Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Invertebrate Systematics Invertebrate Systematics Society
Systematics, phylogeny and biogeography
RESEARCH ARTICLE

Cryptic speciation in a biodiversity hotspot: multilocus molecular data reveal new velvet worm species from Western Australia (Onychophora : Peripatopsidae : Kumbadjena)

Shoyo Sato A F , Rebecca S. Buckman-Young A B , Mark S. Harvey C D E and Gonzalo Giribet A
+ Author Affiliations
- Author Affiliations

A Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA.

B Current address: Department of Integrative Biology, University of Wisconsin–Madison, 250 N. Mills Street, Madison, WI 53706, USA.

C Department of Terrestrial Zoology, Western Australia Museum, Welshpool, WA 6106, Australia.

D School of Biological Sciences, The University of Western Australia, Crawley, WA 6009, Australia.

E School of Natural Sciences, Edith Cowan University, Joondalup, WA 6027, Australia.

F Corresponding author. Email: shoyosato@g.harvard.edu

Invertebrate Systematics 32(6) 1249-1264 https://doi.org/10.1071/IS18024
Submitted: 20 March 2018  Accepted: 5 June 2018   Published: 27 November 2018

Abstract

There is a yet uncovered multitude of species to be found among Western Australian Onychophora. Kumbadjena, one of the two genera that reside in this region, has been previously suggested to house an extensive species complex. Morphology alone has not been able to elucidate the diversity in this genus and has instead muddled species delineations. Topologies and species delimitation analyses resulting from the sequences of two mitochondrial ribosomal markers (12S rRNA and 16S rRNA), one nuclear ribosomal marker (18S rRNA), and one mitochondrial protein-coding gene (cytochrome c oxidase subunit I) are indicative of several undescribed species. Fixed diagnostic nucleotide changes in the highly conserved sequences of 18S rRNA warrant distinction of three new species of Kumbadjena: K. toolbrunupensis, sp. nov., K. karricola, sp. nov., and K. extrema, sp. nov. The geographic distributions of the proposed species suggest that Kumbadjena is another example of short-range endemism, a common occurrence in the flora and fauna of the region. The extensive biodiversity and endemism in the region necessitates conservation to preserve the species and processes that promote speciation harboured by Western Australia.

Additional keywords: conservation, endemism, molecular diagnosis.


References

Abouheif, E., Zardoya, R., and Meyer, A. (1998). Limitations of Metazoa 18S rRNA sequence data: implications for reconstructing a phylogeny of the animal kingdom and inferring the reality of the Cambrian explosion. Journal of Molecular Evolution 47, 394–405.
Limitations of Metazoa 18S rRNA sequence data: implications for reconstructing a phylogeny of the animal kingdom and inferring the reality of the Cambrian explosion.Crossref | GoogleScholarGoogle Scholar |

Aris-Brosou, S., and Yang, Z. (2002). Effects of models of rate evolution on estimation of divergence dates with special reference to the metazoan 18S ribosomal RNA phylogeny. Systematic Biology 51, 703–714.
Effects of models of rate evolution on estimation of divergence dates with special reference to the metazoan 18S ribosomal RNA phylogeny.Crossref | GoogleScholarGoogle Scholar |

Arnold, G. W. (1995). Incorporating landscape patterns into conservation programs. In ‘Mosaic Landscapes and Ecological Processes’. (Eds L. Hansson, L. Fahrig and G. Merriam.) pp. 309–337. (Springer Netherlands: Dortrecht.)

