Register      Login
Invertebrate Systematics Invertebrate Systematics Society
Systematics, phylogeny and biogeography
RESEARCH ARTICLE

A molecular phylogenetic approach to the New Zealand species of Enantiobuninae (Opiliones : Eupnoi : Neopilionidae)

Sebastián Vélez A B C , Rosa Fernández A and Gonzalo Giribet A
+ Author Affiliations
- Author Affiliations

A Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA.

B Present address: Biology Department, Worcester State University, 486 Chandler Street, Worcester, MA 01602, USA.

C Corresponding author. Email: svelez@worcester.edu

Invertebrate Systematics 28(6) 565-589 https://doi.org/10.1071/IS14030
Submitted: 22 June 2014  Accepted: 5 September 2014   Published: 19 December 2014

Abstract

Members of the New Zealand Enantiobuninae constitute some of the most charismatic soil arthropods of the archipelago, and a striking example of sexual dimorphism, with nondescript females but colourful males boasting exaggerated chelicerae many times longer than their bodies. The genera Forsteropsalis and Pantopsalis recently underwent revision, but many questions remained about the validity of species designations owing to historical issues of characters of dubious taxonomic value, female specimens designated as holotypes despite the males holding all the diagnostic characters, and the suspected presence of more than one male form within some species. We present the first phylogeny based on molecular data for the New Zealand species in the genera Forsteropsalis, Pantopsalis and Mangatangi, and comment on the taxonomic implications of our results, including the diagnostic viability of important morphological characters. Our analyses reject the monophyly of Neopilionidae and Forsteropsalis, but support the monophyly of Pantopsalis. Finally, we comment on the taxonomic implications of the results, including the diagnostic validity of morphological characters traditionally used on the groups.

Additional keywords: Australia, biogeography, Monoscutidae, phylogeny.


References

Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control 19, 716–723.
A new look at the statistical model identification.Crossref | GoogleScholarGoogle Scholar |

Boyer, S. L., and Giribet, G. (2004). Biogeographical relationships of new Zealand pettalidae (Arachnida, Opiliones). Cladistics 20, 587.

Boyer, S. L., and Giribet, G. (2007). A new model Gondwanan taxon: systematics and biogeography of the harvestman family Pettalidae (Arachnida, Opiliones, Cyphophthalmi), with a taxonomic revision of genera from Australia and New Zealand. Cladistics 23, 337–361.
A new model Gondwanan taxon: systematics and biogeography of the harvestman family Pettalidae (Arachnida, Opiliones, Cyphophthalmi), with a taxonomic revision of genera from Australia and New Zealand.Crossref | GoogleScholarGoogle Scholar |

Boyer, S. L., Baker, J. M., and Giribet, G. (2007a). Deep genetic divergences in Aoraki denticulata (Arachnida, Opiliones, Cyphophthalmi): a widespread ‘mite harvestman’ defies DNA taxonomy. Molecular Ecology 16, 4999–5016.
Deep genetic divergences in Aoraki denticulata (Arachnida, Opiliones, Cyphophthalmi): a widespread ‘mite harvestman’ defies DNA taxonomy.Crossref | GoogleScholarGoogle Scholar | 17944852PubMed |

Boyer, S. L., Clouse, R. M., Benavides, L. R., Sharma, P., Schwendinger, P. J., Karunarathna, I., and Giribet, G. (2007b). Biogeography of the world: a case study from cyphophthalmid Opiliones, a globally distributed group of arachnids. Journal of Biogeography 34, 2070–2085.
Biogeography of the world: a case study from cyphophthalmid Opiliones, a globally distributed group of arachnids.Crossref | GoogleScholarGoogle Scholar |

Cokendolpher, J. C. (2007). Protolophidae Banks, 1893. In ‘Harvestmen: the Biology of Opiliones’. (Eds R. Pinto-da-Rocha, G. Machado and G. Giribet.) pp. 127–128. (Harvard University Press: Cambridge MA.)

Cokendolpher, J. C., and Taylor, C. K. (2007). Monoscutidae Forster, 1948. In ‘Harvestmen: the Biology of Opiliones’. (Eds R. Pinto-da-Rocha, G. Machado and G. Giribet.) pp. 118–121. (Harvard University Press: Cambridge, MA.)

Colenso, W. (1882). On some newly-discovered New Zealand arachnids. Transactions and Proceedings of the New Zealand Institute 15, 165–173.

