Phylogenetic relationships and biogeographic history of the Australian trapdoor spider genus Conothele (Araneae: Mygalomorphae: Halonoproctidae): diversification into arid habitats in an otherwise tropical radiation
Joel A. Huey A B C D , Mia J. Hillyer A and Mark S. Harvey A BA Department of Terrestrial Zoology, Western Australian Museum, 49 Kew Street, Welshpool, WA 6106, Australia.
B School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.
C School of Natural Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027, Australia.
D Corresponding author. Email: joel.huey@museum.wa.gov.au
Invertebrate Systematics 33(4) 628-643 https://doi.org/10.1071/IS18078
Submitted: 25 October 2018 Accepted: 1 March 2019 Published: 2 August 2019
Abstract
In Australia, climate change and continental drift have given rise to a complex biota comprising mesic specialists, arid-adapted lineages, and taxa that have arrived on the continent from Asia. We explore the phylogenetic diversity and biogeographic history of the Australian trapdoor spider genus Conothele Thorell, 1878 that is widespread in Australia’s monsoonal tropics and arid zone. We sequenced three mtDNA and five nuDNA markers from 224 specimens. We reconstructed the phylogenetic relationships among specimens and estimated the number of operational taxonomic units (OTUs) using species delimitation methods. The timing of divergences was estimated and ancestral area reconstructions were conducted. We recovered 61 OTUs, grouped into four major clades; a single clade represented by an arboreal ecomorph, and three fossorial clades. The Australian Conothele had a crown age of ~19 million years, and ancestral area reconstructions showed a complex history with multiple transitions among the monsoonal tropics, central arid zone, south-west and Pilbara bioregion. Conothele arrived on the continent during periods of biotic exchange with Asia. Since then, Conothele has colonised much of the Australian arid and monsoonal zones, during a period of climatic instability. The Pilbara bioregion harbours high lineage diversity, emphasising the role of climate refugia.
Additional keywords: aridification, climate refugia, Miocene, Pilbara.
References
Alley, N., and Lindsay, J. (1995). Tertiary. In ‘The Geology of South Australia. Vol. 2’. (Eds JF Drexel and WV Preiss.) pp. 151–215. (South Australian Geological Survey: Adelaide, SA.)Ashman, L., Bragg, J., Doughty, P., Hutchinson, M., Bank, S., Matzke, N., Oliver, P., and Moritz, C. (2018). Diversification across biomes in a continental lizard radiation. Evolution 72, 1553–1569.
| Diversification across biomes in a continental lizard radiation.Crossref | GoogleScholarGoogle Scholar |
Ayoub, N. A., Garb, J. E., Hedin, M., and Hayashi, C. Y. (2007). Utility of the nuclear protein-coding gene, elongation factor-1 gamma (EF-1γ), for spider systematics, emphasizing family level relationships of tarantulas and their kin (Araneae: Mygalomorphae). Molecular Phylogenetics and Evolution 42, 394–409.
| Utility of the nuclear protein-coding gene, elongation factor-1 gamma (EF-1γ), for spider systematics, emphasizing family level relationships of tarantulas and their kin (Araneae: Mygalomorphae).Crossref | GoogleScholarGoogle Scholar | 16971146PubMed |
Baerg, W. (1928). Some studies of a trapdoor spider (Araneae: Aviculariidae). Entomological News 39, 1–4.
Beavis, A. S., Sunnucks, P., and Rowell, D. M. (2011). Microhabitat preferences drive phylogeographic disparities in two Australian funnel web spiders. Biological Journal of the Linnean Society. Linnean Society of London 104, 805–819.
| Microhabitat preferences drive phylogeographic disparities in two Australian funnel web spiders.Crossref | GoogleScholarGoogle Scholar |
Bond, J., Hedin, M., Ramirez, M., and Opell, B. (2001). Deep molecular divergence in the absence of morphological and ecological change in the Californian coastal dune endemic trapdoor spider Aptostichus simus. Molecular Ecology 10, 899–910.
| Deep molecular divergence in the absence of morphological and ecological change in the Californian coastal dune endemic trapdoor spider Aptostichus simus.Crossref | GoogleScholarGoogle Scholar | 11348499PubMed |
Bouckaert, R., Heled, J., Kühnert, D., Vaughan, T., Wu, C.-H., Xie, D., Suchard, M. A., Rambaut, A., and Drummond, A. J. (2014). BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Computational Biology 10, e1003537.
| BEAST 2: a software platform for Bayesian evolutionary analysis.Crossref | GoogleScholarGoogle Scholar | 24722319PubMed |
Bowman, D. M., Brown, G., Braby, M., Brown, J., Cook, L. G., Crisp, M., Ford, F., Haberle, S., Hughes, J., and Isagi, Y. (2010). Biogeography of the Australian monsoon tropics. Journal of Biogeography 37, 201–216.
| Biogeography of the Australian monsoon tropics.Crossref | GoogleScholarGoogle Scholar |
Bradshaw, C. J. (2012). Little left to lose: deforestation and forest degradation in Australia since European colonization. Journal of Plant Ecology 5, 109–120.