Beard, J. S., Chapman, A. R., and Gioia, P. (2000). Species richness and endemism in the Western Australia flora. Journal of Biogeography 27, 1257–1268.
Species richness and endemism in the Western Australia flora.Crossref | GoogleScholarGoogle Scholar |

Bouckaert, R., Heled, J., Kühnert, D., Vaughan, T., Wu, C.-H., Xie, D., Suchard, M. A., Rambaut, A., and Drummond, A. J. (2014). BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Computational Biology 10, e1003537.
BEAST 2: a software platform for Bayesian evolutionary analysis.Crossref | GoogleScholarGoogle Scholar |

Briscoe, D. A., and Tait, N. N. (1995). Allozyme evidence for extensive and ancient radiations in Australian Onychophora. Zoological Journal of the Linnean Society 114, 91–102.
Allozyme evidence for extensive and ancient radiations in Australian Onychophora.Crossref | GoogleScholarGoogle Scholar |

Bull, J. K., and Sunnucks, P. (2014). Strong genetic structuring without assortative mating or reduced hybrid survival in an onychophoran in the Tallaganda State Forest region, Australia. Biological Journal of the Linnean Society. Linnean Society of London 111, 589–602.
Strong genetic structuring without assortative mating or reduced hybrid survival in an onychophoran in the Tallaganda State Forest region, Australia.Crossref | GoogleScholarGoogle Scholar |

Byrne, M., Steane, D. A., Joseph, L., Yeates, D. K., Jordan, G. J., Crayn, D., Aplin, K., Cantrill, D. J., Cook, L. G., Crisp, M. D., Keogh, J. S., Melville, J., Moritz, C., Porch, N., Sniderman, J. M. K., Sunnucks, P., and Weston, P. H. (2011). Decline of a biome: evolution, contraction, fragmentation, extinction and invasion of the Australian mesic zone biota. Journal of Biogeography 38, 1635–1656.
Decline of a biome: evolution, contraction, fragmentation, extinction and invasion of the Australian mesic zone biota.Crossref | GoogleScholarGoogle Scholar |

Cook, L. G., Edwards, R. D., Crisp, M. D., and Hardy, N. B. (2010). Need morphology always be required for new species descriptions? Invertebrate Systematics 24, 322–326.
Need morphology always be required for new species descriptions?Crossref | GoogleScholarGoogle Scholar |

Cooper, S. J., Harvey, M. S., Saint, K. M., and Main, B. Y. (2011). Deep phylogeographic structuring of populations of the trapdoor spider Moggridgea tingle (Migidae) from southwestern Australia: evidence for long-term refugia within refugia. Molecular Ecology 20, 3219–3236.
Deep phylogeographic structuring of populations of the trapdoor spider Moggridgea tingle (Migidae) from southwestern Australia: evidence for long-term refugia within refugia.Crossref | GoogleScholarGoogle Scholar |

Dakin, W. J. (1914a). Fauna of Western Australia. – I. The Onychophora of Western Australia. Proceedings of the Zoological Society of London 20, 289–292.

Dakin, W. J. (1914b). The Onychophora of Western Australia. Journal of the Natural History and Science Society of Western Australia 5, 44–46.

Dakin, W. J. (1920). Fauna of Western Australia. – III. Further contributions to the study of Onychophora. The anatomy and systematic position of west Australian Peripatoides, with an account of certain histological details of general importance. Proceedings of the Zoological Society of London 26, 367–389.

Daniels, S. R., McDonald, D. E., and Picker, M. D. (2013). Evolutionary insight into the Peripatopsis balfouri sensu lato species complex (Onychophora: Peripatopsidae) reveals novel lineages and zoogeographic patterning. Zoologica Scripta 42, 656–674.
Evolutionary insight into the Peripatopsis balfouri sensu lato species complex (Onychophora: Peripatopsidae) reveals novel lineages and zoogeographic patterning.Crossref | GoogleScholarGoogle Scholar |

Daniels, S. R., Dambire, C., Klaus, S., and Sharma, P. P. (2016). Unmasking alpha diversity, cladogenesis and biogeographical patterning in an ancient panarthropod lineage (Onychophora: Peripatopsidae: Opisthopatus cinctipes) with the description of five novel species. Cladistics 32, 506–537.
Unmasking alpha diversity, cladogenesis and biogeographical patterning in an ancient panarthropod lineage (Onychophora: Peripatopsidae: Opisthopatus cinctipes) with the description of five novel species.Crossref | GoogleScholarGoogle Scholar |