Crawford, R. L. (1992). Catalogue of the genera and type species of the harvestman superfamily Phalangioidea (Arachnida). Burke Museum Contributions in Anthropology and Natural History 8, 1–60.

Edgar, R. C. (2004). MUSCLE: a multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32, 1792–1797.
MUSCLE: a multiple sequence alignment with high accuracy and high throughput.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXisF2ks7w%3D&md5=0f644003e0450eab42e285b06371fbb5CAS | 15034147PubMed |

Edgecombe, G. D., and Giribet, G. (2006). A century later - a total evidence re-evaluation of the phylogeny of scutigeromorph centipedes (Myriapoda: Chilopoda). Invertebrate Systematics 20, 503–525.
A century later - a total evidence re-evaluation of the phylogeny of scutigeromorph centipedes (Myriapoda: Chilopoda).Crossref | GoogleScholarGoogle Scholar |

Edgecombe, G. D., Wilson, G. D. F., Colgan, D. J., Gray, M. R., and Cassis, G. (2000). Arthropod cladistics: Combined analysis of histone H3 and U2 snRNA sequences and morphology. Cladistics 16, 155–203.
Arthropod cladistics: Combined analysis of histone H3 and U2 snRNA sequences and morphology.Crossref | GoogleScholarGoogle Scholar |

Felsenstein, J. (1989). PHYLIP - Phylogeny Inference Package (Version 3.2). Cladistics 5, 164–166.

Fernández, R., Vélez, S., and Giribet, G. (2014). Linking genetic diversity and morphological disparity: biodiversity assessment of a highly unexplored family of harvestmen (Arachnida: Opiliones: Neopilionidae) in New Zealand. Invertebrate Systematics 28, 590–604.

Folmer, O., Black, M., Hoeh, W., Lutz, R., and Vrijenhoek, R. C. (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3, 294–299.
| 1:CAS:528:DyaK2MXjt12gtLs%3D&md5=41891c10f444b637826cbf6001a4954cCAS | 7881515PubMed |

Forster, R. R. (1944). The genus Megalopsalis Roewer in New Zealand with keys to the New Zealand genera of Opiliones. Records of the Dominion Museum 1, 183–192.

Forster, R. R. (1947). The zoogeographical relationships of the New Zealand Opiliones. In ‘The New Zealand Science Congress’, pp. 233–235.

Forster, R. R. (1948a). A new genus and species of the family Acropsopilionidae (Opiliones) from New Zealand. Transactions of the Royal Society of New Zealand 77, 139–141.

Forster, R. R. (1948b). A new sub-family and species of New Zealand Opiliones. Records of the Auckland Institute and Museum 3, 313–318.

Forster, R. R. (1949). Australian Opiliones. Memoirs of the National Museum of Victoria 16, 59–89.

Forster, R. R. (1962). A key to the New Zealand harvestmen. Tuatara: Journal of the Biological Society 10, 129–137.

Forster, R. R. (1964). The Araneae and Opiliones of the Sub-Antarctic Islands of New Zealand. Pacific Insects Monographs 7, 58–115.

Forster, R. R. (1965). Harvestmen of the sub-order Laniatores from New Zealand caves. Records of the Otago Museum 2, 1–18.

Forster, R. R., and Forster, L. (1999). ‘Spiders of New Zealand and their World-wide Kin.’ (University of Otago Press: Dunedin, New Zealand.)

Forster, R. R., and Wilton, C. L. (1968). The spiders of New Zealand. Part II. Otago Museum Bulletin 2, 1–180.

Giribet, G., and Kury, A. B. (2007). Phylogeny and biogeography. In ‘Harvestmen: the Biology of Opiliones’. (Eds R. Pinto-da-Rocha, G. Machado and G. Giribet.) pp. 62–87. (Harvard University Press: Cambridge, MA.)