| Little left to lose: deforestation and forest degradation in Australia since European colonization.Crossref | GoogleScholarGoogle Scholar |
Brower, A. (1994). Rapid morphological radiation and convergence among races of the butterfly Heliconius erato inferred from patterns of mitochondrial DNA evolution. Proceedings of the National Academy of Sciences of the United States of America 91, 6491–6495.
| Rapid morphological radiation and convergence among races of the butterfly Heliconius erato inferred from patterns of mitochondrial DNA evolution.Crossref | GoogleScholarGoogle Scholar | 8022810PubMed |
Butcher, B. A., Smith, M. A., Sharkey, M. J., and Quicke, D. L. (2012). A turbo-taxonomic study of Thai Aleiodes (Aleiodes) and Aleiodes (Arcaleiodes) (Hymenoptera: Braconidae: Rogadinae) based largely on COI barcoded specimens, with rapid descriptions of 179 new species. Zootaxa 3457, 1–232.
Byrne, M., Yeates, D., Joseph, L., Kearney, M., Bowler, J., Williams, M., Cooper, S., Donnellan, S., Keogh, J. S., and Leys, R. (2008). Birth of a biome: insights into the assembly and maintenance of the Australian arid zone biota. Molecular Ecology 17, 4398–4417.
| Birth of a biome: insights into the assembly and maintenance of the Australian arid zone biota.Crossref | GoogleScholarGoogle Scholar | 18761619PubMed |
Byrne, M., Steane, D. A., Joseph, L., Yeates, D. K., Jordan, G. J., Crayn, D., Aplin, K., Cantrill, D. J., Cook, L. G., and Crisp, M. D. (2011). Decline of a biome: evolution, contraction, fragmentation, extinction and invasion of the Australian mesic zone biota. Journal of Biogeography 38, 1635–1656.
| Decline of a biome: evolution, contraction, fragmentation, extinction and invasion of the Australian mesic zone biota.Crossref | GoogleScholarGoogle Scholar |
Castalanelli, M. A., Teale, R., Rix, M. G., Kennington, W. J., and Harvey, M. S. (2014). Barcoding of mygalomorph spiders (Araneae: Mygalomorphae) in the Pilbara bioregion of Western Australia reveals a highly diverse biota. Invertebrate Systematics 28, 375–385.
| Barcoding of mygalomorph spiders (Araneae: Mygalomorphae) in the Pilbara bioregion of Western Australia reveals a highly diverse biota.Crossref | GoogleScholarGoogle Scholar |
Castalanelli, M. A., Huey, J. A., Hillyer, M. J., and Harvey, M. S. (2017). Molecular and morphological evidence for a new genus of small trapdoor spiders from arid Western Australia (Araneae: Mygalomorphae: Nemesiidae: Anaminae). Invertebrate Systematics 31, 492–505.
| Molecular and morphological evidence for a new genus of small trapdoor spiders from arid Western Australia (Araneae: Mygalomorphae: Nemesiidae: Anaminae).Crossref | GoogleScholarGoogle Scholar |
Castresana, J. (2000). Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology and Evolution 17, 540–552.
| Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis.Crossref | GoogleScholarGoogle Scholar | 10742046PubMed |
Cogger, H. (2014). ‘Reptiles and Amphibians of Australia.’ (CSIRO Publishing: Melbourne, Vic.)
Colgan, D., McLauchlan, A., Wilson, G., Livingston, S., Edgecombe, G., Macaranas, J., Cassis, G., and Gray, M. (1998). Histone H3 and U2 snRNA DNA sequences and arthropod molecular evolution. Australian Journal of Zoology 46, 419–437.
| Histone H3 and U2 snRNA DNA sequences and arthropod molecular evolution.Crossref | GoogleScholarGoogle Scholar |
Cooper, S. J., Harvey, M. S., Saint, K. M., and Main, B. Y. (2011). Deep phylogeographic structuring of populations of the trapdoor spider Moggridgea tingle (Migidae) from southwestern Australia: evidence for long‐term refugia within refugia. Molecular Ecology 20, 3219–3236.
| Deep phylogeographic structuring of populations of the trapdoor spider Moggridgea tingle (Migidae) from southwestern Australia: evidence for long‐term refugia within refugia.Crossref | GoogleScholarGoogle Scholar | 21689192PubMed |
Coyle, F. A., Greenstone, M. H., Hultsch, A.-L., and Morgan, C. E. (1985). Ballooning mygalomorphs: estimates of the masses of Sphodros and Ummidia ballooners (Araneae: Atypidae, Ctenizidae). The Journal of Arachnology 13, 291–296.
