Register      Login
Invertebrate Systematics Invertebrate Systematics Society
Systematics, phylogeny and biogeography
RESEARCH ARTICLE

Application of cnidae composition in phylogenetic analyses of North Atlantic and Mediterranean dendrophylliid corals (Anthozoa : Scleractinia)

Irene Martínez-Baraldés A B , Pablo J. López-González A and César Megina A
+ Author Affiliations
- Author Affiliations

A Biodiversity and Ecology of Marine Invertebrates, Department of Zoology, Faculty of Biology, University of Seville, Av. Reina Mercedes 6, 41012, Seville, Spain.

B Corresponding author. Email: imbaraldes@us.es

Invertebrate Systematics 28(2) 214-230 https://doi.org/10.1071/IS13036
Submitted: 25 July 2013  Accepted: 8 December 2014   Published: 30 May 2014

Abstract

Scleractinian corals are widely distributed in all oceans and at all bathymetric levels. Corals are among the most important bio-building organisms in marine ecosystems. The systematics of this hexacoral group is currently undergoing much change owing to studies that combine molecular analyses with morphological research on the calcareous skeletons. However, information from polyp anatomy has been widely ignored, and some aspects, such as the diversity and distribution of the cnidocysts, might help to obtain a better understanding of the relationships at different taxonomic levels. In this study, the cnidocysts of four species of the family Dendrophylliidae (Dendrophyllia ramea, D. cornigera, D. laboreli and Astroides calycularis) are analysed to evaluate the application of cnidae in phylogenetic analyses, and to complete our knowledge of cnidae composition (types, distribution and sizes) for these species. A discriminant analysis based on the cnidae of these species supports the usefulness of these structures. The obtained results indicate that additional morphological characters in scleractinian corals that may help to clarify their phylogenetic relationships can still be found.


References

Acuña, F. H., Excoffon, A. C., Zamponi, M. O., and Ricci, L. (2003). Importance of nematocysts in Taxonomy of Acontiarian Sea anemones (Cnidaria, Actiniaria): a statistical comparative study. Zoologischer Anzeiger 242, 75–81.
Importance of nematocysts in Taxonomy of Acontiarian Sea anemones (Cnidaria, Actiniaria): a statistical comparative study.Crossref | GoogleScholarGoogle Scholar |

Appeltans, W., Ahyong, S. T., Anderson, G., Angel, M. V., Artois, T., Bailly, N., Bamber, R., Barber, A., Bartsch, I., Berta, A., Błażewicz-Paszkowycz, M., Bock, P., Boxshall, G., Boyko, C. B., Brandão, S. N., Bray, R. A., Bruce, N. L., Cairns, S. D., Chan, T. Y., Cheng, L., Collins, A. G., Cribb, T., Curini-Galletti, M., Dahdouh-Guebas, F., Davie, P. J., Dawson, M. N., De Clerck, O., Decock, W., De Grave, S., de Voogd, N. J., Domning, D. P., Emig, C. C., Erséus, C., Eschmeyer, W., Fauchald, K., Fautin, D. G., Feist, S. W., Fransen, C. H., Furuya, H., Garcia-Alvarez, O., Gerken, S., Gibson, D., Gittenberger, A., Gofas, S., Gómez-Daglio, L., Gordon, D. P., Guiry, M. D., Hernandez, F., Hoeksema, B. W., Hopcroft, R. R., Jaume, D., Kirk, P., Koedam, N., Koenemann, S., Kolb, J. B., Kristensen, R. M., Kroh, A., Lambert, G., Lazarus, D. B., Lemaitre, R., Longshaw, M., Lowry, J., Macpherson, E., Madin, L. P., Mah, C., Mapstone, G., McLaughlin, P. A., Mees, J., Meland, K., Messing, C. G., Mills, C. E., Molodtsova, T. N., Mooi, R., Neuhaus, B., Ng, P. K., Nielsen, C., Norenburg, J., Opresko, D. M., Osawa, M., Paulay, G., Perrin, W., Pilger, J. F., Poore, G. C., Pugh, P., Read, G. B., Reimer, J. D., Rius, M., Rocha, R. M., Saiz-Salinas, J. I., Scarabino, V., Schierwater, B., Schmidt-Rhaesa, A., Schnabel, K. E., Schotte, M., Schuchert, P., Schwabe, E., Segers, H., Self-Sullivan, C., Shenkar, N., Siegel, V., Sterrer, W., Stöhr, S., Swalla, B., Tasker, M. L., Thuesen, E. V., Timm, T., Todaro, M. A., Turon, X., Tyler, S., Uetz, P., van der Land, J., Vanhoorne, B., van Ofwegen, L. P., van Soest, R. W., Vanaverbeke, J., Walker-Smith, G., Walter, T. C., Warren, A., Williams, G. C., Wilson, S. P., and Costello, M. J. (2012). The magnitude of global marine species diversity. Current Biology 22, 2189–2202.
The magnitude of global marine species diversity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs12gtb7K&md5=1dc243389107e379b7ac46b6d2cd8621CAS | 23159596PubMed |