Giribet, G., and Wheeler, W. C. (1999). The position of arthropods in the animal kingdom: Ecdysozoa, islands, trees, and the “parsimony ratchet”. Molecular Phylogenetics and Evolution 13, 619–623.
The position of arthropods in the animal kingdom: Ecdysozoa, islands, trees, and the “parsimony ratchet”.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3c%2FovVOisg%3D%3D&md5=e779a12fa188cfb7c7cd48272d52bbb5CAS | 10620418PubMed |

Giribet, G., Carranza, S., Baguñà, J., Riutort, M., and Ribera, C. (1996). First molecular evidence for the existence of a Tardigrada plus arthropoda clade. Molecular Biology and Evolution 13, 76–84.
First molecular evidence for the existence of a Tardigrada plus arthropoda clade.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XhtVylur8%3D&md5=12d70fb007b406aad2b3d1737a48a9adCAS | 8583909PubMed |

Giribet, G., Rambla, M., Carranza, S., Baguñà, J., Riutort, M., and Ribera, C. (1999). Phylogeny of the arachnid order Opiliones (Arthropoda) inferred from a combined approach of complete 18S and partial 28S ribosomal DNA sequences and morphology. Molecular Phylogenetics and Evolution 11, 296–307.
Phylogeny of the arachnid order Opiliones (Arthropoda) inferred from a combined approach of complete 18S and partial 28S ribosomal DNA sequences and morphology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXitFOnu7c%3D&md5=0250390a8e415d0e2b7221387edefd92CAS | 10191074PubMed |

Giribet, G., Edgecombe, G. D., and Wheeler, W. C. (2001). Arthropod phylogeny based on eight molecular loci and morphology. Nature 413, 157–161.
Arthropod phylogeny based on eight molecular loci and morphology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXntVOqsbY%3D&md5=e95320484554f6fdcacd8bcc8c119e22CAS | 11557979PubMed |

Giribet, G., Edgecombe, G. D., Wheeler, W. C., and Babbitt, C. (2002). Phylogeny and systematic position of Opiliones: A combined analysis of chelicerate relationships using morphological and molecular data. Cladistics 18, 5–70.
| 14552352PubMed |

Giribet, G., Vogt, L., Gonzalez, A. P., Sharma, P., and Kury, A. B. (2010). A multilocus approach to harvestman (Arachnida: Opiliones) phylogeny with emphasis on biogeography and the systematics of Laniatores. Cladistics 26, 408–437.

Groh, S., and Giribet, G. (2014). Polyphyly of Caddoidea, reinstatement of the family Acropsopilionidae in Dyspnoi, and a revised classification system of Palpatores (Arachnida, Opiliones). Cladistics , .
Polyphyly of Caddoidea, reinstatement of the family Acropsopilionidae in Dyspnoi, and a revised classification system of Palpatores (Arachnida, Opiliones).Crossref | GoogleScholarGoogle Scholar |

Hedin, M., Tsurusaki, N., Macías-Ordóñez, R., and Shultz, J. W. (2012). Molecular systematics of sclerosomatid harvestmen (Opiliones, Phalangioidea, Sclerosomatidae): geography is better than taxonomy in predicting phylogeny. Molecular Phylogenetics and Evolution 62, 224–236.
Molecular systematics of sclerosomatid harvestmen (Opiliones, Phalangioidea, Sclerosomatidae): geography is better than taxonomy in predicting phylogeny.Crossref | GoogleScholarGoogle Scholar | 22001211PubMed |

Hickman, V. V. (1957). Some Tasmanian harvestmen of the sub-order Palpatores. Papers and Proceedings of the Royal Society of Tasmania 91, 65–79.

Hogg, H. R. (1909). Some New Zealand and Tasmanian Arachnidae. Transactions and Proceedings of the New Zealand Institute, new series 42, 273–283.

Hogg, H. R. (1920). Some Australian Opiliones. Proceedings of the Zoological Society of London 1920(1), 31–48, pls 1–3.

Hunt, G. S. (1990). Taxonomic value of spiracle microstructure in the Megalopsalididae (Opiliones, Phalangioide). Acta Zoologica Fennica 190, 187–194.

Hunt, G. S., and Cokendolpher, J. C. (1991). Ballarrinae, a new subfamily of harvestmen from the Southern Hemisphere. Records of the Australian Museum 43, 131–169.
Ballarrinae, a new subfamily of harvestmen from the Southern Hemisphere.Crossref | GoogleScholarGoogle Scholar |

ICZN (1999). ‘International Code of Zoological Nomenclature.’ 4th edn. (The International Trust for Zoological Nomenclature: London, UK.)

Kauri, H. (1954). Report from Professor T. Gislén’s expedition to Australia in 1951–1952. 9. Harvest-spiders from S. W. Australia. Lunds Universitets Årsskrift Ny Fjöld Avdelning 2, 1–10.

Kauri, H. (1961). Opiliones. In ‘South African Animal Life. Results of the Lund University Expedition in 1950–1951. Vol. 8’. (Eds B. Hanström, P. Brinck and G. Rudebeck.) pp. 9–197. (Almquist & Wiksell: Uppsala.)