Cracraft, J. (1973). Continental drift, paleoclimatology, and the evolution and biogeography of birds. Journal of Zoology 169, 455–543.
| Continental drift, paleoclimatology, and the evolution and biogeography of birds.Crossref | GoogleScholarGoogle Scholar |
De Queiroz, K. (2007). Species concepts and species delimitation. Systematic Biology 56, 879–886.
| Species concepts and species delimitation.Crossref | GoogleScholarGoogle Scholar | 18027281PubMed |
Decae, A. E. (2010). The genus Ummidia Thorell 1875 in the western Mediterranean, a review (Araneae: Mygalomorphae: Ctenizidae). The Journal of Arachnology 38, 328–340.
| The genus Ummidia Thorell 1875 in the western Mediterranean, a review (Araneae: Mygalomorphae: Ctenizidae).Crossref | GoogleScholarGoogle Scholar |
Dellicour, S., and Flot, J. F. (2018). The hitchhiker’s guide to single‐locus species delimitation. Molecular Ecology Resources 18, 1234–1246.
| The hitchhiker’s guide to single‐locus species delimitation.Crossref | GoogleScholarGoogle Scholar | 29847023PubMed |
Drummond, A. J., and Rambaut, A. (2007). BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology 7, 214.
| BEAST: Bayesian evolutionary analysis by sampling trees.Crossref | GoogleScholarGoogle Scholar | 17996036PubMed |
Drummond, A. J., Suchard, M. A., Xie, D., and Rambaut, A. (2012). Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution 29, 1969–1973.
| Bayesian phylogenetics with BEAUti and the BEAST 1.7.Crossref | GoogleScholarGoogle Scholar | 22367748PubMed |
Folmer, O., Black, M., Hoeh, W., Lutz, R., and Vrijenhoek, R. (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3, 294–299.
| 7881515PubMed |
Framenau, V.W., Baehr, B., and Zborowski, P. (2014). ‘A Guide to the Spiders of Australia.’ (New Holland Publishers: Sydney, NSW.)
Framenau, V., Hamilton, Z., Finston, T., Humphreys, G., Abrams, K., Huey, J., and Harvey, M. (2018). Molecular and morphological characterization of new species of hypogean Paradraculoides (Schizomida: Hubbardiidae) from the arid Pilbara bioregion of Western Australia. The Journal of Arachnology 46, 507–578.
| Molecular and morphological characterization of new species of hypogean Paradraculoides (Schizomida: Hubbardiidae) from the arid Pilbara bioregion of Western Australia.Crossref | GoogleScholarGoogle Scholar |
Fuller, S., Schwarz, M., and Tierney, S. (2005). Phylogenetics of the allodapine bee genus Braunsapis: historical biogeography and long‐range dispersal over water. Journal of Biogeography 32, 2135–2144.
| Phylogenetics of the allodapine bee genus Braunsapis: historical biogeography and long‐range dispersal over water.Crossref | GoogleScholarGoogle Scholar |
Giribet, G., Carranza, S., Baguñà, J., Riutort, M., and Ribera, C. (1996). First molecular evidence for the existence of a Tardigrada+Arthropoda clade. Molecular Biology and Evolution 13, 76–84.
| First molecular evidence for the existence of a Tardigrada+Arthropoda clade.Crossref | GoogleScholarGoogle Scholar | 8583909PubMed |
Godwin, R. L., Opatova, V., Garrison, N. L., Hamilton, C. A., and Bond, J. E. (2018). Phylogeny of a cosmopolitan family of morphologically conserved trapdoor spiders (Mygalomorphae, Ctenizidae) using anchored hybrid enrichment, with a description of the family, Halonoproctidae Pocock 1901. Molecular Phylogenetics and Evolution 126, 303–313.
| Phylogeny of a cosmopolitan family of morphologically conserved trapdoor spiders (Mygalomorphae, Ctenizidae) using anchored hybrid enrichment, with a description of the family, Halonoproctidae Pocock 1901.Crossref | GoogleScholarGoogle Scholar | 29656103PubMed |
Hall, R. (2002). Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer-based reconstructions, model and animations. Journal of Asian Earth Sciences 20, 353–431.
| Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer-based reconstructions, model and animations.Crossref | GoogleScholarGoogle Scholar |
Harrison, S. E., Rix, M. G., Harvey, M. S., and Austin, A. D. (2016). An African mygalomorph lineage in temperate Australia: the trapdoor spider genus Moggridgea (Araneae: Migidae) on Kangaroo Island, South Australia. Austral Entomology 55, 208–216.
| An African mygalomorph lineage in temperate Australia: the trapdoor spider genus Moggridgea (Araneae: Migidae) on Kangaroo Island, South Australia.Crossref | GoogleScholarGoogle Scholar |
Harrison, S. E., Harvey, M. S., Cooper, S. J., Austin, A. D., and Rix, M. G. (2017). Across the Indian Ocean: a remarkable example of trans-oceanic dispersal in an austral mygalomorph spider. PLoS One 12, e0180139.
| Across the Indian Ocean: a remarkable example of trans-oceanic dispersal in an austral mygalomorph spider.Crossref | GoogleScholarGoogle Scholar | 28767648PubMed |
Harvey, M. (2002). Short-range endemism amongst the Australian fauna: some examples from non-marine environments. Invertebrate Systematics 16, 555–570.
| Short-range endemism amongst the Australian fauna: some examples from non-marine environments.Crossref | GoogleScholarGoogle Scholar |
Harvey, M. S., Rix, M. G., Framenau, V. W., Hamilton, Z. R., Johnson, M. S., Teale, R. J., Humphreys, G., and Humphreys, W. F. (2011). Protecting the innocent: studying short-range endemic taxa enhances conservation outcomes. Invertebrate Systematics 25, 1–10.