Baker, A. C. (2003). Flexibility and specificity in coral-algal symbiosis: diversity, ecology, and biogeography of Symbiodinium. Annual Review of Ecology Evolution and Systematics 34, 661–689.
Flexibility and specificity in coral-algal symbiosis: diversity, ecology, and biogeography of Symbiodinium.Crossref | GoogleScholarGoogle Scholar |

Benzoni, F., Arrigoni, R., Stefani, F., and Pichon, M. (2011). Phylogeny of the coral genus Plesiastrea (Cnidaria, Scleractinia). Contributions to Zoology (Amsterdam, Netherlands) 80, 231–249.

Benzoni, F., Arrigoni, R., Stefani, F., Reijnen, B. T., Montano, S., and Hoeksema, B. W. (2012). Phylogenetic position and taxonomy of Cycloseris explanulata and C. wellsi (Scleractinia: Fungiidae): lost mushroom corals find their way home. Contributions to Zoology (Amsterdam, Netherlands) 81, 125–146.

Bo, M., Baker, A. C., Gaino, E., Wirshing, H. H., Scoccia, F., and Bavestrello, G. (2011). First description of algal mutualistic endosymbiosis in a black coral (Anthozoa: Antipatharia). Marine Ecology Progress Series 435, 1–11.
First description of algal mutualistic endosymbiosis in a black coral (Anthozoa: Antipatharia).Crossref | GoogleScholarGoogle Scholar |

Bray, R. J., and Curtis, J. I. (1957). An ordenation of the upland for-est community of southern Wisconsin. Ecological Monographs 27, 325–349.
An ordenation of the upland for-est community of southern Wisconsin.Crossref | GoogleScholarGoogle Scholar |

Budd, A. F., Romano, S. L., Smith, N. D., and Barbeitos, M. S. (2010). Symposium: rethinking the phylogeny of scleractinian corals: a review of morphological and molecular data. Integrative and Comparative Biology 50, 411–427.
Symposium: rethinking the phylogeny of scleractinian corals: a review of morphological and molecular data.Crossref | GoogleScholarGoogle Scholar | 21558212PubMed |

Budd, A. F., Fukami, H., Smith, N. D., and Knowlton, N. (2012). Taxonomic classification of the reef coral family Mussidae (Cnidaria: Anthozoa: Scleractinia). Zoological Journal of the Linnean Society 166, 465–529.
Taxonomic classification of the reef coral family Mussidae (Cnidaria: Anthozoa: Scleractinia).Crossref | GoogleScholarGoogle Scholar |

Buhl-Mortensen, L., and Mortensen, P. B. (2004). Symbiosis in deep-water corals. Symbiosis 37, 33–61.

