Integrative systematic revision of a Mediterranean earthworm family: Hormogastridae (Annelida, Oligochaeta)
Daniel Fernández Marchán A D , Rosa Fernández B , Irene de Sosa A , Nuria Sánchez A , Darío J. Díaz Cosín A and Marta Novo CA Departamento de Biodiversidad, Ecología y Evolución, Facultad de Biología, Universidad Complutense de Madrid, C/ José Antonio Nováis 2, 28040 Madrid, Spain.
B Centre for Genomic Regulation, Carrer del Dr Aiguader 88, 08003 Barcelona, Spain.
C Environmental Toxicology and Biology, Departamento de Física Matemática y de Fluídos, Facultad de Ciencias UNED, C/ Senda del Rey 9, 28040 Madrid, Spain.
D Corresponding author. Email: danifermch@gmail.com
Invertebrate Systematics 32(3) 652-671 https://doi.org/10.1071/IS17048
Submitted: 21 April 2017 Accepted: 9 October 2017 Published: 8 May 2018
Abstract
The problem of reconciling earthworm taxonomy and phylogeny has shown advances with the application of molecular techniques, yet they have proven insufficient. Integrative systematics could solve this by combining multiple sources of evolutionary information. Relatively low diversity, restricted range and low nomenclatural conflict make Hormogastridae Michaelsen, 1900 a desirable target for an integrative systematics approach. The main systematic conflicts within this family are the polyphyly of the species Hormogaster pretiosa Michaelsen, 1899, the widespread presence of cryptic lineages, the lack of resolution of supraspecific relationships and the paraphyly of the genus Hormogaster Rosa, 1877 (found to be composed of four well-supported genus-level clades by molecular phylogenetic inference). This work integrates all the existing information by performing phylogenetic inference based on morphological, molecular and total evidence datasets, comparing their performance with the topology obtained by phylogenomic analyses. It also includes a comparative study of representatives of the main clades based on microcomputed tomography (µCT) reconstructions. The addition of morphological characters improved the resolution of the Hormogastridae tree; ancestral state reconstruction displayed the evolution of character states and provided morphological diagnoses for the genera within a new system, which incorporates information about ecological niches and biogeography.
Additional keywords: character evolution, Clitellata, comparative morphology, molecular systematics, morphology.
References
Akaike, H. (1973). Maximum likelihood identification of Gaussian autoregressive moving average models. Biometrika 60, 255–265.| Maximum likelihood identification of Gaussian autoregressive moving average models.Crossref | GoogleScholarGoogle Scholar |
Álvarez, J. (1971). Oligoquetos terrícolas ibéricos. Megascolécidos y Glososcolécidos. Boletin de la Real Sociedad Espanola de Historia Natural. Seccion Biologica 69, 97–114.
Álvarez, J. (1977). El género Hormogaster en España. Publicaciones del Centro Pirenaico de Biología Experimental 9, 27–35.
Anderson, F. E., Williams, B. W., Horn, K. M., Erséus, C., Halanych, K. M., Santos, S. R., and James, S. W. (2017). Phylogenomic analyses of Crassiclitellata support major northern and southern hemisphere clades and a Pangaean origin for earthworms. BMC Evolutionary Biology 17, 123.
| Phylogenomic analyses of Crassiclitellata support major northern and southern hemisphere clades and a Pangaean origin for earthworms.Crossref | GoogleScholarGoogle Scholar |
Bouché, M. B. (1969). Ailoscolex lacteospumosus, n. gen., n. sp., un ver de terre aux caractères morphologiques et biologiques remarquables (Oligochaeta, Ailoscolecidae, nov. fam.). Revue d’Écologie et Biologie du Sol 6, 525–531.
Bouché, M. B. (1970). Remarques sur quelques Lumbricina de France et consequences de la decouverte des noveaux taxons Vignysinae (subfam. nov) et Diporodrilidae (fam. nov.). Pedobiologia 10, 246–256.
Bouché, M. B. (1972). ‘Lombriciens de France: écologie et systématique. Vol. 72 Number 2’. pp. 671 (Paris: Institut national de la recherche agronomique.)
Briones, M. J. I., Morán, P., and Posada, D. (2009). Are the sexual, somatic and genetic characters enough to solve nomenclatural problems in lumbricid taxonomy? Soil Biology & Biochemistry 41, 2257–2271.
| Are the sexual, somatic and genetic characters enough to solve nomenclatural problems in lumbricid taxonomy?Crossref | GoogleScholarGoogle Scholar |
Chang, C. H., and James, S. (2011). A critique of earthworm molecular phylogenetics. Pedobiologia 54, S3–S9.