| Protecting the innocent: studying short-range endemic taxa enhances conservation outcomes.Crossref | GoogleScholarGoogle Scholar |
Harvey, M. S., Main, B. Y., Rix, M. G., and Cooper, S. J. (2015). Refugia within refugia: in situ speciation and conservation of threatened Bertmainius (Araneae: Migidae), a new genus of relictual trapdoor spiders endemic to the mesic zone of south-western Australia. Invertebrate Systematics 29, 511–553.
| Refugia within refugia: in situ speciation and conservation of threatened Bertmainius (Araneae: Migidae), a new genus of relictual trapdoor spiders endemic to the mesic zone of south-western Australia.Crossref | GoogleScholarGoogle Scholar |
Harvey, M. S., Hillyer, M. J., Main, B. Y., Moulds, T. A., Raven, R. J., Rix, M. G., Vink, C. J., and Huey, J. A. (2018). Phylogenetic relationships of the Australasian open-holed trapdoor spiders (Araneae: Mygalomorphae: Nemesiidae: Anaminae): multi-locus molecular analyses resolve the generic classification of a highly diverse fauna. Zoological Journal of the Linnean Society 184, 407–452.
| Phylogenetic relationships of the Australasian open-holed trapdoor spiders (Araneae: Mygalomorphae: Nemesiidae: Anaminae): multi-locus molecular analyses resolve the generic classification of a highly diverse fauna.Crossref | GoogleScholarGoogle Scholar |
Hedin, M., and Bond, J. E. (2006). Molecular phylogenetics of the spider infraorder Mygalomorphae using nuclear rRNA genes (18S and 28S): conflict and agreement with the current system of classification. Molecular Phylogenetics and Evolution 41, 454–471.
| Molecular phylogenetics of the spider infraorder Mygalomorphae using nuclear rRNA genes (18S and 28S): conflict and agreement with the current system of classification.Crossref | GoogleScholarGoogle Scholar | 16815045PubMed |
Hedin, M. C., and Maddison, W. P. (2001). A combined molecular approach to phylogeny of the jumping spider subfamily Dendryphantinae (Araneae: Salticidae). Molecular Phylogenetics and Evolution 18, 386–403.
| A combined molecular approach to phylogeny of the jumping spider subfamily Dendryphantinae (Araneae: Salticidae).Crossref | GoogleScholarGoogle Scholar | 11277632PubMed |
Hedin, M., Derkarabetian, S., Ramírez, M. J., Vink, C., and Bond, J. E. (2018). Phylogenomic reclassification of the world’s most venomous spiders (Mygalomorphae, Atracinae), with implications for venom evolution. Scientific Reports 8, 1636.
| Phylogenomic reclassification of the world’s most venomous spiders (Mygalomorphae, Atracinae), with implications for venom evolution.Crossref | GoogleScholarGoogle Scholar | 29374214PubMed |
Heinicke, M. P., Greenbaum, E., Jackman, T. R., and Bauer, A. M. (2011). Phylogeny of a trans‐Wallacean radiation (Squamata, Gekkonidae, Gehyra) supports a single early colonization of Australia. Zoologica Scripta 40, 584–602.
| Phylogeny of a trans‐Wallacean radiation (Squamata, Gekkonidae, Gehyra) supports a single early colonization of Australia.Crossref | GoogleScholarGoogle Scholar |
Hill, R. (1994). The history of selected Australian taxa. In ‘History of the Australian Vegetation: Cretaceous to Recent’. (Ed. R Hill.) pp. 390–420. (University of Adelaide Press: Adelaide, SA.)
Honda, M., Ota, H., Kobayashi, M., Nabhitabhata, J., Yong, H.-S., Sengoku, S., and Hikida, T. (2000). Phylogenetic relationships of the family Agamidae (Reptilia: Iguania) inferred from mitochondrial DNA sequences. Zoological Science 17, 527–537.
Hugall, A. F., and Stanisic, J. (2011). Beyond the prolegomenon: a molecular phylogeny of the Australian camaenid land snail radiation. Zoological Journal of the Linnean Society 161, 531–572.
| Beyond the prolegomenon: a molecular phylogeny of the Australian camaenid land snail radiation.Crossref | GoogleScholarGoogle Scholar |
Hugall, A. F., Foster, R., Hutchinson, M., and Lee, M. S. (2008). Phylogeny of Australasian agamid lizards based on nuclear and mitochondrial genes: implications for morphological evolution and biogeography. Biological Journal of the Linnean Society. Linnean Society of London 93, 343–358.
| Phylogeny of Australasian agamid lizards based on nuclear and mitochondrial genes: implications for morphological evolution and biogeography.Crossref | GoogleScholarGoogle Scholar |
Kapli, P., Lutteropp, S., Zhang, J., Kobert, K., Pavlidis, P., Stamatakis, A., and Flouri, T. (2017). Multi-rate Poisson tree processes for single-locus species delimitation under maximum likelihood and Markov chain Monte Carlo. Bioinformatics 33, 1630–1638.
| 28108445PubMed |
Katoh, K., and Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30, 772–780.
| MAFFT multiple sequence alignment software version 7: improvements in performance and usability.Crossref | GoogleScholarGoogle Scholar | 23329690PubMed |
Kealley, L., Doughty, P., Pepper, M., Keogh, J. S., Hillyer, M., and Huey, J. (2018). Conspicuously concealed: revision of the arid clade of the Gehyra variegata (Gekkonidae) group in Western Australia using an integrative molecular and morphological approach, with the description of five cryptic species. PeerJ 6, e5334.
