Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Invertebrate Systematics Invertebrate Systematics Society
Systematics, phylogeny and biogeography
RESEARCH ARTICLE

Linking genetic diversity and morphological disparity: biodiversity assessment of a highly unexplored family of harvestmen (Arachnida : Opiliones : Neopilionidae) in New Zealand

Rosa Fernández A C , Sebastián Vélez A B and Gonzalo Giribet A
+ Author Affiliations
- Author Affiliations

A Museum of Comparative Zoology & Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA.

B Biology Department, Worcester State University, 486 Chandler Street, Worcester, MA 01602, USA.

C Corresponding author. Email: rfernandezgarcia@g.harvard.edu

Invertebrate Systematics 28(6) 590-604 https://doi.org/10.1071/IS14029
Submitted: 21 June 2014  Accepted: 5 September 2014   Published: 19 December 2014

Abstract

In Opiliones, one of the largest orders within the class Arachnida, with more than 6000 described species, sexual dimorphism can be widespread and exaggerated. This great variety of forms of gender-based dimorphism suggests that sexual selection may play an important role in the diversification of some lineages. It also impacts species identification, assignment of females to described species and biodiversity assessments. Here we use DNA-sequence-based species discovery methods (the Poisson Tree Processes model with Bayesian support values, bPTP, and the Generalized Mixed Yule–Coalescent approach, GMYC, accounting for phylogenetic uncertainty) to shed light on the morphological disparity displayed in several species of neopilionid harvestmen from New Zealand. Both species delimitation analyses recovered many clades that coincide with our prior assignment of morphospecies, based solely on males, and allowed us to assign females and juveniles to these species as well as to identify putative new species and to assign some unidentified species to genera. Several genetic species, particularly Forsteropsalis inconstans and Pantopsalis cheliceroides-listeri, showed complex morphological disparity in the size and shape of the male chelicerae, but also in the general size and coloration patterns of the males. The systematic implications of our results and a possible ecological explanation for the exaggerated traits are discussed. Following our findings, the following taxonomic action is taken: Forsteropsalis nigra is considered a junior synonym of F. inconstans (new synonymy).

Additional keywords: Enantiobuninae, species delimitation, Pantopsalis, Forsteropsalis, Megalopsalis, Mangatangi.


References

Akaike, H. (1978). A Bayesian analysis of the minimum AIC procedure. Annals of the Institute of Statistical Mathematics 30, 9–14.
A Bayesian analysis of the minimum AIC procedure.Crossref | GoogleScholarGoogle Scholar |

Anderson, R. A., and Vitt, L. J. (1990). Sexual selection versus alternative causes of sexual dimorphism in teiid lizards. Oecologia 84, 145–157.

Andersson, M. (1994). ‘Sexual Selection.’ (Princeton University Press: Princeton, NJ.)

Boyer, S. L., Baker, J. M., and Giribet, G. (2007). Deep genetic divergences in Aoraki denticulata (Arachnida, Opiliones, Cyphophthalmi): a widespread ‘mite harvestman’ defies DNA taxonomy. Molecular Ecology 16, 4999–5016.
Deep genetic divergences in Aoraki denticulata (Arachnida, Opiliones, Cyphophthalmi): a widespread ‘mite harvestman’ defies DNA taxonomy.Crossref | GoogleScholarGoogle Scholar | 17944852PubMed |

Burnham, K. P., and Anderson, D. R. (2004). Multimodel inference – understanding AIC and BIC in model selection. Sociological Methods & Research 33, 261–304.
Multimodel inference – understanding AIC and BIC in model selection.Crossref | GoogleScholarGoogle Scholar |

Cokendolpher, J. C., and Taylor, C. K. (2007). Monoscutidae Forster, 1948. In ‘Harvestmen: The Biology of Opiliones’. (Eds R. Pinto-da-Rocha, G. Machado and G. Giribet.) pp. 118–121. (Harvard University Press: Cambridge, MA.)

Colenso, W. (1882). On some newly-discovered New Zealand arachnids. Transactions and Proceedings of the New Zealand Institute 15, 165–173.