Edgecombe, G. D., and Giribet, G. (2008). A New Zealand species of the trans-Tasman centipede order Craterostigmomorpha (Arthropoda: Chilopoda) corroborated by molecular evidence. Invertebrate Systematics 22, 1–15.
A New Zealand species of the trans-Tasman centipede order Craterostigmomorpha (Arthropoda: Chilopoda) corroborated by molecular evidence.Crossref | GoogleScholarGoogle Scholar |

Edgecombe, G. D., Giribet, G., and Wheeler, W. C. (2002). Phylogeny of Henicopidae (Chilopoda: Lithobiomorpha): a combined analysis of morphology and five molecular loci. Systematic Entomology 27, 31–64.
Phylogeny of Henicopidae (Chilopoda: Lithobiomorpha): a combined analysis of morphology and five molecular loci.Crossref | GoogleScholarGoogle Scholar |

Edward, K. L., and Harvey, M. S. (2010). A review of the Australian milliepede genus Atelomastix (Diplopoda: Spirostreptida: Iulomorphidae). Zootaxa 2371, 1–63.

Edwards, D. L., Roberts, J. D., and Keogh, J. S. (2007). Impact of Plio-Pleistocene arid cycling on the population history of a southwestern Australian frog. Molecular Ecology 16, 2782–2796.
Impact of Plio-Pleistocene arid cycling on the population history of a southwestern Australian frog.Crossref | GoogleScholarGoogle Scholar |

Edwards, D. L., Roberts, J. D., and Keogh, J. S. (2008). Climatic fluctuations shape the phylogeography of a mesic direct-developing frog from the south-western Australian biodiversity hotspot. Journal of Biogeography 35, 1803–1815.
Climatic fluctuations shape the phylogeography of a mesic direct-developing frog from the south-western Australian biodiversity hotspot.Crossref | GoogleScholarGoogle Scholar |

Environmental Protection Agency (2007). ‘State of the Environment Report: Western Australia 2007.’ (Environmental Protection Agency: Perth).

Ferrier, S., Gray, M. R., Cassis, G. A., and Wilkie, L. (1999). Spatial turnover in species composition of ground-dwelling arthropods, vertebrates and vascular plants in north-east New South Wales: implications for selection of forest reserves. In ‘The Other 99%. The Conservation and Biodiversity of Invertebrates’. (Eds W. F. Ponder and D. Lunney.) pp. 68–76. (The Royal Zoological Society of New South Wales: Sydney.)

Fletcher, J. J. (1895). On the specific identity of the Australian Peripatus usually supposed to be P. leuckarti, Saenger. Proceedings of the Linnean Society of New South Wales 10, 172–194.
On the specific identity of the Australian Peripatus usually supposed to be P. leuckarti, Saenger.Crossref | GoogleScholarGoogle Scholar |

Folmer, O., Black, M., Hoeh, W., Lutz, R., and Vrijenhoek, R. (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3, 294–299.

Fujisawa, T., and Barraclough, T. G. (2013). Delimiting species using single-locus data and the Generalized Mixed Yule Coalescent approach: a revised method and evaluation on simulated data sets. Systematic Biology 62, 707–724.
Delimiting species using single-locus data and the Generalized Mixed Yule Coalescent approach: a revised method and evaluation on simulated data sets.Crossref | GoogleScholarGoogle Scholar |

Garwood, R. J., Edgecombe, G. D., Charbonnier, S., Chabard, D., Sotty, D., and Giribet, G. (2016). Carboniferous Onychophora from Montceau-les-Mines, France, and onychophoran terrestrialization. Invertebrate Biology 135, 179–190.
Carboniferous Onychophora from Montceau-les-Mines, France, and onychophoran terrestrialization.Crossref | GoogleScholarGoogle Scholar |

Giribet, G., and Wheeler, W. C. (2001). Some unusual small-subunit ribosomal RNA sequences of metazoans. American Museum Novitates 3337, 1–14.
Some unusual small-subunit ribosomal RNA sequences of metazoans.Crossref | GoogleScholarGoogle Scholar |

Giribet, G., Carranza, S., Baguñà, J., Riutort, M., and Ribera, C. (1996). First molecular evidence for the existence of a Tardigrada + Arthropoda clade. Molecular Biology and Evolution 13, 76–84.
First molecular evidence for the existence of a Tardigrada + Arthropoda clade.Crossref | GoogleScholarGoogle Scholar |

Giribet, G., Guzmán Cuéllar, A., and Edgecombe, G. D. (2009). Further use of molecular data in studying biogeographic patterns within the centipede genus Craterostigmus: the case for a monophyletic New Zealand species. Soil Organisms 81, 557–563.