| Conspicuously concealed: revision of the arid clade of the Gehyra variegata (Gekkonidae) group in Western Australia using an integrative molecular and morphological approach, with the description of five cryptic species.Crossref | GoogleScholarGoogle Scholar | 30038877PubMed |
Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., and Duran, C. (2012). Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649.
| Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data.Crossref | GoogleScholarGoogle Scholar | 22543367PubMed |
Keogh, J. S. (1998). Molecular phylogeny of elapid snakes and a consideration of their biogeographic history. Biological Journal of the Linnean Society. Linnean Society of London 63, 177–203.
| Molecular phylogeny of elapid snakes and a consideration of their biogeographic history.Crossref | GoogleScholarGoogle Scholar |
Kocher, T. D., Thomas, W. K., Meyer, A., Edwards, S. V., Pääbo, S., Villablanca, F. X., and Wilson, A. C. (1989). Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proceedings of the National Academy of Sciences of the United States of America 86, 6196–6200.
| Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers.Crossref | GoogleScholarGoogle Scholar | 2762322PubMed |
Kornilios, P., Thanou, E., Kapli, P., Parmakelis, A., and Chatzaki, M. (2016). Peeking through the trapdoor: historical biogeography of the Aegean endemic spider Cyrtocarenum Ausserer, 1871 with an estimation of mtDNA substitution rates for Mygalomorphae. Molecular Phylogenetics and Evolution 98, 300–313.
| Peeking through the trapdoor: historical biogeography of the Aegean endemic spider Cyrtocarenum Ausserer, 1871 with an estimation of mtDNA substitution rates for Mygalomorphae.Crossref | GoogleScholarGoogle Scholar | 26876639PubMed |
Kotzman, M. (1990). Annual activity patterns of the Australian tarantula Selenocosmia stirlingi (Araneae, Theraphosidae) in an arid area. The Journal of Arachnology 18, 123–130.
Lanfear, R., Calcott, B., Ho, S. Y., and Guindon, S. (2012). PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution 29, 1695–1701.
| PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses.Crossref | GoogleScholarGoogle Scholar | 22319168PubMed |
Lanfear, R., Calcott, B., Kainer, D., Mayer, C., and Stamatakis, A. (2014). Selecting optimal partitioning schemes for phylogenomic datasets. BMC Evolutionary Biology 14, 82.
| Selecting optimal partitioning schemes for phylogenomic datasets.Crossref | GoogleScholarGoogle Scholar | 24742000PubMed |
Leys, R., Cooper, S. J., and Schwarz, M. P. (2002). Molecular phylogeny and historical biogeography of the large carpenter bees, genus Xylocopa (Hymenoptera: Apidae). Biological Journal of the Linnean Society. Linnean Society of London 77, 249–266.
| Molecular phylogeny and historical biogeography of the large carpenter bees, genus Xylocopa (Hymenoptera: Apidae).Crossref | GoogleScholarGoogle Scholar |
Luo, A., Ling, C., Ho, S. Y., and Zhu, C. (2018). Comparison of methods for molecular species delimitation across a range of speciation scenarios. Systematic Biology 67, 830–846.
| Comparison of methods for molecular species delimitation across a range of speciation scenarios.Crossref | GoogleScholarGoogle Scholar | 29462495PubMed |
Maekawa, K., Lo, N., Rose, H. A., and Matsumoto, T. (2003). The evolution of soil-burrowing cockroaches (Blattaria: Blaberidae) from wood-burrowing ancestors following an invasion of the latter from Asia into Australia. Proceedings of the Royal Society of London. Series B, Biological Sciences 270, 1301–1307.
| The evolution of soil-burrowing cockroaches (Blattaria: Blaberidae) from wood-burrowing ancestors following an invasion of the latter from Asia into Australia.Crossref | GoogleScholarGoogle Scholar |
Main, B. (1957). Occurrence of the trap-door spider Conothele malayana (Doleschall) in Australia (Mygalomorphae: Ctenizidae). Western Australian Naturalist (Perth) 5, 209–216.
Main, B. Y. (1981). Eco-evolutionary radiation of mygalomorph spiders in Australia. In ‘Ecological Biogeography of Australia. Vol. 2’. (Ed. A Keast.) pp. 854–872. (Junk: The Hague, Netherlands.)