Darriba, D., Taboada, G. L., Doallo, R., and Posada, D. (2012). jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9, 772.
jModelTest 2: more models, new heuristics and parallel computing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFWmsbfP&md5=3cacc445e0743c5953b436bc2cf6a350CAS | 22847109PubMed |

de Queiroz, K. (2007). Species concepts and species delimitation. Systematic Biology 56, 879–886.
Species concepts and species delimitation.Crossref | GoogleScholarGoogle Scholar | 18027281PubMed |

Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32, 1792–1797.
MUSCLE: multiple sequence alignment with high accuracy and high throughput.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXisF2ks7w%3D&md5=0f644003e0450eab42e285b06371fbb5CAS | 15034147PubMed |

Emlen, D. J., Warren, I. A., Johns, A., Dworkin, I., and Lavine, L. C. (2012). A mechanism of extreme growth and reliable signaling in sexually selected ornaments and weapons. Science 337, 860–864.
A mechanism of extreme growth and reliable signaling in sexually selected ornaments and weapons.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFOqsb3K&md5=c7d202271534558429be109378e62b5eCAS | 22837386PubMed |

Erwin, D. H. (2007). Disparity: Morphological pattern and developmental context. Palaeontology 50, 57–73.
Disparity: Morphological pattern and developmental context.Crossref | GoogleScholarGoogle Scholar |

Folmer, O., Black, M., Hoeh, W., Lutz, R., and Vrijenhoek, R. C. (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3, 294–299.
| 1:CAS:528:DyaK2MXjt12gtLs%3D&md5=41891c10f444b637826cbf6001a4954cCAS | 7881515PubMed |

Fontaneto, D., Iakovenko, N., Eyres, I., Kaya, M., Wyman, M., and Barraclough, T. G. (2011). Cryptic diversity in the genus Adineta Hudson & Gosse, 1886 (Rotifera: Bdelloidea: Adinetidae): a DNA taxonomy approach. Hydrobiologia 662, 27–33.
Cryptic diversity in the genus Adineta Hudson & Gosse, 1886 (Rotifera: Bdelloidea: Adinetidae): a DNA taxonomy approach.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFWisL7P&md5=69d7b171a98d21e38361d579e73068f2CAS |

Foote, M. (1996). Models of morphological diversification. In ‘Evolutionary Paleobiology: in Honor of James W. Valentine’. (Eds D. Jablonski, D. H. Erwin and J. H. Lipps.) pp. 62–86. (University of Chicago Press: Chicago, IL.)

Forsman, A., and Appelqvist, S. (1998). Visual predators impose correlational selection on prey color pattern and behavior. Behavioral Ecology 9, 409–413.
Visual predators impose correlational selection on prey color pattern and behavior.Crossref | GoogleScholarGoogle Scholar |

Forster, R. R. (1944). The genus Megalopsalis Roewer in New Zealand with keys to the New Zealand genera of Opiliones. Records of the Dominion Museum 1, 183–192.

Forster, R. R. (1948). A new sub-family and species of New Zealand Opiliones. Records of the Auckland Institute and Museum 3, 313–318.

Forster, R. R. (1964). The Araneae and Opiliones of the Sub-Antarctic Islands of New Zealand. Pacific Insects Monograph 7, 58–115.

Gattolliat, J.-L., and Monaghan, M. T. (2010). DNA-based association of adults and larvae in Baetidae (Ephemeroptera) with the description of a new genus Adnoptilum in Madagascar. Journal of the North American Benthological Society 29, 1042–1057.
DNA-based association of adults and larvae in Baetidae (Ephemeroptera) with the description of a new genus Adnoptilum in Madagascar.Crossref | GoogleScholarGoogle Scholar |

Giribet, G., Fernández, R., and Boyer, S. L. (2014). On four poorly known harvestmen from New Zealand (Arachnida, Opiliones: Cyphophthalmi, Eupnoi, Dyspnoi, Laniatores). New Zealand Journal of Zoology , .
On four poorly known harvestmen from New Zealand (Arachnida, Opiliones: Cyphophthalmi, Eupnoi, Dyspnoi, Laniatores).Crossref | GoogleScholarGoogle Scholar |

Hebert, P. D. N., Cywinska, A., Ball, S. L., and deWaard, J. R. (2003). Biological identifications through DNA barcodes. Proceedings of the Royal Society of London. Series B, Biological Sciences 270, 313–321.
Biological identifications through DNA barcodes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXktVWiu7g%3D&md5=6937f93aeb832a9058d1fe8b082d2953CAS |

