Register      Login
Historical Records of Australian Science Historical Records of Australian Science Society
The history of science, pure and applied, in Australia, New Zealand and the southwest Pacific
EDITORIAL

Anthony William Linnane 1930–2017

Phillip Nagley A
+ Author Affiliations
- Author Affiliations

A Emeritus Professor, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Vic. 3800, Australia. Email: phillip.nagley@monash.edu

Historical Records of Australian Science 30(2) 166-177 https://doi.org/10.1071/HR19001
Published: 7 May 2019

Abstract

Anthony (Tony) Linnane isolated mitochondria from bakers’ yeast during his doctoral studies at the University of Sydney in the 1950s. He subsequently pioneered research into the biogenesis of mitochondria, covering enzymology, membrane biochemistry, and molecular biology and genetics, over more than two decades until the mid-1980s. These discoveries were made mostly at Monash University and earned him election as FAA (1972) and FRS (1980). Linnane thereafter broadened his research towards medical topics, especially the role of mitochondria in human ageing, together with studies on interferon and cancer-specific mucinous antigens. After retirement from Monash in 1996, Linnane worked towards ameliorating disease through bioenergetic strategies, based at the Centre for Molecular Biology and Medicine in Melbourne. He played significant roles in the Australian Biochemical Society and the International Union of Biochemistry.


References

Beinert, H., Stumpf, P. K., and Wakil, S. J. (2004) David Ezra Green 1910–1983, Biographical Memoirs. National Academy of Sciences (U. S.), 84, 112–144.

Boardman, N. K., Linnane, A. W., and Smillie, R. M. (eds) (1971) Autonomy and Biogenesis of Mitochondria and Chloroplasts, Amsterdam.

Clark-Walker, G. D., and Linnane, A. W. (1967) The biogenesis of mitochondria in Saccharomyces cerevisiae. A comparison between cytoplasmic respiratory-deficient mutant yeast and chlormaphenicol-inhibited wild type cells, The Journal of Cell Biology, 34, 1–14.
The biogenesis of mitochondria in Saccharomyces cerevisiae. A comparison between cytoplasmic respiratory-deficient mutant yeast and chlormaphenicol-inhibited wild type cellsCrossref | GoogleScholarGoogle Scholar | 6033531PubMed |

Cobon, G. S., Groot Obbink, D. J., Hall, R. M., Maxwell, R. J., Murphy, M., Rytka, J., and Linnane, A. W. (1976) ‘Mitochondrial genes determining cytochrome b (complex III) and cytochrome oxidase function’, in Genetics and Biogenesis of Chloroplasts and Mitochondria, eds T. Bucher, W. Neupert, W. Sebald, and S. Werner, Amsterdam. pp. 453–460.

Ephrussi, B. (1953) Nucleo-Cytoplasmic Relations in Micro-organisms, Oxford.

Ephrussi, B., and Hottinguer, H. (1951) On an unstable cell state in yeast, Cold Spring Harbor Symposia on Quantitative Biology, 16, 75–8510.1101/SQB.1951.016.01.007

Gingold, E. B., Saunders, G. W., Lukins, H. B., and Linnane, A. W. (1969) Biogenesis of mitochondria, X. Reassortment of the cytoplasmic genetic determinants for respiratory competence and erythromycin resistance in Saccharomyces cerevisiae, Genetics, 62, 735–744.
| 5384489PubMed |

Goldring, E. S., Grossman, L. I., Krupnick, D., Cryer, D. R., and Marmur, J. (1970) The petite mutation in yeast: loss of mitochondrial deoxyribonucleic acid during induction of petites with ethidium bromide, Journal of Molecular Biology, 52, 323–335.
The petite mutation in yeast: loss of mitochondrial deoxyribonucleic acid during induction of petites with ethidium bromideCrossref | GoogleScholarGoogle Scholar | 5485912PubMed |

Huang, M., Biggs, D. R., Clark-Walker, G. D., and Linnane, A. W. (1966) Chloramphenicol inhibition of the formation of particulate mitochondrial enzymes of Saccharomyces cerevisiae, Biochimica et Biophysica Acta, 114, 434–436.
Chloramphenicol inhibition of the formation of particulate mitochondrial enzymes of Saccharomyces cerevisiaeCrossref | GoogleScholarGoogle Scholar | 5947498PubMed |