Main, B. Y. (1985). Further studies on the systematics for ctenizid trapdoor spiders: a review of the Australian genera (Araneae: Mygalomorphae: Ctenizidae). Australian Journal of Zoology 33, 1–84.
| Further studies on the systematics for ctenizid trapdoor spiders: a review of the Australian genera (Araneae: Mygalomorphae: Ctenizidae).Crossref | GoogleScholarGoogle Scholar |
Martin, H. (2006). Cenozoic climatic change and the development of the arid vegetation in Australia. Journal of Arid Environments 66, 533–563.
| Cenozoic climatic change and the development of the arid vegetation in Australia.Crossref | GoogleScholarGoogle Scholar |
Mason, L. D., Tomlinson, S., Withers, P. C., and Main, B. Y. (2013). Thermal and hygric physiology of Australian burrowing mygalomorph spiders (Aganippe spp.). Journal of Comparative Physiology. B, Biochemical, Systemic, and Environmental Physiology 183, 71–82.
| Thermal and hygric physiology of Australian burrowing mygalomorph spiders (Aganippe spp.).Crossref | GoogleScholarGoogle Scholar | 22911375PubMed |
Mason, L. D., Wardell-Johnson, G., and Main, B. Y. (2016). Quality not quantity: conserving species of low mobility and dispersal capacity in south-western Australian urban remnants. Pacific Conservation Biology 22, 37–47.
| Quality not quantity: conserving species of low mobility and dispersal capacity in south-western Australian urban remnants.Crossref | GoogleScholarGoogle Scholar |
McKenzie, N., Van Leeuwen, S., and Pinder, A. (2009). Introduction to the Pilbara biodiversity survey, 2002–2007. Records of the Western Australian Museum 78, 3–89.
| Introduction to the Pilbara biodiversity survey, 2002–2007.Crossref | GoogleScholarGoogle Scholar |
Miller, M. A., Pfeiffer, W., and Schwartz, T. (2010). Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In ‘Gateway Computing Environments Workshop (GCE), 2010’, 14 November 2010, pp. 1–8.
Monod, L., and Prendini, L. (2015). Evidence for Eurogondwana: the roles of dispersal, extinction and vicariance in the evolution and biogeography of Indo‐Pacific Hormuridae (Scorpiones: Scorpionoidea). Cladistics 31, 71–111.
| Evidence for Eurogondwana: the roles of dispersal, extinction and vicariance in the evolution and biogeography of Indo‐Pacific Hormuridae (Scorpiones: Scorpionoidea).Crossref | GoogleScholarGoogle Scholar |
Opatova, V., Bond, J. E., and Arnedo, M. A. (2013). Ancient origins of the Mediterranean trap-door spiders of the family Ctenizidae (Araneae, Mygalomorphae). Molecular Phylogenetics and Evolution 69, 1135–1145.
| Ancient origins of the Mediterranean trap-door spiders of the family Ctenizidae (Araneae, Mygalomorphae).Crossref | GoogleScholarGoogle Scholar | 23954655PubMed |
Palumbi, S.R. (1996). Nucleic acids II: the polymerase chain reaction. Molecular Systematics , 205–247.
Pepper, M., Doughty, P., and Keogh, J. S. (2013). Geodiversity and endemism in the iconic Australian Pilbara region: a review of landscape evolution and biotic response in an ancient refugium. Journal of Biogeography 40, 1225–1239.
| Geodiversity and endemism in the iconic Australian Pilbara region: a review of landscape evolution and biotic response in an ancient refugium.Crossref | GoogleScholarGoogle Scholar |
Pérez-Miles, F., and Perafán, C. (2017). Behavior and biology of Mygalomorphae. In ‘Behaviour and Ecology of Spiders’. (Eds C. Viera and M. O. Gonzaga.) pp. 29–54. (Springer Nature: Cham, Switzerland.)
Pons, J., Barraclough, T. G., Gomez-Zurita, J., Cardoso, A., Duran, D. P., Hazell, S., Kamoun, S., Sumlin, W. D., and Vogler, A. P. (2006). Sequence-based species delimitation for the DNA taxonomy of undescribed insects. Systematic Biology 55, 595–609.
| Sequence-based species delimitation for the DNA taxonomy of undescribed insects.Crossref | GoogleScholarGoogle Scholar | 16967577PubMed |
Rambaut, A., and Drummond, A. (2003). ‘Tracer: a Program for Analysing Results from Bayesian MCMC Programs such as BEAST & MrBayes.’ (University of Edinburgh: Edinburgh)
Rix, M.G., Harvey, M.S.,, and Roberts, J.D. (2010). A revision of the textricellin spider genus Raveniella (Araneae: Araneoidea: Micropholcommatidae): exploring patterns of phylogeny and biogeography in an Australian biodiversity hotspot. Invertebrate Systematics 24, 209–237.
| A revision of the textricellin spider genus Raveniella (Araneae: Araneoidea: Micropholcommatidae): exploring patterns of phylogeny and biogeography in an Australian biodiversity hotspot.Crossref | GoogleScholarGoogle Scholar |
Rix, M. G., Edwards, D. L., Byrne, M., Harvey, M. S., Joseph, L., and Roberts, J. D. (2015). Biogeography and speciation of terrestrial fauna in the south‐western Australian biodiversity hotspot. Biological Reviews of the Cambridge Philosophical Society 90, 762–793.
| Biogeography and speciation of terrestrial fauna in the south‐western Australian biodiversity hotspot.Crossref | GoogleScholarGoogle Scholar | 25125282PubMed |
Rix, M. G., Bain, K., Main, B. Y., Raven, R. J., Austin, A. D., Cooper, S. J., and Harvey, M. S. (2017a). Systematics of the spiny trapdoor spiders of the genus Cataxia (Mygalomorphae: Idiopidae) from south-western Australia: documenting a threatened fauna in a sky-island landscape. The Journal of Arachnology 45, 395–423.