Hebets, E. A. (2005). Attention-altering signal interactions in the multimodal courtship display of the wolf spider Schizocosa uetzi. Behavioral Ecology 16, 75–82.
Attention-altering signal interactions in the multimodal courtship display of the wolf spider Schizocosa uetzi.Crossref | GoogleScholarGoogle Scholar |

Hey, J., Waples, R. S., Arnold, M. L., Butlin, R. K., and Harrison, R. G. (2003). Understanding and confronting species uncertainty in biology and conservation. Trends in Ecology & Evolution 18, 597–603.
Understanding and confronting species uncertainty in biology and conservation.Crossref | GoogleScholarGoogle Scholar |

Hogg, H. R. (1910). Some New Zealand and Tasmanian Arachnidae. Transactions and Proceedings of the New Zealand Institute 42, 273–283.

Hogg, H. R. (1920). Some Australian Opiliones. Proceedings of the Zoological Society of London 1920, 31–48.

ICZN (1999). ‘International Code of Zoological Nomenclature.’ 4th edn. (The International Trust for Zoological Nomenclature: London, UK.)

Johnstone, R. A., and Norris, K. (1993). Badges of status and the cost of aggression. Behavioral Ecology and Sociobiology 32, 127–134.
Badges of status and the cost of aggression.Crossref | GoogleScholarGoogle Scholar |

Kaplan, P. (2004). Morphology and disparity through time. In ‘Encyclopedia of Life Sciences’. pp. Wiley Online Library, Article A0001637. (John Wiley & Sons: Chichester, UK.) 10.1038/npg.els.0001637

Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., Duran, C., Thierer, T., Ashton, B., Meintjes, P., and Drummond, A. (2012). Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649.
Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data.Crossref | GoogleScholarGoogle Scholar | 22543367PubMed |

Machado, G., and Macías-Ordóñez, R. (2007). Social behavior. In ‘Harvestmen: The Biology of Opiliones’. (Eds R. Pinto-da-Rocha, G. Machado and G. Giribet.) pp. 400–413. (Harvard University Press: Cambridge, MA.)

Machado, G., Pinto-da-Rocha, R., and Giribet, G. (2007). Wat are harvestmen? In ‘Harvestmen: The Biology of Opiliones’. (Eds R. Pinto-da-Rocha, G. Machado and G. Giribet.) pp. 1–13. (Harvard University Press: Cambridge, MA.)

Miller, M. A., Pfeiffer, W., and Schwartz, T. (2010). Creating the CIPRES Science Gateway for Inference of Large Phylogenetic Trees. In ‘Proceedings of the Gateway Computing Environments Workshop (GCE), 14 November 2010, New Orleans’. pp. 1–8.

Monaghan, M. T., Wild, R., Elliot, M., Fujisawa, T., Balke, M., Inward, D. J., Lees, D. C., Ranaivosolo, R., Eggleton, P., Barraclough, T. G., and Vogler, A. P. (2009). Accelerated species inventory on Madagascar using coalescent-based models of species delineation. Systematic Biology 58, 298–311.
Accelerated species inventory on Madagascar using coalescent-based models of species delineation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1Wqu7%2FO&md5=87c081b22b00803d19c8fd522fc5bbf5CAS | 20525585PubMed |

Murai, M., and Backwell, P. R. Y. (2006). A conspicuous courtship signal in the fiddler crab Uca perplexa: female choice based on display structure. Behavioral Ecology and Sociobiology 60, 736–741.
A conspicuous courtship signal in the fiddler crab Uca perplexa: female choice based on display structure.Crossref | GoogleScholarGoogle Scholar |

Norton, B. G. (1986). ‘The Preservation of Species: the Value of Biological Diversity.’ (Princeton University Press: Princeton, NJ.)

Paradis, E., Claude, J., and Strimmer, K. (2004). APE: Analyses of Phylogenetics and Evolution in R language. Bioinformatics 20, 289–290.
APE: Analyses of Phylogenetics and Evolution in R language.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXms1eitg%3D%3D&md5=4346e988d5184eb70da871d50537f8b8CAS | 14734327PubMed |

Pavlinov, I. Y. (2011). Morphological disparity: an attempt to widen and to formalize the concept. In ‘Research in Biodiversity – Models and Applications’. (Ed. I. Y. Pavlinov.) pp. 341–364. (InTech)

Pinto-da-Rocha, R., and Giribet, G. (2007). Taxonomy. In ‘Harvestmen: The Biology of Opiliones’. (Eds R. Pinto-da-Rocha, G. Machado and G. Giribet) pp. 88–246. (Harvard University Press: Cambridge, MA.)