Kury, A. B. (2013). Order Opiliones Sundevall, 1833. Zootaxa 3703, 27–33.
Order Opiliones Sundevall, 1833.Crossref | GoogleScholarGoogle Scholar |

Lawrence, R. F. (1931). The harvest-spiders (Opiliones) of South Africa. Annals of the South African Museum 29, 341–508.

Machado, G., Pinto-da-Rocha, R., and Giribet, G. (2007). What are harvestmen? In ‘Harvestmen: the Biology of Opiliones’. (Eds R. Pinto-da-Rocha, G. Machado and G. Giribet.) pp. 1–13. (Harvard University Press: Cambridge, MA.)

Maddison, W. P., and Maddison, D. R. (2010). Mesquite: a modular system for evolutionary analysis. Version 2.73. Available at http://mesquiteproject.org/ [Verified November 2014]

Marples, B. J. (1944). A new species of harvestman of the genus Megalopsalis. Transactions of the Royal Society of New Zealand 734, 313–314.

Martens, J. (1976). Genitalmorphologie, System und Phylogenie der (Weberknechte Arachnida: Opiliones). Entomologica Germanica, Zeitschrift für das Gesamtgebiet der wissenschaftlichen Entomologie 3, 51–68.

Mello-Leitão, C.F.d. (1931) Notas sobre Arachnideos Argentinos. Annaes da Academia Brasileira de Sciencias 32, 83–97, 2 pls.

Meyer-Rochow, V. B., and Liddle, A. R. (1988). Structure and function of the eyes of two species or opilionid from New Zealand glow-worm caves (Megalopsalis tumida: Palpatores, and Hendea myersi cavernicoloa: Laniatores). Proceedings of the Royal Society of London. Series B, Biological Sciences 233, 293–319.
Structure and function of the eyes of two species or opilionid from New Zealand glow-worm caves (Megalopsalis tumida: Palpatores, and Hendea myersi cavernicoloa: Laniatores).Crossref | GoogleScholarGoogle Scholar |

Murienne, J., Edgecombe, G., and Giribet, G. (2011). Comparative phylogeography of the centipedes Cryptops pictus and C. niuensis (Chilopoda) in New Caledonia, Fiji and Vanuatu. Organisms, Diversity & Evolution 11, 61–74.
Comparative phylogeography of the centipedes Cryptops pictus and C. niuensis (Chilopoda) in New Caledonia, Fiji and Vanuatu.Crossref | GoogleScholarGoogle Scholar |

Nicholls, D. C., Sirvid, P. J., Pollard, S. D., and Walker, M. (2000). A list of arachnid primary types held in Canter- bury Museum. Records of the Canterbury Museum 14, 37–48.

Park, J. K., and Ó Foighil, D. (2000). Sphaeriid and corbiculid clams represent separate heterodont bivalve radiations into freshwater environments. Molecular Phylogenetics and Evolution 14, 75–88.
Sphaeriid and corbiculid clams represent separate heterodont bivalve radiations into freshwater environments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXisFemtQ%3D%3D&md5=544edae28f9acf849b6699a77fdf441bCAS | 10631043PubMed |

Pinto-da-Rocha, R., Machado, G., and Giribet, G. (2007). ‘Harvestmen: the Biology of Opiliones.’ (Harvard University Press: Cambridge, MA.)

Pinto-da-Rocha, R., Bragagnolo, C., Marques, F. P. L., and Antunes Junior, M. (2014). Phylogeny of harvestmen family Gonyleptidae inferred from a multilocus approach (Arachnida: Opiliones). Cladistics 30, 519–539.

Pocock, R. I. (1902a). A new and annectant type of chilopod. The Quarterly Journal of Microscopical Science 45, 417–448.

Pocock, R. I. (1902b). On some new harvest-spiders of the order Opiliones from the southern continents. Proceedings of the Zoological Society of London 1902, 392–413.

Pocock, R. I. (1903). Fifteen new species and two new genera of tropical and southern Opiliones. Annals & Magazine of Natural History 11, 433–450.
Fifteen new species and two new genera of tropical and southern Opiliones.Crossref | GoogleScholarGoogle Scholar |

Posada, D. (2009). Selection of models of DNA evolution with jMODELTEST. In ‘Bioinformatics for DNA Sequence Analysis’. (Ed. D. Posada.) pp. 93–112. (Humana Press Inc.:New York.)