Jollow, D., Kellerman, G. M., and Linnane, A. W. (1968) The biogenesis of mitochondria. 3. The lipid composition of aerobically and anaerobically grown Saccharomyces cerevisiae as related to the membrane systems of the cells, The Journal of Cell Biology, 37, 221–230.
The biogenesis of mitochondria. 3. The lipid composition of aerobically and anaerobically grown Saccharomyces cerevisiae as related to the membrane systems of the cellsCrossref | GoogleScholarGoogle Scholar | 4297785PubMed |

Kellerman, G. M., Griffiths, D. E., Hansby, J. E., Lamb, A. J., and Linnane, A. W. (1971) ‘The protein synthetic capacity of yeast mitochondria, and the role of the mitochondrial genome in the economy of the cell’, in Autonomy and Biogenesis of Mitochondria and Chloroplasts, eds N. K. Boardman, A. W. Linnane, and R. M. Smillie, Amsterdam, pp. 346–359.

King, M. P., and Attardi, G. (1989) Human cells lacking mtDNA: repopulation with exogenous mitochondria by complementation, Science, 246, 500–503.
Human cells lacking mtDNA: repopulation with exogenous mitochondria by complementationCrossref | GoogleScholarGoogle Scholar | 2814477PubMed |

Kopsidas, G., Kovalenko, S. A., Kelso, J. M., and Linnane, A. W. (1998) An age-associated correlation between cellular bioenergy decline and mtDNA rearrangements in human skeletal muscle, Mutation Research, 421, 27–36.
An age-associated correlation between cellular bioenergy decline and mtDNA rearrangements in human skeletal muscleCrossref | GoogleScholarGoogle Scholar | 9748486PubMed |

Kovalenko, S. A., Harms, P. J., Tanaka, M., Baumer, A., Kelso, J., Ozawa, T., and Linnane, A. W. (1997a) Method for in situ investigation of mitochondrial DNA deletions, Human Mutation, 10, 489–495.
Method for in situ investigation of mitochondrial DNA deletionsCrossref | GoogleScholarGoogle Scholar | 9401014PubMed |

Kovalenko, S. A., Kopsidas, G., Kelso, J. M., and Linnane, A. W. (1997b) Deltoid human muscle mtDNA is extensively rearranged in old age subjects, Biochemical and Biophysical Research Communications, 232, 147–152.
Deltoid human muscle mtDNA is extensively rearranged in old age subjectsCrossref | GoogleScholarGoogle Scholar | 9125120PubMed |

Lamb, A. J., Clark-Walker, G. D., and Linnane, A. W. (1968) The biogenesis of mitochondria. 4. The differentiation of mitochondrial and cytoplasmic protein synthesizing systems in vitro by antibiotics, Biochimica et Biophysica Acta, 161, 415–427.
The biogenesis of mitochondria. 4. The differentiation of mitochondrial and cytoplasmic protein synthesizing systems in vitro by antibioticsCrossref | GoogleScholarGoogle Scholar | 5667290PubMed |

Linnane, A. W. (1992) Mitochondria and aging: the universality of bioenergetic disease, Aging (Milan, Italy), 4, 267–271.

Linnane, A. W. (2010) My life as a biochemist and molecular biologist, IUBMB Life, 62, 527–530.
My life as a biochemist and molecular biologistCrossref | GoogleScholarGoogle Scholar | 20552639PubMed |

Linnane, A. W., and Still, J. L. (1955a) Respiring mitochondria from baker’s yeast, Archives of Biochemistry and Biophysics, 56, 264–265.
Respiring mitochondria from baker’s yeastCrossref | GoogleScholarGoogle Scholar | 14377573PubMed |

Linnane, A. W., and Still, J. L. (1955b) The isolation of respiring mitochondria from baker’s yeast, Archives of Biochemistry and Biophysics, 59, 383–392.
The isolation of respiring mitochondria from baker’s yeastCrossref | GoogleScholarGoogle Scholar | 13275956PubMed |