Harvey, M. S. (2002). Endemism among the Australian fauna: some examples from non-marine environments. Invertebrate Systematics 16, 555–570.
Endemism among the Australian fauna: some examples from non-marine environments.Crossref | GoogleScholarGoogle Scholar |

Harvey, M. S., Main, B. Y., Rix, M. G., and Cooper, S. J. B. (2015). Refugia within refugia: in situ speciation and conservation of threatened Bertmainius (Araneae: Migidae), a new genus of relictual trapdoor spiders endemic to the mesic zone of south-western Australia. Invertebrate Systematics 29, 511–553.
Refugia within refugia: in situ speciation and conservation of threatened Bertmainius (Araneae: Migidae), a new genus of relictual trapdoor spiders endemic to the mesic zone of south-western Australia.Crossref | GoogleScholarGoogle Scholar |

Hill, R. S. (Ed.) (1994). ‘History of the Australian Vegetation: Cretaceous to Recent.’ (Cambridge University Press: Cambridge.)

Hopper, S. D. (1979). Biogeographical aspects of speciation in the southwest Australian flora. Annual Review of Ecology Evolution and Systematics 10, 399–422.
Biogeographical aspects of speciation in the southwest Australian flora.Crossref | GoogleScholarGoogle Scholar |

Hopper, S. D., and Gioia, P. (2004). The southwest Australian floristic region: evolution and conservation of a global hot spot of biodiversity. Annual Review of Ecology Evolution and Systematics 35, 623–650.
The southwest Australian floristic region: evolution and conservation of a global hot spot of biodiversity.Crossref | GoogleScholarGoogle Scholar |

Hopper, S. D., Harvey, M. S., Chappill, J. A., Main, A. R., and Main, B. Y. (1996). The Western Australian biota as Gondwanan heritage – a review. In ‘Gondwanan Heritage: Past, Present and Future of the Western Australian Biota’. (Eds S. D. Hopper, J. A. Chappill, M. S. Harvey and A. S. George.) pp. 1–46. (Surrey Beatty: Sydney.)

Katoh, K., and Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30, 772–780.
MAFFT multiple sequence alignment software version 7: improvements in performance and usability.Crossref | GoogleScholarGoogle Scholar |

Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., Duran, C., Thierer, T., Ashton, B., Mentjies, P., and Drummond, A. (2012). Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649.
Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data.Crossref | GoogleScholarGoogle Scholar |

Kjer, K. M. (2004). Aligned 18S and insect phylogeny. Systematic Biology 53, 506–514.
Aligned 18S and insect phylogeny.Crossref | GoogleScholarGoogle Scholar |

Kozlov, A. (2018). amkozlov/raxml-ng: RAxML-NG v0.6.0 BETA (Version 0.6.0). Zenodo. Available at http://doi.org/10.5281/zenodo.1291478 [verified 22 February 2018].

Maddison, W. P., and Knowles, L. L. (2006). Inferring phylogeny despite incomplete lineage sorting. Systematic Biology 55, 21–30.

McDonald, D. E., Ruhberg, H., and Daniels, S. R. (2012). Two new Peripatopsis species (Onychophora: Peripatopsidae) from the Western Cape Province, South Africa. Zootaxa 3380, 55–68.