| Systematics of the spiny trapdoor spiders of the genus Cataxia (Mygalomorphae: Idiopidae) from south-western Australia: documenting a threatened fauna in a sky-island landscape.Crossref | GoogleScholarGoogle Scholar |
Rix, M. G., Cooper, S. J., Meusemann, K., Klopfstein, S., Harrison, S. E., Harvey, M. S., and Austin, A. D. (2017b). Post-Eocene climate change across continental Australia and the diversification of Australasian spiny trapdoor spiders (Idiopidae: Arbanitinae). Molecular Phylogenetics and Evolution 109, 302–320.
| Post-Eocene climate change across continental Australia and the diversification of Australasian spiny trapdoor spiders (Idiopidae: Arbanitinae).Crossref | GoogleScholarGoogle Scholar | 28126515PubMed |
Rix, M. G., Huey, J. A., Main, B. Y., Waldock, J. M., Harrison, S. E., Comer, S., Austin, A. D., and Harvey, M. S. (2017c). Where have all the spiders gone? The decline of a poorly known invertebrate fauna in the agricultural and arid zones of southern Australia. Austral Entomology 56, 14–22.
| Where have all the spiders gone? The decline of a poorly known invertebrate fauna in the agricultural and arid zones of southern Australia.Crossref | GoogleScholarGoogle Scholar |
Rix, M. G., Raven, R. J., Main, B. Y., Harrison, S. E., Austin, A. D., Cooper, S. J., and Harvey, M. S. (2017d). The Australasian spiny trapdoor spiders of the family Idiopidae (Mygalomorphae: Arbanitinae): a relimitation and revision at the generic level. Invertebrate Systematics 31, 566–634.
| The Australasian spiny trapdoor spiders of the family Idiopidae (Mygalomorphae: Arbanitinae): a relimitation and revision at the generic level.Crossref | GoogleScholarGoogle Scholar |
Rix, M. G., Huey, J. A., Cooper, S. J., Austin, A. D., and Harvey, M. S. (2018a). Conservation systematics of the shield-backed trapdoor spiders of the nigrum-group (Mygalomorphae, Idiopidae, Idiosoma): integrative taxonomy reveals a diverse and threatened fauna from south-western Australia. ZooKeys 756, 1–121.
| Conservation systematics of the shield-backed trapdoor spiders of the nigrum-group (Mygalomorphae, Idiopidae, Idiosoma): integrative taxonomy reveals a diverse and threatened fauna from south-western Australia.Crossref | GoogleScholarGoogle Scholar |
Rix, M. G., Main, B. Y., Raven, R. J., and Harvey, M. S. (2018b). Systematics of the spiny trapdoor spiders of the genus Eucanippe (Mygalomorphae: Idiopidae: Aganippini) from south-western Australia: documenting a poorly-known lineage from Australia’s biodiversity hotspot. The Journal of Arachnology 46, 133–154.
| Systematics of the spiny trapdoor spiders of the genus Eucanippe (Mygalomorphae: Idiopidae: Aganippini) from south-western Australia: documenting a poorly-known lineage from Australia’s biodiversity hotspot.Crossref | GoogleScholarGoogle Scholar |
Rix, M. G., Raven, R. J., Austin, A. D., Cooper, S. J., and Harvey, M. S. (2018c). Systematics of the spiny trapdoor spider genus Bungulla (Mygalomorphae: Idiopidae): revealing a remarkable radiation of mygalomorph spiders from the Western Australian arid zone. The Journal of Arachnology 46, 249–344.
| Systematics of the spiny trapdoor spider genus Bungulla (Mygalomorphae: Idiopidae): revealing a remarkable radiation of mygalomorph spiders from the Western Australian arid zone.Crossref | GoogleScholarGoogle Scholar |
Rix, M. G., Wilson, J. D., Rix, A. G., Wojcieszek, A. M., Huey, J. A., and Harvey, M. S. (2018d). Population demography and biology of a new species of giant spiny trapdoor spider (Araneae: Idiopidae: Euoplos) from inland Queensland: developing a ‘slow science’ study system to address a conservation crisis. Austral Entomology , .
| Population demography and biology of a new species of giant spiny trapdoor spider (Araneae: Idiopidae: Euoplos) from inland Queensland: developing a ‘slow science’ study system to address a conservation crisis.Crossref | GoogleScholarGoogle Scholar |
Ronquist, F. (1997). Dispersal–vicariance analysis: a new approach to the quantification of historical biogeography. Systematic Biology 46, 195–203.
| Dispersal–vicariance analysis: a new approach to the quantification of historical biogeography.Crossref | GoogleScholarGoogle Scholar |
Rowe, K. C., Reno, M. L., Richmond, D. M., Adkins, R. M., and Steppan, S. J. (2008). Pliocene colonization and adaptive radiations in Australia and New Guinea (Sahul): multilocus systematics of the old endemic rodents (Muroidea: Murinae). Molecular Phylogenetics and Evolution 47, 84–101.