Linnane, A. W., Vitols, E., and Nowland, P. G. (1962) Studies on the origin of yeast mitochondria, The Journal of Cell Biology, 13, 345–350.
Studies on the origin of yeast mitochondriaCrossref | GoogleScholarGoogle Scholar | 14465623PubMed |

Linnane, A. W., Lamb, A. J., Christodoulou, C., and Lukins, H. B. (1968a) The biogenesis of mitochondria, VI. Biochemical basis of the resistance of Saccharomyces cerevisiae toward antibiotics which specifically inhibit mitochondrial protein synthesis, Proceedings of the National Academy of Sciences of the United States of America, 59, 1288–1293.
The biogenesis of mitochondria, VI. Biochemical basis of the resistance of Saccharomyces cerevisiae toward antibiotics which specifically inhibit mitochondrial protein synthesisCrossref | GoogleScholarGoogle Scholar | 5240029PubMed |

Linnane, A. W., Saunders, G. W., Gingold, E. B., and Lukins, H. B. (1968b) The biogenesis of mitochondria. V. Cytoplasmic inheritance of erythromycin resistance in Saccharomyces cerevisiae, Proceedings of the National Academy of Sciences of the United States of America, 59, 903–910.
The biogenesis of mitochondria. V. Cytoplasmic inheritance of erythromycin resistance in Saccharomyces cerevisiaeCrossref | GoogleScholarGoogle Scholar | 5238670PubMed |

Linnane, A. W., Lukins, H. B., Molloy, P. L., Nagley, P., Rytka, J., Sriprakash, K. S., and Trembath, M. K. (1976) Biogenesis of mitochondria: molecular mapping of the mitochondrial genome of yeast, Proceedings of the National Academy of Sciences of the United States of America, 73, 2082–2085.
Biogenesis of mitochondria: molecular mapping of the mitochondrial genome of yeastCrossref | GoogleScholarGoogle Scholar | 778855PubMed |

Linnane, A. W., Marzuki, S., Ozawa, T., and Tanaka, M. (1989) Mitochondrial DNA mutations as an important contributor to ageing and degenerative diseases, Lancet, 333, 642–645.
Mitochondrial DNA mutations as an important contributor to ageing and degenerative diseasesCrossref | GoogleScholarGoogle Scholar |

Linnane, A. W., Baumer, A., Maxwell, R. J., Preston, H., Zhang, C. F., and Marzuki, S. (1990) Mitochondrial gene mutation: the ageing process and degenerative diseases, Biochemistry International, 22, 1067–1076.
| 1965280PubMed |

Lukins, H. B., Tham, S. H., Wallace, P. G., and Linnane, A. W. (1966) Correlation of membrane bound succinate dehydrogenase with the occurrence of mitochondrial profiles in Saccharomyces cerevisiae, Biochemical and Biophysical Research Communications, 23, 363–367.
Correlation of membrane bound succinate dehydrogenase with the occurrence of mitochondrial profiles in Saccharomyces cerevisiaeCrossref | GoogleScholarGoogle Scholar | 5961077PubMed |

Macreadie, I. G., Novitski, C. E., Maxwell, R. J., John, U., Ooi, B. G., McMullen, G. L., Lukins, H. B., Linnane, A. W., and Nagley, P. (1983) Biogenesis of mitochondria: the mitochondrial gene (aap1) coding for mitochondrial ATPase subunit 8 in Saccharomyces cerevisiae, Nucleic Acids Research, 11, 4435–4451.
Biogenesis of mitochondria: the mitochondrial gene (aap1) coding for mitochondrial ATPase subunit 8 in Saccharomyces cerevisiaeCrossref | GoogleScholarGoogle Scholar | 6223276PubMed |

Marzuki, S., Cobon, G. S., Crowfoot, P. D., and Linnane, A. W. (1975) Biogenesis of mitochondria. The effects of membrane unsaturated fatty acid content on the activity and assembly of the yeast mitochondrial protein-synthesizing system, Archives of Biochemistry and Biophysics, 169, 591–600.
Biogenesis of mitochondria. The effects of membrane unsaturated fatty acid content on the activity and assembly of the yeast mitochondrial protein-synthesizing systemCrossref | GoogleScholarGoogle Scholar | 126665PubMed |