McKenzie, N. L., Halse, S. A., and Gibson, N. (2000). Some gaps in the reserve system of the southern Carnarvon Basin, Western Australia. Records of the Western Australian Museum 61, 547–567.
Some gaps in the reserve system of the southern Carnarvon Basin, Western Australia.Crossref | GoogleScholarGoogle Scholar |

Moir, M. L., Brennan, K. E. C., and Harvey, M. S. (2009). Diversity, endemism and species turnover of millipedes within the south-western Australian global biodiversity hotspot. Journal of Biogeography 36, 1958–1971.
Diversity, endemism and species turnover of millipedes within the south-western Australian global biodiversity hotspot.Crossref | GoogleScholarGoogle Scholar |

Murienne, J., Daniels, S. R., Buckley, T. R., and Mayer, G. Murienne, J., Daniels, S. R., Buckley, T. R., and Mayer, G. (2013). A living fossil tale of Pangaean biogeography. Proceedings. Biological Sciences 281, 20132648.
A living fossil tale of Pangaean biogeography.Crossref | GoogleScholarGoogle Scholar |

Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B., and Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature 403, 853–858.
Biodiversity hotspots for conservation priorities.Crossref | GoogleScholarGoogle Scholar |

Oliveira, I. S., and Mayer, G. (2017). A new giant egg-laying onychophoran (Peripatopsidae) reveals evolutionary and biogeographical aspects of Australian velvet worms. Organisms, Diversity & Evolution 17, 375–391.
A new giant egg-laying onychophoran (Peripatopsidae) reveals evolutionary and biogeographical aspects of Australian velvet worms.Crossref | GoogleScholarGoogle Scholar |

Oliveira, I. S., Read, V. M. S. J., and Mayer, G. (2012). A world checklist of Onychophora (velvet worms), with notes on nomenclature and status of names. ZooKeys 211, 1–70.
A world checklist of Onychophora (velvet worms), with notes on nomenclature and status of names.Crossref | GoogleScholarGoogle Scholar |

Oliveira, I. S., Schaffer, S., Kvartalnov, P. V., Galoyan, E. A., Palko, I. V., Weck-Heimann, A., Geissler, P., Ruhberg, H., and Mayer, G. (2013). A new species of Eoperipatus (Onychophora) from Vietnam reveals novel morphological characters for the South-East Asian Peripatidae. Zoologischer Anzeiger 252, 495–510.
A new species of Eoperipatus (Onychophora) from Vietnam reveals novel morphological characters for the South-East Asian Peripatidae.Crossref | GoogleScholarGoogle Scholar |

Posada, D. (2008). jModelTest: phylogenetic model averaging. Molecular Biology and Evolution 25, 1253–1256.

Puillandre, N., Lambert, A., Brouillet, S., and Achaz, G. (2012). ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Molecular Ecology 21, 1864–1877.
ABGD, Automatic Barcode Gap Discovery for primary species delimitation.Crossref | GoogleScholarGoogle Scholar |

Rambaut, A., Suchard, M.A., Xie, W., Drummond, A.J. (2013). Tracer MCMC Trace Analysis Tool, Version v1.6.0. Available at http://tree.bio.ed.ac.uk/software/tracer/ [verfied 22 February 2018]

Reid, A. L. (1996). Review of the Peripatopsidae (Onychophora) in Australia, with comments on peripatopsid relationships. Invertebrate Taxonomy 10, 663–936.
Review of the Peripatopsidae (Onychophora) in Australia, with comments on peripatopsid relationships.Crossref | GoogleScholarGoogle Scholar |

Reid, A. L. (2002). Western Australian Onychophora (Peripatopsidae): a new genus, Kumbadjena, for a southern species-complex. Records of the Western Australian Museum 21, 129–155.
Western Australian Onychophora (Peripatopsidae): a new genus, Kumbadjena, for a southern species-complex.Crossref | GoogleScholarGoogle Scholar |

Reid, N., and Carstens, B. (2012). Phylogenetic estimation error can decrease the accuracy of species delimitation: a Bayesian implementation of the general mixed Yule-coalescent model. BMC Evolutionary Biology 12, 1–11.
Phylogenetic estimation error can decrease the accuracy of species delimitation: a Bayesian implementation of the general mixed Yule-coalescent model.Crossref | GoogleScholarGoogle Scholar |