Cobolli Sbordoni, M., De Matthaeis, E., Alonzi, A., Mattoccia, M., Omodeo, P., and Rota, E. (1992). Speciation, genetic divergence and palaeogeography in the Hormogastridae. Soil Biology & Biochemistry 24, 1213–1221.
| Speciation, genetic divergence and palaeogeography in the Hormogastridae.Crossref | GoogleScholarGoogle Scholar |
Cognetti de Martiis, L. (1914). Escursioni Zoologiche del Dr. Enrico Festa nei monti della Vallata del Sangro (Abruzzo). Nota sugli Oligocheti degli Abruzzi. Bolletino dei Musei di Zoologia ed Anatomia Comparata della R. Universitá di Torino 689 (XXIX).
Darriba, D., Taboada, G. L., Doallo, R., and Posada, D. (2012). jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9, 772.
| jModelTest 2: more models, new heuristics and parallel computing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFWmsbfP&md5=8455a3ff18c54ee00d48a1421d4dba7aCAS |
Díaz Cosín, D. J., Briones, M. J. I., and Trigo, D. (1989). Descripción de una nueva especie de lombriz de tierra, Xana omodeoi (Hormogastridae, Oligochaeta) y sus implicaciones en la división de los Hormogastridae. Revue d’Écologie et Biologie du Sol 26, 225–231.
Domínguez, J., Aira, M., Breinholt, J. W., Stojanovic, M., James, S. W., and Pérez-Losada, M. (2015). Underground evolution: new roots for the old tree of lumbricid earthworms. Molecular Phylogenetics and Evolution 83, 7–19.
| Underground evolution: new roots for the old tree of lumbricid earthworms.Crossref | GoogleScholarGoogle Scholar |
Dugès, A. (1828). Recherches su la circulation, la respiration et la reproduction des Annélides abranches. Annales Des Sciences Naturalles, Series 2, Zoology 8, 15–35.
Excoffier, L., and Lischer, H. E. L. (2010). Arlequin suite ver. 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources 10, 564–567.
| Arlequin suite ver. 3.5: a new series of programs to perform population genetics analyses under Linux and Windows.Crossref | GoogleScholarGoogle Scholar |
Fernández, R., Kvist, S., Lenihan, J., Giribet, G., and Ziegler, A. (2014). Sine systemate chaos? A versatile tool for earthworm taxonomy: non-destructive imaging of freshly fixed and museum specimens using micro-computed tomography. PLoS One 9, e96617.
| Sine systemate chaos? A versatile tool for earthworm taxonomy: non-destructive imaging of freshly fixed and museum specimens using micro-computed tomography.Crossref | GoogleScholarGoogle Scholar |
James, S. W., and Davidson, S. K. (2012). Molecular phylogeny of earthworms (Annelida: Crassiclitellata) based on 28S, 18S and 16S gene sequences. Invertebrate Systematics 26, 213–229.
| Molecular phylogeny of earthworms (Annelida: Crassiclitellata) based on 28S, 18S and 16S gene sequences.Crossref | GoogleScholarGoogle Scholar |
Katoh, K., and Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30, 772–780.
| MAFFT multiple sequence alignment software version 7: improvements in performance and usability.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXksFWisLc%3D&md5=923eb8b83abb772e70745a603d99fa8fCAS |
Kitching, I. J., Forey, P. L., Humphries, C. J., and Williams, D. M. (1998). ‘Cladistics.’ (Oxford University Press: Oxford, UK.)
Lewis, P. O. (2001). A likelihood approach to estimating phylogeny from discrete morphological character data. Systematic Biology 50, 913–925.
| A likelihood approach to estimating phylogeny from discrete morphological character data.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD38zntVKlsQ%3D%3D&md5=235e60a4f797cc01e303a758b4f51423CAS |
Maddison, W. P., and Maddison, D. R. (2007). Mesquite: a modular system for evolutionary biology. Version 2.0. Available at: http://mesquiteproject.org [accessed 23 January 2018].
Marchán, D. F., Fernández, R., Novo, M., and Díaz Cosín, D. J. (2014). New light into the hormogastrid riddle: morphological and molecular description of Hormogaster joseantonioi sp. n. (Annelida, Clitellata, Hormogastridae). ZooKeys 414, 1–17.
| New light into the hormogastrid riddle: morphological and molecular description of Hormogaster joseantonioi sp. n. (Annelida, Clitellata, Hormogastridae).Crossref | GoogleScholarGoogle Scholar |
Marchán, D. F., Sánchez, N., Novo, M., Fernández, R., Pardos, F., and Díaz Cosín, D. J. (2016a). Cryptic characters for cryptic taxa: on the taxonomic utility of the genital chaetae in earthworms (Oligochaeta, Hormogastridae). Zoologischer Anzeiger 264, 17–28.
| Cryptic characters for cryptic taxa: on the taxonomic utility of the genital chaetae in earthworms (Oligochaeta, Hormogastridae).Crossref | GoogleScholarGoogle Scholar |
Marchán, D. F., Novo, M., Fernández, R., de Sosa, I., Trigo, D., and Díaz Cosín, D. J. (2016b). Evaluating evolutionary pressures and phylogenetic signal in earthworms: a study case. The number of typhlosole lamellae in Hormogastridae (Annelida, Oligochaeta). Zoological Journal of the Linnean Society of London 178, 4–14.