Murphy, M., Gutowski, S. J., Marzuki, S., Lukins, H. B., and Linnane, A. W. (1978) Mitochondrial oligomycin-resistance mutations affecting the proteolipid subunit of the mitochondrial adenosine triphosphatase, Biochemical and Biophysical Research Communications, 85, 1283–1290.
Mitochondrial oligomycin-resistance mutations affecting the proteolipid subunit of the mitochondrial adenosine triphosphataseCrossref | GoogleScholarGoogle Scholar | 154328PubMed |

Nagley, P. (1988) Eukaryote membrane genetics: the Fo sector of mitochondrial ATP synthase, Trends in Genetics, 4, 46–52.
Eukaryote membrane genetics: the Fo sector of mitochondrial ATP synthaseCrossref | GoogleScholarGoogle Scholar | 2907692PubMed |

Nagley, P. (1992) ‘Monash University—Biochemistry Department Profile’, in Newsletter of the Australian Society for Biochemistry and Molecular Biology Inc. Vol. 23, No. 1, Australian Society for Biochemistry and Molecular Biology Inc, pp. 1–6. http://www.med.monash.edu.au/biochem/biochem-history-part-one.pdf (viewed 30 December, 2018).

Nagley, P. (2011). ‘History of Biochemistry and Molecular Biology at Monash University: Part 2 (1992–2011)’, in The Australian Biochemist, vol. 42, no. 2, Australian Society for Biochemistry and Molecular Biology Inc, pp. 36–42. http://www.med.monash.edu.au/biochem/biochem-history-part-two.pdf (viewed 30 December, 2018).

Nagley, P. (2018) Anthony (Tony) W. Linnane: a man of mitochondria and much more, IUBMB Life, 70, 256–259.
Anthony (Tony) W. Linnane: a man of mitochondria and much moreCrossref | GoogleScholarGoogle Scholar |

Nagley, P., and Linnane, A. W. (1970) Mitochondrial DNA deficient petite mutants of yeast, Biochemical and Biophysical Research Communications, 39, 989–996.
Mitochondrial DNA deficient petite mutants of yeastCrossref | GoogleScholarGoogle Scholar | 5423835PubMed |

Nagley, P., and Linnane, A. W. (1972) Biogenesis of mitochondria. XXI. Studies on the nature of the mitochondrial genome in yeast: the degenerative effects of ethidium bromide on mitochondrial genetic information in a respiratory competent strain, Journal of Molecular Biology, 66, 181–193.
Biogenesis of mitochondria. XXI. Studies on the nature of the mitochondrial genome in yeast: the degenerative effects of ethidium bromide on mitochondrial genetic information in a respiratory competent strainCrossref | GoogleScholarGoogle Scholar | 4557196PubMed |

Nagley, P., Sriprakash, K. S., and Linnane, A. W. (1977) Structure, synthesis and genetics of yeast mitochondrial DNA, Advances in Microbial Physiology, 16, 157–277.
Structure, synthesis and genetics of yeast mitochondrial DNACrossref | GoogleScholarGoogle Scholar | 343546PubMed |

Roberts, H., Choo, W. M., Murphy, M., Marzuki, S., Lukins, H. B., and Linnane, A. W. (1979) mit− Mutations in the oli2-region of mitochondrial-DNA affecting the 20000 dalton subunit of the mitochondrial ATPase in Saccharomyces cerevisiae, FEBS Letters, 108, 501–504.
mit Mutations in the oli2-region of mitochondrial-DNA affecting the 20000 dalton subunit of the mitochondrial ATPase in Saccharomyces cerevisiaeCrossref | GoogleScholarGoogle Scholar | 230092PubMed |

Rytka, J., English, K. J., Hall, R. M., Linnane, A. W., and Lukins, H. B. (1976) ‘The isolation and simultaneous physical mapping of mitochondrial mutations affecting respiratory complexes’, in Genetics and Biogenesis of Chloroplasts and Mitochondria, eds T. Bucher, W. Neupert, W. Sebald, and S. Werner, Amsterdam, pp. 427–434.