Reid, A. L., Tait, N. N., and Briscoe, D. A. (1995). Morphological, cytogenetic and allozymic variation within Cephalofovea (Onychophora: Peripatopsidae) with descriptions of three new species. Zoological Journal of the Linnean Society 114, 115–138.
Morphological, cytogenetic and allozymic variation within Cephalofovea (Onychophora: Peripatopsidae) with descriptions of three new species.Crossref | GoogleScholarGoogle Scholar |

Reinhard, J., and Rowell, D. M. (2005). Social behaviour in an Australian velvet worm, Euperipatoides rowelli (Onychophora: Peripatopsidae). Journal of Zoology 267, 1–7.
Social behaviour in an Australian velvet worm, Euperipatoides rowelli (Onychophora: Peripatopsidae).Crossref | GoogleScholarGoogle Scholar |

Rittmeyer, E. N., and Austin, C. C. (2012). The effects of sampling on delimiting species from multi-locus sequence data. Molecular Phylogenetics and Evolution 65, 451–463.
The effects of sampling on delimiting species from multi-locus sequence data.Crossref | GoogleScholarGoogle Scholar |

Rix, M. G., and Harvey, M. S. (2012). Australian assassins, part II: a review of the new assassin spider genus Zephyrarchaea (Araneae, Archaeidae) from southern Australia. ZooKeys 191, 1–62.
Australian assassins, part II: a review of the new assassin spider genus Zephyrarchaea (Araneae, Archaeidae) from southern Australia.Crossref | GoogleScholarGoogle Scholar |

Rix, M. G., Edwards, D. L., Byrne, M., Harvey, M. S., Joseph, L., and Roberts, J. D. (2015). Biogeography and speciation of terrestrial fauna in the south-western Australian biodiversity hotspot. Biological Reviews of the Cambridge Philosophical Society 90, 762–793.
Biogeography and speciation of terrestrial fauna in the south-western Australian biodiversity hotspot.Crossref | GoogleScholarGoogle Scholar |

Rix, M. G., Bain, K., Main, B. Y., Raven, R. J., Austin, A. D., Cooper, S. J. B., and Harvey, M. S. (2017). The spiny trapdoor spiders of the genus Cataxia (Mygalomorphae: Idiopidae) from south-western Australia: documenting a threatened fauna in a sky-island landscape. The Journal of Arachnology 45, 395–423.
The spiny trapdoor spiders of the genus Cataxia (Mygalomorphae: Idiopidae) from south-western Australia: documenting a threatened fauna in a sky-island landscape.Crossref | GoogleScholarGoogle Scholar |

Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M. A., and Huelsenbeck, J. P. (2012). MRBAYES 3.2: efficient Bayesian phylogenetic inference and model selection across a large model space. Systematic Biology 61, 539–542.
MRBAYES 3.2: efficient Bayesian phylogenetic inference and model selection across a large model space.Crossref | GoogleScholarGoogle Scholar |

Roy, V., Constantino, R., Chassany, V., Giusti-Miller, S., Diouf, M., Mora, P., and Harry, M. (2014). Species delimitation and phylogeny in the genus Nasutitermes (Termitidae: Nasutitermitinae) in French Guiana. Molecular Ecology 23, 902–920.
Species delimitation and phylogeny in the genus Nasutitermes (Termitidae: Nasutitermitinae) in French Guiana.Crossref | GoogleScholarGoogle Scholar |

Ruhberg, H. (1985). Die Peripatopsidae (Onychophora), Systematik, Ökologie, Chorologie und phylogenetische Aspekte. Zoologica 137, 1–184.