Cairns, S. D. (1982). Antarctic and Subantarctic Scleractinia. Antarctic Research Series 34, 1–74.
Antarctic and Subantarctic Scleractinia.Crossref | GoogleScholarGoogle Scholar |

Cairns, S. D. (1989). Discriminant analysis of Indo-West Pacific Flabellum. Memoir of the Association of Australasian Palaeontologists 8, 61–68.

Cairns, S. D. (2001). A generic revision and phylogenetic analysis of the Dendrophylliidae (Cnidaria: Scleractinia). Smithsonian Contributions to Zoology 615, 1–75.
A generic revision and phylogenetic analysis of the Dendrophylliidae (Cnidaria: Scleractinia).Crossref | GoogleScholarGoogle Scholar |

Cairns, S. D. (2007). Deep-water corals: an overview with special reference to diversity and distribution of deep-water scleractinian corals. Bulletin of Marine Science 81, 311–322.

Carlgren, O. (1940). A contribution to the knowledge of structure and distribution of cnidae in the Anthozoa. Kungliga Fysiografiska Sällskapets Handlingar 51, 1–62.

Chadwick-Furman, N. E. (1996). Reef coral diversity and global change. Global Change Biology 2, 559–568.
Reef coral diversity and global change.Crossref | GoogleScholarGoogle Scholar |

Chen, C. A., Wallace, C. C., and Wolstenholme, J. (2002). Analysis of the mitochondrial 12S rRNA gene supports a two-clade hypothesis of the evolutionary history of scleractinian corals. Molecular Phylogenetics and Evolution 23, 137–149.
Analysis of the mitochondrial 12S rRNA gene supports a two-clade hypothesis of the evolutionary history of scleractinian corals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XksFOnsLc%3D&md5=5cdfa59ddf518e84ce099ef1a53291ceCAS | 12069546PubMed |

Chen, C. A., Wang, J.-T., Fang, L.-S., and Yang, Y.-W. (2005). Fluctuating algal symbiont communities in Acropora palifera (Scleractinia: Acroporidae) from Taiwan. Marine Ecology Progress Series 295, 113–121.

Chevalier, J. P., and Beauvais, L. (1987). Ordre des Scleractiniaires. In ‘Cnidaries: Anthozoaires, Tome III, Fasc., 3′. (Ed. P. P. Grassé.) pp. 679–764. (Masson: Paris, France.)

Chintiroglou, C. C., Doumenec, D., Le Renard, J., Foubert, A., and Kolyva Machaira, F. (1996). Classification of cnidarian nematocysts using multivariate and digital image analysis. Bios 4, 123–135.

Clarke, K. R., and Gorley, R. N. (2006). ‘PRIMER v6’. Available at http://www.primer-e.com/Primary_papers.htm.

den Hartog, J. C., Ocaña, D. O., and Brito, A. (1993). Corallimorpharia collected during the CANCAP expeditions (1976–1986) in the south-eastern part of the North Atlantic. Zoologische Verhandelingen 282, 1–76.

Dolan, M. F. J., Grehan, A. J., Guinan, J. C., and Brown, C. (2008). Modelling the local distribution of cold-water corals in relation to bathymetric variables: adding spatial context to deep-sea video data. Deep-sea Research. Part I, Oceanographic Research Papers 55, 1564–1579.
Modelling the local distribution of cold-water corals in relation to bathymetric variables: adding spatial context to deep-sea video data.Crossref | GoogleScholarGoogle Scholar |

Fabricius, K. E., Cooper, T. F., Humphrey, C., Uthicke, S., De’ath, G., Davidson, J., LeGrand, H., Thompson, A., and Schaffelke, B. (2012). A bioindicator system for water quality on inshore coral reefs of the Great Barrier Reef. Marine Pollution Bulletin 65, 320–332.
A bioindicator system for water quality on inshore coral reefs of the Great Barrier Reef.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XotlOgtLg%3D&md5=426505ec6844d0a83143cae84d40deffCAS | 21978685PubMed |

Fangueiro Ramos, M. (2010). Sea anemones (Anthozoa: Actiniaria) fauna of the north Atlantic deep sea. Ph.D. Thesis, Universidade de Aveiro, Portugal.