Prendini, L., Crowe, T. M., and Wheeler, W. C. (2003). Systematics and biogeography of the family Scorpionidae (Cheliceratea: Scorpiones), with a discussion on phylogenetic methods. Invertebrate Systematics 17, 185–259.
Systematics and biogeography of the family Scorpionidae (Cheliceratea: Scorpiones), with a discussion on phylogenetic methods.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmslals7o%3D&md5=ef632cb8630e008d61ba43a157d82c3dCAS |

Prendini, L., Weygoldt, P., and Wheeler, W. C. (2005). Systematics of the Damon variegates group of African whip spiders (Chelicerata: Amblypygi): evidence from behaviour, morphology and DNA. Organisms, Diversity & Evolution 5, 203–236.
Systematics of the Damon variegates group of African whip spiders (Chelicerata: Amblypygi): evidence from behaviour, morphology and DNA.Crossref | GoogleScholarGoogle Scholar |

Rambaut, A. (2011). FigTree (Version 1.3.1) [Software] Available from http://tree.bio.ed.ac.uk/software/figtree/ [Verified November 2014]

Roewer, C. F. (1911). Übersicht der Genera der Subfamilie der Phalangiini der Opiliones Palpatores nebst Beschreibung einiger neuer Gattungen und Arten. Archiv für Naturgeschichte part I 77 suppl. 2, 1–106, pls 1–3.

Roewer, C. F. (1923). ‘Die Weberknechte der Erde. systematische Bearbeitung der Bisher Bekannten Opiliones.’ (VCH: Jena.)

Schwendinger, P. J., and Giribet, G. (2005). The systematics of the south-east Asian genus Fangensis Rambla (Opiliones: Cyphophthalmi: Stylocellidae). Invertebrate Systematics 19, 297–323.
The systematics of the south-east Asian genus Fangensis Rambla (Opiliones: Cyphophthalmi: Stylocellidae).Crossref | GoogleScholarGoogle Scholar |

Sharma, P., and Giribet, G. (2009). Sandokanid phylogeny based on eight molecular markers-The evolution of a southeast Asian endemic family of Laniatores (Arachnida, Opiliones). Molecular Phylogenetics and Evolution 52, 432–447.
Sandokanid phylogeny based on eight molecular markers-The evolution of a southeast Asian endemic family of Laniatores (Arachnida, Opiliones).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXms12hsbo%3D&md5=73441408320fe0f01e115738fbe4f641CAS | 19324096PubMed |

Sharma, P., and Giribet, G. (2011). The evolutionary and biogeographic history of the armoured harvestmen – Laniatores phylogeny based on ten molecular markers, with the description of two new families of Opiliones (Arachnida). Invertebrate Systematics 25, 106–142.
The evolutionary and biogeographic history of the armoured harvestmen – Laniatores phylogeny based on ten molecular markers, with the description of two new families of Opiliones (Arachnida).Crossref | GoogleScholarGoogle Scholar |

Sharma, P., Prieto, C. E., and Giribet, G. (2011). A new family of Laniatores (Arachnida: Opiliones) from the Afrotropics. Invertebrate Systematics 25, 143–154.
A new family of Laniatores (Arachnida: Opiliones) from the Afrotropics.Crossref | GoogleScholarGoogle Scholar |

Shear, W. A. (1982). Opiliones. In ‘Synopsis and Classification of Living Organisms. Vol. 2.’ (Ed. S. P. Parker.) pp. 104–110. (McGraw-Hill: New York.)

Shear, W. A. (1996). Hesperopilio mainae, a new genus and species of harvestman from Western Australia (Opiliones: Caddidae: Acropsopilioninae). Records of the Western Australia Museum 17, 455–460.

Shultz, J. W. (1998). Phylogeny of Opiliones (Arachnida): an assessment of the “Cyphopalpatores” concept. The Journal of Arachnology 26, 257–272.

Shultz, J. W., and Regier, J. C. (2001). Phylogenetic analysis of Phalangida (Arachnida, Opiliones) using two nuclear protein-encoding genes supports monophyly of Palpatores. The Journal of Arachnology 29, 189–200.
Phylogenetic analysis of Phalangida (Arachnida, Opiliones) using two nuclear protein-encoding genes supports monophyly of Palpatores.Crossref | GoogleScholarGoogle Scholar |

Šilhavý, V. (1970). Nouvelles recherches sur la famille des Neopilionidae Lawrence. Bulletin du Muséum National d’Histoire Naturelle, 2e Série 41, 171–175.