Marchán, D. F., Refoyo, P., Fernández, R., Novo, M., and Díaz Cosín, D. J. (2016c). Macroecological inferences on soil fauna through comparative niche modeling: the case of Hormogastridae (Annelida, Oligochaeta). European Journal of Soil Biology 75, 115–122.
| Macroecological inferences on soil fauna through comparative niche modeling: the case of Hormogastridae (Annelida, Oligochaeta).Crossref | GoogleScholarGoogle Scholar |
Marchán, D. F., Fernández, R., de Sosa, I., Díaz Cosín, D. J., and Novo, M. (2017). Pinpointing cryptic borders: fine-scale phylogeography and genetic landscape analysis of the Hormogaster elisae complex (Oligochaeta, Hormogastridae). Molecular Phylogenetics and Evolution 112, 185–193.
| Pinpointing cryptic borders: fine-scale phylogeography and genetic landscape analysis of the Hormogaster elisae complex (Oligochaeta, Hormogastridae).Crossref | GoogleScholarGoogle Scholar |
Martínez, A., Di Domenico, M., Rouse, G., and Worsaae, K. (2015). Phylogeny and systematics of Protodrilidae (Annelida) inferred with total evidence analyses. Cladistics 31, 250–276.
| Phylogeny and systematics of Protodrilidae (Annelida) inferred with total evidence analyses.Crossref | GoogleScholarGoogle Scholar |
Michaelsen, W. (1899). Revision der Kinberg’schen Oligochaeten-Typen. Öfversigt Akademiens Förhandlingar, Stockholm 56, 413–448.
Michaelsen, W. (1900). ‘Oligochaeta. Vol. 10.’ (R. Friedländer und Sohn., Berlin)
Michaelsen, W. (1925). Regenwürmer aus dem nördlichen und östlichen Spanien. Senckenbergiana 7, 186–195.
Miller, M. A., Pfeiffer, W., and Schwartz, T. (2010). Creating the CIPRES science gateway for inference of large phylogenetic trees. In ‘Proceedings of the Gateway Computing Environments Workshop (GCE)’, 14 Nov. 2010, New Orleans, LA. pp. 1–8.
Novo, M. (2010). Algunos aspectos de la biologia evolutiva de la familia Hormogastridae Michaelsen, 1900: filogenia, filogeografia y seleccion Sexual. PhD Thesis, Universidad Complutense de Madrid, Spain.
Novo, M., Almodóvar, A., and Díaz Cosín, D. J. (2009). High genetic divergence of hormogastrid earthworms (Annelida, Oligochaeta) in the central Iberian Peninsula: evolutionary and demographic implications. Zoologica Scripta 38, 537–552.
| High genetic divergence of hormogastrid earthworms (Annelida, Oligochaeta) in the central Iberian Peninsula: evolutionary and demographic implications.Crossref | GoogleScholarGoogle Scholar |
Novo, M., Almodóvar, A., Fernández, R., Gutiérrez, M., and Díaz Cosín, D. J. (2010). Mate choice of an endogeic earthworm revealed by microsatellite markers. Pedobiologia 53, 375–379.
| Mate choice of an endogeic earthworm revealed by microsatellite markers.Crossref | GoogleScholarGoogle Scholar |
Novo, M., Almodóvar, A., Fernández, R., Giribet, G., and Díaz Cosín, D. J. (2011). Understanding the biogeography of a group of earthworms in the Mediterranean basin – the phylogenetic puzzle of Hormogastridae (Clitellata: Oligochaeta). Molecular Phylogenetics and Evolution 61, 125–135.
| Understanding the biogeography of a group of earthworms in the Mediterranean basin – the phylogenetic puzzle of Hormogastridae (Clitellata: Oligochaeta).Crossref | GoogleScholarGoogle Scholar |
Novo, M., Almodóvar, A., Fernández, R., Trigo, D., Díaz Cosín, D. J., and Giribet, G. (2012). Appearances can be deceptive: different diversification patterns within a group of Mediterranean earthworms (Oligochaeta, Hormogastridae). Molecular Ecology 21, 3776–3793.
| Appearances can be deceptive: different diversification patterns within a group of Mediterranean earthworms (Oligochaeta, Hormogastridae).Crossref | GoogleScholarGoogle Scholar |
Novo, M., Fernández, R., Marchán, D. F., Trigo, D., Díaz Cosín, D. J., and Giribet, G. (2015). Unearthing the historical biogeography of Mediterranean earthworms (Annelida: Hormogastridae). Journal of Biogeography 42, 751–762.
