and Evolution 23, 212–226.
Bayesian estimation of species divergence times under a molecular clock using multiple fossil calibrations with soft bounds.Crossref | GoogleScholarGoogle Scholar | 16177230PubMed |

Yu, Y., Harris, A. J., Blair, C., and He, X. (2015). RASP (reconstruct ancestral state in phylogenies): a tool for historical biogeography. Molecular Phylogenetics and Evolution 87, 46–49.
RASP (reconstruct ancestral state in phylogenies): a tool for historical biogeography.Crossref | GoogleScholarGoogle Scholar | 25819445PubMed |

Zerbino, D. R., and Birney, E. (2008). Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Research 18, 821–829.
Velvet: algorithms for de novo short read assembly using de Bruijn graphs.Crossref | GoogleScholarGoogle Scholar | 18349386PubMed |