Pinto-da-Rocha, R., Machado, G., and Giribet, G. (Eds) (2007). ‘Harvestmen: The Biology of Opiliones.’ (Harvard University Press: Cambridge, MA.)

Pons, J., Barraclough, T. G., Gomez-Zurita, J., Cardoso, A., Duran, D. P., Hazell, S., Kamoun, S., Sumlin, W. D., and Vogler, A. P. (2006). Sequence-based species delimitation for the DNA taxonomy of undescribed insects. Systematic Biology 55, 595–609.
Sequence-based species delimitation for the DNA taxonomy of undescribed insects.Crossref | GoogleScholarGoogle Scholar | 16967577PubMed |

Posada, D., and Buckley, T. (2004). Model selection and model averaging in phylogenetics: advantages of Akaike information criterion and Bayesian approaches over likelihood ratio tests. Systematic Biology 53, 793–808.
Model selection and model averaging in phylogenetics: advantages of Akaike information criterion and Bayesian approaches over likelihood ratio tests.Crossref | GoogleScholarGoogle Scholar | 15545256PubMed |

Powell, J. R. (2012). Accounting for uncertainty in species delineation during the analysis of environmental DNA sequence data. Methods in Ecology and Evolution 3, 1–11.
Accounting for uncertainty in species delineation during the analysis of environmental DNA sequence data.Crossref | GoogleScholarGoogle Scholar |

Prendini, L., Weygoldt, P., and Wheeler, W. C. (2005). Systematics of the Damon variegatus group of African whip spiders (Chelicerata: Amblypygi): evidence from behaviour, morphology and DNA. Organisms, Diversity & Evolution 5, 203–236.
Systematics of the Damon variegatus group of African whip spiders (Chelicerata: Amblypygi): evidence from behaviour, morphology and DNA.Crossref | GoogleScholarGoogle Scholar |

Puillandre, N., Lambert, A., Brouillet, S., and Achaz, G. (2012). ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Molecular Ecology 21, 1864–1877.
ABGD, Automatic Barcode Gap Discovery for primary species delimitation.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC38zlsFeltQ%3D%3D&md5=6a988792b76cb4958ac97b6ceacba539CAS | 21883587PubMed |

R Development Core Team (2008). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at http://www.R-project.org

Roy, K., and Foote, M. (1997). Morphological approaches to measuring biodiversity. Trends in Ecology & Evolution 12, 277–281.
Morphological approaches to measuring biodiversity.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3M7itFKquw%3D%3D&md5=b8e299ec57e2c3bba09a3f75b24e0b81CAS |

Schönhofer, A. L., and Martens, J. (2010). Hidden Mediterranean diversity: assessing species taxa by molecular phylogeny within the opilionid family Trogulidae (Arachnida, Opiliones). Molecular Phylogenetics and Evolution 54, 59–75.
Hidden Mediterranean diversity: assessing species taxa by molecular phylogeny within the opilionid family Trogulidae (Arachnida, Opiliones).Crossref | GoogleScholarGoogle Scholar | 19840858PubMed |

Stamatakis, A. (2014). RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics , .
RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies.Crossref | GoogleScholarGoogle Scholar | 24478338PubMed |

Tänzler, R., Sagata, K., Surbakti, S., Balke, M., and Riedel, A. (2012). DNA barcoding for community ecology – how to tackle a hyperdiverse, mostly undescribed Melanesian fauna. PLoS ONE 7, e28832.
DNA barcoding for community ecology – how to tackle a hyperdiverse, mostly undescribed Melanesian fauna.Crossref | GoogleScholarGoogle Scholar | 22253699PubMed |

Taylor, C. K. (2004). New Zealand harvestmen of the subfamily Megalopsalidinae (Opiliones: Monoscutidae) – the genus Pantopsalis. Tuhinga 15, 53–76.