Fautin, D. G. (2009). Structural diversity, systematic and evolution of cnidae. Toxicon 54, 1054–1064.
Structural diversity, systematic and evolution of cnidae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlekt7rO&md5=56c8277c1138b82ef5dce0e4b15f8e0dCAS | 19268491PubMed |

Fukami, H., Allen, C. C., Budd, A. F., Collins, A., Wallace, C., Chuang, Y. Y., Chen, C., Dai, C. F., Iwao, K., Sheppard, C., and Knowlton, N. (2008). Mitochondrial and nuclear genes suggest that stony corals are monophyletic but most families of stony corals are not (order Scleractinia, class Anthozoa, phylum Cnidaria). PLoS ONE 3, e3222.
Mitochondrial and nuclear genes suggest that stony corals are monophyletic but most families of stony corals are not (order Scleractinia, class Anthozoa, phylum Cnidaria).Crossref | GoogleScholarGoogle Scholar | 18795098PubMed |

Gates, R. D., Baghdasarian, G., and Muscatine, L. (1992). Temperature stress causes host cell detachment in symbiotic cnidarians: implications for coral bleaching. The Biological Bulletin 182, 324–332.
Temperature stress causes host cell detachment in symbiotic cnidarians: implications for coral bleaching.Crossref | GoogleScholarGoogle Scholar |

Gittenberger, A., Reijnen, B. T., and Hoeksema, B. W. (2011). A molecularly based phylogeny reconstruction of mushroom corals (Scleractinia: Fungiidae) with taxonomic consequences and evolutionary implications for life history traits. Contributions to Zoology (Amsterdam, Netherlands) 80, 107–132.

Godknecht, A., and Tardent, P. (1988). Discharge and mode of action of the tentacular nematocysts of Anemonia sulcata (Anthozoa: Cnidaria). Marine Biology 100, 83–92.
Discharge and mode of action of the tentacular nematocysts of Anemonia sulcata (Anthozoa: Cnidaria).Crossref | GoogleScholarGoogle Scholar |

Goloboff, P. A., Farris, J. S., and Nixon, K. C. (2008). TNT, a free program for phylogenetic analysis. Cladistics 24, 774–786.
TNT, a free program for phylogenetic analysis.Crossref | GoogleScholarGoogle Scholar |

Gomes-Sumida, P. Y., Yoshinaga, M. Y., Saint-Pastous Madureira, L. A., and Hovland, M. (2004). Seabed pockmarks associated with deepwater corals off SE Brazilian continental slope, Santos Basin. Marine Geology 207, 159–167.
Seabed pockmarks associated with deepwater corals off SE Brazilian continental slope, Santos Basin.Crossref | GoogleScholarGoogle Scholar |

Hoeksema, B. W. (1993). Phenotypic corallum variability in Recent mobile reef corals. Courier Forschungs-Institut Senckenberg 164, 263–272.

Hoeksema, B. W. (2007). Delineation of the Indo-Malayan centre of maximum marine biodiversity: the Coral Triangle. In ‘Biogeography, Time and Place: Distributions, Barriers and Islands’. (Ed. W. Renema.) pp. 117–178. (Springer: Dordrecht.)

Hoeksema, B. W. (2012a). Distribution patterns of mushroom corals (Scleractinia: Fungiidae) across the Spermonde Shelf, South Sulawesi. The Raffles Bulletin of Zoology 60, 183–212.