| Unearthing the historical biogeography of Mediterranean earthworms (Annelida: Hormogastridae).Crossref | GoogleScholarGoogle Scholar |
Novo, M., Fernández, R., Andrade, S. C., Marchán, D. F., Cunha, L., and Díaz Cosín, D. J. (2016). Phylogenomic analyses of a Mediterranean earthworm family (Annelida: Hormogastridae). Molecular Phylogenetics and Evolution 94, 473–478.
| Phylogenomic analyses of a Mediterranean earthworm family (Annelida: Hormogastridae).Crossref | GoogleScholarGoogle Scholar |
Omodeo P. Rota E. 2008
Pleijel, F. (1995). On character coding for phylogeny reconstruction. Cladistics 11, 309–315.
| On character coding for phylogeny reconstruction.Crossref | GoogleScholarGoogle Scholar |
Pop, A. A., Cech, G., Wink, M., Csuzdi, C., and Pop, V. V. (2007). Application of 16S, 18S rDNA and COI sequences in the molecular systematics of the earthworm family Lumbricidae (Annelida, Oligochaeta). European Journal of Soil Biology 43, S43–S52.
| Application of 16S, 18S rDNA and COI sequences in the molecular systematics of the earthworm family Lumbricidae (Annelida, Oligochaeta).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlGjsL3M&md5=2215b26eb90cb7be552c7eedaa1e8be3CAS |
Qiu, J. P., and Bouché, M. B. (1998a). Contribution to the taxonomy of Hormogastridae (Annelida: Oligochaeta) with description of new species from Spain. Documents Pedozoologiques et Integrologiques 4, 164–177.
Qiu, J. P., and Bouché, M. B. (1998b). Revision of Lumbricoidea supraspecific taxa. Documents Pedozoologiques et Integrologiques 4, 179–216.
Ronquist, F., and Huelsenbeck, J. P. (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574.
| MrBayes 3: Bayesian phylogenetic inference under mixed models.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXntlKms7k%3D&md5=7c842e23fc6c8622a464a3dbcf9c2662CAS |
Rosa, D. (1887). Hormogaster redii n. g., n. sp. Bollettino dei Musei di Zoologia ed Anatomia comparata della Universitá di Torino 2, 1–1.
Rota, E. (1994). Contribution to the taxonomy of the Hormogastridae (Annelida: Oligochaeta) with description of two new species from southern France. Journal of Natural History 28, 27–36.
| Contribution to the taxonomy of the Hormogastridae (Annelida: Oligochaeta) with description of two new species from southern France.Crossref | GoogleScholarGoogle Scholar |
Rota, E., Marchán, D. F., and Omodeo, P. (2016). Hormogaster regina sp. n. (Annelida: Clitellata: Hormogastridae): a giant earthworm from Spanish Catalonia, described from morphological and molecular evidence. Zoologischer Anzeiger 261, 56–65.
| Hormogaster regina sp. n. (Annelida: Clitellata: Hormogastridae): a giant earthworm from Spanish Catalonia, described from morphological and molecular evidence.Crossref | GoogleScholarGoogle Scholar |
Sánchez, N., Yamasaki, H., Pardos, F., Sørensen, M. V., and Martínez, A. (2016). Morphology disentangles the systematics of a ubiquitous but elusive meiofaunal group (Kinorhyncha: Pycnophyidae). Cladistics 32, 479–505.
Schwarz, G. E. (1978). Estimating the dimension of a model. Annals of Statistics 6, 461–464.
| Estimating the dimension of a model.Crossref | GoogleScholarGoogle Scholar |
Stamatakis, A. (2014). RAxML Version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313.
| RAxML Version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmvFCjsbc%3D&md5=736e610470be29297d52c5bf8d77d512CAS |
Swain, T. D., Strimaitis, A. M., Reuter, K. E., and Boudreau, W. (2016). Towards integrative systematics of Anthozoa (Cnidaria): evolution of form in the order Zoanthidea. Zoologica Scripta 46, 227–244.
Swofford, D. L. (2003). PAUP*: phylogenetic analysis using parsimony (*and other methods). Version 4. (Sinauer Associates: Sunderaland, MA.)
Wiens, J. J. (2001). Character analysis in morphological phylogenetics: problems and solutions. Systematic Biology 50, 689–699.
| Character analysis in morphological phylogenetics: problems and solutions.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD38zntVKksQ%3D%3D&md5=ebca777478b8cec04f103805059458b7CAS |
Zicsi, A. (1970). Neue Regenwürmer (Oligochaeta: Hormogastridae, Lumbricidae) aus Spanien. Opuscula Zoologica 10, 371–373.