Taylor, C. (2008). A new species of Monoscutinae (Arachnida, Opiliones, Monoscutidae) from New Zealand, with a redescription of Monoscutum titirangiense. The Journal of Arachnology 36, 176–179.
A new species of Monoscutinae (Arachnida, Opiliones, Monoscutidae) from New Zealand, with a redescription of Monoscutum titirangiense.Crossref | GoogleScholarGoogle Scholar |

Taylor, C. K. (2010). ‘The Systematics of the Monoscutidae (Arachnida: Opiliones).’ (Curtin University of Technology: Perth.)

Taylor, C. K. (2011). Revision of the genus Megalopsalis (Arachnida: Opiliones: Phalangioidea) in Australia and New Zealand and implications for phalangioid classification. Zootaxa 2773, 1–65.

Taylor, C. K. (2012). Clarification of the type status of Macropsalis fabulosa Phillipps & Grimmett 1932. Zootaxa 3194, 49–50.

Taylor, C. K. (2013a). Further notes on New Zealand Enantiobuninae (Opiliones, Neopilionidae), with the description of a new genus and two new species. ZooKeys 263, 59–73.
Further notes on New Zealand Enantiobuninae (Opiliones, Neopilionidae), with the description of a new genus and two new species.Crossref | GoogleScholarGoogle Scholar | 23653517PubMed |

Taylor, C. K. (2013b). Further revision of the genus Megalopsalis (Opiliones, Neopilionidae), with the description of seven new species. ZooKeys 328, 59–117.
Further revision of the genus Megalopsalis (Opiliones, Neopilionidae), with the description of seven new species.Crossref | GoogleScholarGoogle Scholar | 24146548PubMed |

Vélez, S., Fernández, R., and Giribet, G. (2014). A molecular phylogenetic approach to the New Zealand species of Enantiobuninae (Opiliones: Eupnoi: Neopilionidae). Invertebrate Systematics 28, 565–589.
A molecular phylogenetic approach to the New Zealand species of Enantiobuninae (Opiliones: Eupnoi: Neopilionidae).Crossref | GoogleScholarGoogle Scholar |

Willemart, R. H., and Giribet, G. (2010). A scanning electron microscopic survey of the cuticle in Cyphophthalmi (Arachnida, Opiliones) with the description of novel sensory and glandular structures. Zoomorphology 129, 175–183.
A scanning electron microscopic survey of the cuticle in Cyphophthalmi (Arachnida, Opiliones) with the description of novel sensory and glandular structures.Crossref | GoogleScholarGoogle Scholar |

Willemart, R. H., Farine, J.-P., Peretti, A. V., and Gnaspini, P. (2006). Behavioral roles of the sexually dimorphic structures in the male harvestman, Phalangium opilio (Opiliones, Phalangiidae). Canadian Journal of Zoology 84, 1763–1774.
Behavioral roles of the sexually dimorphic structures in the male harvestman, Phalangium opilio (Opiliones, Phalangiidae).Crossref | GoogleScholarGoogle Scholar |

Willemart, R. H., Osses, F., Chelini, M. C., Macías-Ordóñez, R., and Machado, G. (2009). Sexually dimorphic legs in a Neotropical harvestman (Arachnida, Opiliones): Ornament or weapon? Behavioural Processes 80, 51–59.
Sexually dimorphic legs in a Neotropical harvestman (Arachnida, Opiliones): Ornament or weapon?Crossref | GoogleScholarGoogle Scholar | 18929628PubMed |

Willemart, R. H., Pérez-González, A., Farine, J.-P., and Gnaspini, P. (2010). Sexually dimorphic tegumental gland openings in Laniatores (Arachnida, Opiliones), with new data on 23 species. Journal of Morphology 271, 641–643.
Sexually dimorphic tegumental gland openings in Laniatores (Arachnida, Opiliones), with new data on 23 species.Crossref | GoogleScholarGoogle Scholar | 20027634PubMed |

Wills, M. A. (2001). Disparity vs. diversity. In ‘Palaeobiology II’. pp. 495–500. (Blackwell Science: Oxford, UK.)

Zhang, J., Kapli, P., Pavlidis, P., and Stamatakis, A. (2013). A general species delimitation method with applications to phylogenetic placements. Bioinformatics 29, 2869–2876.
A general species delimitation method with applications to phylogenetic placements.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslWnsbzL&md5=f9898ba2be1183073065b3a935675474CAS | 23990417PubMed |