Hoeksema, B. W. (2012b). Forever in the dark: the cave-dwelling azooxanthellate reef coral Leptoseris troglodyta sp. n. (Scleractinia, Agariciidae). ZooKeys 228, 21–37.
Forever in the dark: the cave-dwelling azooxanthellate reef coral Leptoseris troglodyta sp. n. (Scleractinia, Agariciidae).Crossref | GoogleScholarGoogle Scholar | 23166468PubMed |

Hoeksema, B. W., and Best, M. B. (1991). New observations on scleractinian corals from Indonesia: 2. Sipunculan-associated species belonging to the genera Heterocyathus and Heteropsammia. Zoologische Mededelingen, Leiden 65, 221–245.

Hoeksema, B. W., and Moka, W. (1989). Species assemblages and phenotypes of mushroom corals (Fungiidae) related to coral reef habitats in the flores sea. Netherland Journal of Sea Research 23, 149–160.

Hoeksema, B. W., and Wirtz, P. (2013). Over 130 years of survival by a small, isolated population of Favia gravida corals at Ascension Island (South Atlantic). Coral Reefs 32, 551.
Over 130 years of survival by a small, isolated population of Favia gravida corals at Ascension Island (South Atlantic).Crossref | GoogleScholarGoogle Scholar |

Hoeksema, B. W., van der Meij, S. E. T., and Fransen, C. H. J. M. (2012). The mushroom coral as a habitat. Journal of the Marine Biological Association of the United Kingdom 92, 647–663.
The mushroom coral as a habitat.Crossref | GoogleScholarGoogle Scholar |

Huang, D. (2012). Threatened reef corals of the World. PLoS ONE 7, e34459.
Threatened reef corals of the World.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xlsleht7Y%3D&md5=6a8d7d85c0215b05df269e6bbcbb8da6CAS | 22479633PubMed |

Huang, M. R., Todd, P. A., and Chou, L. M. (2009). More evidence for pervasive paraphyly in scleractinian corals: systematic study of Southeast Asian Faviidae (Cnidaria; Scleractinia) based on molecular and morphological data. Molecular Phylogenetics and Evolution 50, 102–116.
More evidence for pervasive paraphyly in scleractinian corals: systematic study of Southeast Asian Faviidae (Cnidaria; Scleractinia) based on molecular and morphological data.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFamurrF&md5=e01b7f5cbc3c3fc15c589720299d33a5CAS |

Kerr, A. M. (2005). Molecular and morphological supertree of stony corals (Anthozoa: Scleractinia) using matrix representation parsimony. Biological Reviews of the Cambridge Philosophical Society 80, 543–558.
Molecular and morphological supertree of stony corals (Anthozoa: Scleractinia) using matrix representation parsimony.Crossref | GoogleScholarGoogle Scholar | 16221328PubMed |

Kitahara, M. V., Cairns, S. D., Stolarski, J., Blair, D., and Miller, D. J. (2010). A comprehensive phylogentic analysis of the Scleractinia (Cnidaria, Anthozoa) based on mitochondrial COI sequence data. PLoS ONE 5, e11490.
A comprehensive phylogentic analysis of the Scleractinia (Cnidaria, Anthozoa) based on mitochondrial COI sequence data.Crossref | GoogleScholarGoogle Scholar | 20628613PubMed |

Kitahara, M. V., Stolarski, J., Cairns, S. D., Benzoni, F., Stake, J. L., and Miller, D. J. (2012). The first modern solitary Agariciidae (Anthozoa, Scleractinia) revealed by molecular and microstructural analysis. Invertebrate Systematics 26, 303–315.
The first modern solitary Agariciidae (Anthozoa, Scleractinia) revealed by molecular and microstructural analysis.Crossref | GoogleScholarGoogle Scholar |

Land, L. S., Lang, J. C., and Smith, B. N. (1975). Preliminary observations on the carbon isotopic composition of some reef coral tissues and symbiotic zooxanthellae. Limnology and Oceanography 20, 283–287.
Preliminary observations on the carbon isotopic composition of some reef coral tissues and symbiotic zooxanthellae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2MXltVejsLg%3D&md5=a4493e70f404ca6105c546d0975ab239CAS |