Ruhberg, H., and Daniels, S. R. (2013). Morphological assessment supports the recognition of four novel species in the widely distributed velvet worm Peripatopsis moseleyi sensu lato (Onychophora: Peripatopsidae). Invertebrate Systematics 27, 131–145.
Morphological assessment supports the recognition of four novel species in the widely distributed velvet worm Peripatopsis moseleyi sensu lato (Onychophora: Peripatopsidae).Crossref | GoogleScholarGoogle Scholar |

Schulmeister, S., Wheeler, W. C., and Carpenter, J. M. (2002). Simultaneous analysis of the basal lineages of Hymenoptera (Insecta) using sensitivity analysis. Cladistics 18, 455–484.
Simultaneous analysis of the basal lineages of Hymenoptera (Insecta) using sensitivity analysis.Crossref | GoogleScholarGoogle Scholar |

Schwendinger, P. J., and Giribet, G. (2005). The systematics of the south-east Asian genus Fangensis Rambla (Opiliones: Cyphophthalmi: Stylocellidae). Invertebrate Systematics 19, 297–323.
The systematics of the south-east Asian genus Fangensis Rambla (Opiliones: Cyphophthalmi: Stylocellidae).Crossref | GoogleScholarGoogle Scholar |

Tait, N. N., Stutchbury, R. J., and Briscoe, D. A. (1990). Review of the discovery and identification of Onychophora in Australia. Proceedings of the Linnean Society of New South Wales 112, 153–171.

Trewick, S. A. (1998). Sympatric cryptic species in New Zealand Onychophora. Biological Journal of the Linnean Society. Linnean Society of London 63, 307–329.
Sympatric cryptic species in New Zealand Onychophora.Crossref | GoogleScholarGoogle Scholar |

Trewick, S. A. (1999). Molecular diversity of Dunedin peripatus (Onychophora: Peripatopsidae). New Zealand Journal of Zoology 26, 381–393.
Molecular diversity of Dunedin peripatus (Onychophora: Peripatopsidae).Crossref | GoogleScholarGoogle Scholar |

Trewick, S. A. (2000). Mitochondrial DNA sequences support allozyme evidence for cryptic radiation of New Zealand Peripatoides (Onychophora). Molecular Ecology 9, 269–281.
Mitochondrial DNA sequences support allozyme evidence for cryptic radiation of New Zealand Peripatoides (Onychophora).Crossref | GoogleScholarGoogle Scholar |

Vaidya, G., Lohman, D. J., and Meier, R. (2011). SequenceMatrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics 27, 171–180.
SequenceMatrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information.Crossref | GoogleScholarGoogle Scholar |

Vélez, S., Mesibov, R., and Giribet, G. (2012). Biogeography in a continental island: population structure of the relict endemic centipede Craterostigmus tasmanianus (Chilopoda, Craterostigmomorpha) in Tasmania using 16S rRNA and COI. The Journal of Heredity 103, 80–91.
Biogeography in a continental island: population structure of the relict endemic centipede Craterostigmus tasmanianus (Chilopoda, Craterostigmomorpha) in Tasmania using 16S rRNA and COI.Crossref | GoogleScholarGoogle Scholar |

Wheeler, W. C., Cartwright, P., and Hayashi, C. Y. (1993). Arthropod phylogeny: a combined approach. Cladistics 9, 1–39.
Arthropod phylogeny: a combined approach.Crossref | GoogleScholarGoogle Scholar |

Whiting, M. F., Carpenter, J. M., Wheeler, Q. D., and Wheeler, W. C. (1997). The Strepsiptera problem: phylogeny of the holometabolous insect orders inferred from 18S and 28S ribosomal DNA sequences and morphology. Systematic Biology 46, 1–68.

Wright, J. C. (2012). Onychophora (velvet worms). In ‘ELS: Encyclopedia of Life Sciences’. (John Wiley & Sons Ltd: Chichester, UK.) pp. 1–6. Available at: 10.1002/9780470015902.a0001610.pub3

Xiong, B., and Kocher, T. D. (1991). Comparison of mitochondrial DNA sequences of seven morphospecies of black flies (Diptera: Simuliidae). Genome 34, 306–311.
Comparison of mitochondrial DNA sequences of seven morphospecies of black flies (Diptera: Simuliidae).Crossref | GoogleScholarGoogle Scholar |

Zhang, J., Kapli, P., Pavlidis, P., and Stamatakis, A. (2013). A general species delimitation method with applications to phylogenetic placements. Bioinformatics 29, 2869–2876.
A general species delimitation method with applications to phylogenetic placements.Crossref | GoogleScholarGoogle Scholar |