Simon, E. (1879a). Descriptions d’Opiliones nouveaux. Annales de la Société Entomologique de Belgique, 22 Comptes-Rendus, lxx–lxxv.

Simon, E. (1879b). Essai d’une classification des Opiliones Mecostethi. Remarques synonymiques et descriptions d’espèces nouvelles. Annales de la Societé Entomologique de Belgique 22, 183–241.

Sørensen, W. (1886). Opiliones descripsit William Sorensen. In ‘Die Arachniden Australiens nach der Natur beschrieben und abgebildet. Vol. 2’. (Eds L. Koch and Ev. Keyserling.) (Bauer und Raspe: Nurnberg.)

Stamatakis, A. (2006). RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688–2690.
RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFKlsbfI&md5=b0df768ad6679df0c2d42f77d14048ddCAS | 16928733PubMed |

Taylor, C. K. (2004). New Zealand harvestmen of the subfamily Megalopsalidinae (Opiliones: Monoscutidae) – the genus Pantopsalis. Tuhinga 15, 53–76.

Taylor, C. K. (2008). A new species of Monoscutidae (Arachnida, Opiliones) from the wheatbelt of Western Australia. Records of the Western Australia Museum 24, 375–380.

Taylor, C. K. (2011). Revision of the genus Megalopsalis (Arachnida: Opiliones: Phalangioidea) in Australia and New Zealand and implications for phalangioid classification. Zootaxa 2773, 1–65.

Taylor, C. K. (2013a). Further notes on New Zealand Enantiobuninae (Opiliones, Neopilionidae), with the description of a new genus and two new species. ZooKeys 263, 59–73.
Further notes on New Zealand Enantiobuninae (Opiliones, Neopilionidae), with the description of a new genus and two new species.Crossref | GoogleScholarGoogle Scholar | 23653517PubMed |

Taylor, C. K. (2013b). Further revision of the genus Megalopsalis (Opiliones, Neopilionidae), with the description of seven new species. ZooKeys 328, 59–117.
Further revision of the genus Megalopsalis (Opiliones, Neopilionidae), with the description of seven new species.Crossref | GoogleScholarGoogle Scholar | 24146548PubMed |

Taylor, C. K., and Hunt, G. S. (2009). New genus of Megalopsalidinae (Arachnida: Opiliones: Monoscutidae) from north-eastern Australia. Zootaxa 2130, 41–59.

Wheeler, W. C. (1996). Optimization alignment: the end of multiple sequence alignment in phylogenetics? Cladistics 12, 1–9.
Optimization alignment: the end of multiple sequence alignment in phylogenetics?Crossref | GoogleScholarGoogle Scholar |

Wheeler, W. C., Aagesen, L., Arango, C. P., Faivovich, J., Grant, T., D’Haese, C. A., Janies, D., Smith, W. L., Varon, A., and Giribet, G. (2006). ‘Dynamic Homology and Phylogenetic Systematics: a Unified Approach using POY.’ (American Museum of Natural History: New York.)

Wheeler, W. C., Lucaroni, N., Hong, L., Crowley, L. M., and Varón, A. (2014). POY version 5: phylogenetic analysis using dynamic homologies under multiple optimality criteria. Cladistics , .
POY version 5: phylogenetic analysis using dynamic homologies under multiple optimality criteria.Crossref | GoogleScholarGoogle Scholar |

White, A. (1849). Descriptions of apparently new species of Aptera from New Zealand. Proceedings of the Zoological Society of London 17, 3–6.

Whiting, M. F., Carpenter, J. M., Wheeler, Q. D., and Wheeler, W. C. (1997). The Strepsiptera problem: phylogeny of the holometabolous insect orders inferred from 18S and 28S ribosomal DNA sequences and morphology. Systematic Biology 46, 1–68.
| 1:STN:280:DC%2BD383js1yqtQ%3D%3D&md5=86df74a7ce3b490b4da8ad4ca25d6b71CAS | 11975347PubMed |

Yang, Z. (1993). Maximum likelihood estimation of phylogeny from DNA sequences when substitution rates differ over sites. Molecular Biology and Evolution 10, 1396–1401.
| 1:CAS:528:DyaK2cXisF2gsA%3D%3D&md5=dc34f9d27e79f82b3e887d5f2d95e355CAS | 8277861PubMed |