Le Goff-Vitry, M. C., Rogers, A. D., and Baglowa, D. (2004). A deep-sea slant on the molecular phylogeny of the Scleractinia. Molecular Phylogenetics and Evolution 30, 167–177.
A deep-sea slant on the molecular phylogeny of the Scleractinia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpt1Sisbc%3D&md5=088673a682a9c0bc16481762c1c0261cCAS | 15022767PubMed |

Lin, M. F., Kitahara, M. V., Tachikawa, H., Keshavmurthy, S., and Chen, C. A. (2012). A new shallow-water species, Polycyathus chaishanensis sp. nov. (Scleractinia: Caryophylliidae), from Chaishan, Kaohsiung, Taiwan. Zoological Studies 51, 213–221.

Mariscal, R. N. (1974). Nematocysts. In ‘Coelenterate Biology’. (Eds L. Muscatine and H. M. Lenhoff.) pp. 129–178. (Academic Press: New York.)

Medina, M., Collins, A. G., Takaoka, T. L., Kuehl, J. V., and Boore, J. L. (2006). Naked corals: skeleton loss in Scleractinia. Proceedings of the National Academy of Sciences of the United States of America 103, 9096–9100.
Naked corals: skeleton loss in Scleractinia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmsVWjsLo%3D&md5=6180d70bc3e2c8a9706d00ace5321434CAS | 16754865PubMed |

Nixon, K. C. (1999). ‘Winclada (BETA) ver. 0.9.9’. Published by the author, Ithaca, NY. Available at http://www.cladistics.com/about_winc.htm

Picciani, N., Pires, D. O., and Silva, H. R. (2011). Cnidocysts of Caryophylliidae and Dendrophylliidae (Cnidaria: Scleractinia): taxonomic distribution and phylogenetic implications. Zootaxa 3135, 35–54.

Pires, D. O. (1997). Cnidae of Scleractinia. Proceedings of the Biological Society of Washington 110, 167–185.

Pires, D. O., and Pitombo, F. B. (1992). Cnidae of the Brazilian Mussidae (Cnidaria: Scleractinia) and their value in taxonomy. Bulletin of Marine Science 51, 231–244.

Plaisance, L., Caley, M. J., Brainard, R. E., and Knowlton, N. (2011). The diversity of coral reefs: what are we missing? PLoS ONE 6, e25026.
The diversity of coral reefs: what are we missing?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVSgtr7E&md5=d3ff0c58061745cb900ddac9084b9741CAS | 22022371PubMed |

Quinn, G. P., and Keough, M. J. (2002). ‘Experimental Design and Data Analysis for Biologists.’ (Cambridge University Press: Melbourne.)

Romano, S. L., and Cairns, S. D. (2000). Molecular phylogenetic hypotheses for the evolution of scleractinian corals. Bulletin of Marine Science 67, 1043–1068.

Romano, S. L., and Palumbi, S. R. (1996). Evolution of scleractinian corals inferred from molecular systematics. Science 271, 640–642.
Evolution of scleractinian corals inferred from molecular systematics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XptVyiug%3D%3D&md5=c092d629dff921a4fea1159ac5936b99CAS |

Rowan, R., and Knowlton, N. (1995). Intraspecific diversity and ecological zonation in coral–algal symbiosis. Proceedings of the National Academy of Sciences of the United States of America 92, 2850–2853.
Intraspecific diversity and ecological zonation in coral–algal symbiosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXksl2rt7o%3D&md5=16ee6f3ff61dfdcd334c1b355ef00dcfCAS | 7708736PubMed |

Santodomingo, N., Reyes, J., Flórez, P., Chacón-Gómez, I. C., van Ofwegen, L. P., and Hoeksema, B. W. (2013). Diversity and distribution of azooxanthellate corals in the Colombian Caribbean. Marine Biodiversity 43, 7–22.
Diversity and distribution of azooxanthellate corals in the Colombian Caribbean.Crossref | GoogleScholarGoogle Scholar |

SPSS Inc. (2006). Command Syntax Reference v15.0, (SPSS: Chicago, IL.)