| Pliocene colonization and adaptive radiations in Australia and New Guinea (Sahul): multilocus systematics of the old endemic rodents (Muroidea: Murinae).Crossref | GoogleScholarGoogle Scholar | 18313945PubMed |
Schwarz, M. P., Tierney, S. M., Cooper, S. J., and Bull, N. J. (2004). Molecular phylogenetics of the allodapine bee genus Braunsapis: A–T bias and heterogeneous substitution parameters. Molecular Phylogenetics and Evolution 32, 110–122.
| Molecular phylogenetics of the allodapine bee genus Braunsapis: A–T bias and heterogeneous substitution parameters.Crossref | GoogleScholarGoogle Scholar | 15186801PubMed |
Schwarz, M. P., Fuller, S., Tierney, S. M., and Cooper, S. J. (2006). Molecular phylogenetics of the exoneurine allodapine bees reveal an ancient and puzzling dispersal from Africa to Australia. Systematic Biology 55, 31–45.
| Molecular phylogenetics of the exoneurine allodapine bees reveal an ancient and puzzling dispersal from Africa to Australia.Crossref | GoogleScholarGoogle Scholar | 16507522PubMed |
Smissen, P. J., and Rowe, K. C. (2018). Repeated biome transitions in the evolution of Australian rodents. Molecular Phylogenetics and Evolution 128, 182–191.
| Repeated biome transitions in the evolution of Australian rodents.Crossref | GoogleScholarGoogle Scholar | 30075296PubMed |
Stamatakis, A. (2006). RAxML–VI–HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688–2690.
| RAxML–VI–HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models.Crossref | GoogleScholarGoogle Scholar | 16928733PubMed |
Stamatakis, A., Hoover, P., and Rougemont, J. (2008). A rapid bootstrap algorithm for the RAxML web servers. Systematic Biology 57, 758–771.
| A rapid bootstrap algorithm for the RAxML web servers.Crossref | GoogleScholarGoogle Scholar | 18853362PubMed |
Starrett, J., and Hedin, M. (2007). Multilocus genealogies reveal multiple cryptic species and biogeographical complexity in the California turret spider Antrodiaetus riversi (Mygalomorphae, Antrodiaetidae). Molecular Ecology 16, 583–604.
| Multilocus genealogies reveal multiple cryptic species and biogeographical complexity in the California turret spider Antrodiaetus riversi (Mygalomorphae, Antrodiaetidae).Crossref | GoogleScholarGoogle Scholar | 17257115PubMed |
Talavera, G., and Castresana, J. (2007). Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Systematic Biology 56, 564–577.
| Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments.Crossref | GoogleScholarGoogle Scholar | 17654362PubMed |
Thorell, T. (1881). Studi sui Ragni Malesi e Papuani. Part III. Ragni dell’Austro Malesia e del Capo York, conservati nel Museo Civico di Storia Naturale di Genova. Annali del Museo Civico di Storia Naturale di Genova 17, 1–720.
Whiting, M. F., Carpenter, J. C., Wheeler, Q. D., and Wheeler, W. C. (1997). The Strepsiptera problem: phylogeny of the holometabolous insect orders inferred from 18S and 28S ribosomal DNA sequences and morphology. Systematic Biology 46, 1–68.
| 11975347PubMed |
Williams, M. A. J., Dunkerley, D., De Deckker, P., Kershaw, A. P., and Stokes, T. (1997). ‘Quaternary Environments.’ (Science Press: London, UK.)
Wilson, J. D., Hughes, J. M., Raven, R. J., Rix, M. G., and Schmidt, D. J. (2018). Spiny trapdoor spiders (Euoplos) of eastern Australia: broadly sympatric clades are differentiated by burrow architecture and male morphology. Molecular Phylogenetics and Evolution 122, 157–165.
| Spiny trapdoor spiders (Euoplos) of eastern Australia: broadly sympatric clades are differentiated by burrow architecture and male morphology.Crossref | GoogleScholarGoogle Scholar | 29428510PubMed |
World Spider Catalog (2018). ‘World Spider Catalog.’ Available at https://wsc.nmbe.ch/ [verified 25 October 2018].
Xu X.Liu F.Cheng R.-C.Chen J.Xu X.Zhang Z.Ono H.Pham D. S.Norma-Rashid Y.Arnedo M. A. (2015 ).
Yu, Y., Harris, A., and He, X. (2010). S-DIVA (statistical dispersal–vicariance analysis): a tool for inferring biogeographic histories. Molecular Phylogenetics and Evolution 56, 848–850.
| S-DIVA (statistical dispersal–vicariance analysis): a tool for inferring biogeographic histories.Crossref | GoogleScholarGoogle Scholar | 20399277PubMed |
Yu, Y., Harris, A. J., Blair, C., and He, X. (2015). RASP (reconstruct ancestral state in phylogenies): a tool for historical biogeography. Molecular Phylogenetics and Evolution 87, 46–49.
| RASP (reconstruct ancestral state in phylogenies): a tool for historical biogeography.Crossref | GoogleScholarGoogle Scholar | 25819445PubMed |
Zhang, J., Kapli, P., Pavlidis, P., and Stamatakis, A. (2013). A general species delimitation method with applications to phylogenetic placements. Bioinformatics 29, 2869–2876.
| A general species delimitation method with applications to phylogenetic placements.Crossref | GoogleScholarGoogle Scholar | 23990417PubMed |