Stanley, G. D. (2003). The evolution of modern corals and their early history. Earth-Science Reviews 60, 195–225.
The evolution of modern corals and their early history.Crossref | GoogleScholarGoogle Scholar |

Stolarski, J., and Roniewicz, E. (2001). Towards a new synthesis of evolutionary relationships and classification of Scleractinia. Journal of Paleontology 75, 1090–1108.
Towards a new synthesis of evolutionary relationships and classification of Scleractinia.Crossref | GoogleScholarGoogle Scholar |

Stolarski, J., Zibrowius, H., and Löser, H. (2001). Antiquity of the scleractinian-sipunculan symbiosis. Acta Palaeontologica Polonica 46, 309–330.

Stolarski, J., Kitahara, M. V., Miller, D. J., Cairns, S. D., Mazur, M., and Meibom, A. (2011). The ancient evolutionary origins of Scleractinia revealed by azooxanthellate corals. BMC Evolutionary Biology 11, 316.
The ancient evolutionary origins of Scleractinia revealed by azooxanthellate corals.Crossref | GoogleScholarGoogle Scholar | 22034946PubMed |

Terrón-Sigler, A., and López-González, P. J. (2005). Cnidae variability in Balanophyllia europaea and B. regia (Scleractinia: Dendrophylliidae) in the NE Atlantic and Mediterranean Sea. Scientia Marina 69, 75–86.

Tursi, A., Mastrototaro, F., Matarres, E. A., Maiorano, P., and D’onghia, G. (2004). Biodiversity of the white coral reefs in the Ionian Sea (Central Mediterranean). Chemistry and Ecology 20, 107–116.
Biodiversity of the white coral reefs in the Ionian Sea (Central Mediterranean).Crossref | GoogleScholarGoogle Scholar |

Vaughan, T. W., and Wells, J. W. (1943). Revision of the suborders, families, and genera of the Scleractinia. Geological Society of America. Special Paper 44, 1–394.
Revision of the suborders, families, and genera of the Scleractinia.Crossref | GoogleScholarGoogle Scholar |

Veron, J. E. N. (1995). ‘Corals in space and time: the biogeography and evolution of the Scleractinia’. (University of New South Wales Press: Sydney).

Wild, C., Hoegh-Guldberg, O., Naumann, M. S., Colombo-Pallotta, M. F., Ateweberhan, M., Fitt, W. K., Iglesias-Prieto, R., Palmer, C., Bythell, J. C., Ortiz, J. C., Loya, Y., and Woesik, R. V. (2011). Climate change impedes scleractinian corals as primary reef ecosystem engineers. Marine and Freshwater Research 62, 205–215.
Climate change impedes scleractinian corals as primary reef ecosystem engineers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXitlejt78%3D&md5=7ec676f4b28dc34c89be7bd65895c90dCAS |

Williams, R. B. (1996). Measurements of cnidae from sea anemones (Cnidaria: Actiniaria): statistical parameters and taxonomic relevance. Scientia Marina 60, 339–351.

Williams, R. B. (1998). Measurements of cnidae from sea anemones (Cnidaria: Actiniaria), II: further studies of differences amongst simple means and their taxonomic relevance. Scientia Marina 62, 361–372.
Measurements of cnidae from sea anemones (Cnidaria: Actiniaria), II: further studies of differences amongst simple means and their taxonomic relevance.Crossref | GoogleScholarGoogle Scholar |

Williams, R. B. (2000). Measurements of cnidae from sea anemones (Cnidaria: Actiniaria), III: ranges and other measures of statistical dispersion, their interrelations and taxonomic relevance. Scientia Marina 64, 49–68.

Zibrowius, H. (1980). Les scléractiniaires de la Mediterranée et de l’Atlantique nord-oriental. Mémories Institut Océanographique Monaco 11, 1–284.