Saccone, C., and Kroon, A. M. (eds) (1976) The Genetic Function of Mitochondrial DNA, Amsterdam.

Saunders, G. W., Gingold, E. B., Trembath, M. K., Lukins, H. B., and Linnane, A. W. (1971) ‘Mitochondrial genetics in yeast: segregation of a cytoplasmic determinant in crosses and its loss and retention in the petite’, in Autonomy and Biogenesis of Mitochondria and Chloroplasts, eds N. K. Boardman, A. W. Linnane, and R. M. Smillie, Amsterdam, pp. 185–193.

Schatz, G., Haslbrunner, E., and Tuppy, H. (1964) Deoxyribonucleic acid associated with yeast mitochondria, Biochemical and Biophysical Research Communications, 15, 127–132.
Deoxyribonucleic acid associated with yeast mitochondriaCrossref | GoogleScholarGoogle Scholar | 26410904PubMed |

Slater, E. C. (1994) Peter Dennis Mitchell 1920–1992, Biographical Memoirs of Fellows of the Royal Society. Royal Society (Great Britain), 40, 283–305.
Peter Dennis Mitchell 1920–1992Crossref | GoogleScholarGoogle Scholar |

Slonimski, P. P., and Tzagoloff, A. (1976) Localization in yeast mitochondrial DNA of mutations expressed in a deficiency of cytochrome oxidase and/or coenzyme QH2-cytochrome c reductase, European Journal of Biochemistry, 61, 27–41.
Localization in yeast mitochondrial DNA of mutations expressed in a deficiency of cytochrome oxidase and/or coenzyme QH2-cytochrome c reductaseCrossref | GoogleScholarGoogle Scholar | 173553PubMed |

Smith, D. J., Ng, H., Kluck, R. M., and Nagley, P. (2008) The mitochondrial gateway to cell death, IUBMB Life, 60, 383–389.
The mitochondrial gateway to cell deathCrossref | GoogleScholarGoogle Scholar | 18425780PubMed |

Sriprakash, K. S., Molloy, P. L., Nagley, P., Lukins, H. B., and Linnane, A. W. (1976) Biogenesis of mitochondria. XLI. Physical mapping of mitochondrial genetic markers in yeast, Journal of Molecular Biology, 104, 485–503.
Biogenesis of mitochondria. XLI. Physical mapping of mitochondrial genetic markers in yeastCrossref | GoogleScholarGoogle Scholar | 781289PubMed |

Towers, N. R., Dixon, H., Kellerman, G. M., and Linnane, A. W. (1972) Biogenesis of mitochondria. 22. The sensitivity of rat liver mitochondria to antibiotics; a phylogenetic difference between a mammalian system and yeast, Archives of Biochemistry and Biophysics, 151, 361–369.
Biogenesis of mitochondria. 22. The sensitivity of rat liver mitochondria to antibiotics; a phylogenetic difference between a mammalian system and yeastCrossref | GoogleScholarGoogle Scholar | 5045924PubMed |

Towers, N. R., Kellerman, G. M., Raison, J. K., and Linnane, A. W. (1973) The biogenesis of mitochondria 29. Effects of temperature-induced phase changes in membranes on protein synthesis by mitochondria, Biochimica et Biophysica Acta, 299, 153–161.
The biogenesis of mitochondria 29. Effects of temperature-induced phase changes in membranes on protein synthesis by mitochondriaCrossref | GoogleScholarGoogle Scholar | 4701073PubMed |

Trounce, I., Byrne, E., and Marzuki, S. (1989) Decline in skeletal muscle mitochondrial respiratory chain function: possible factor in ageing, Lancet, 333, 637–639.
Decline in skeletal muscle mitochondrial respiratory chain function: possible factor in ageingCrossref | GoogleScholarGoogle Scholar |

Vitols, E., and Linnane, A. W. (1961) Studies on the oxidative metabolism of Saccharomyces cerevisiae. II. Morphology and oxidative phosphorylation capacity of mitochondria and derived particles from baker’s yeast, The Journal of Biophysical and Biochemical Cytology, 9, 701–710.
Studies on the oxidative metabolism of Saccharomyces cerevisiae. II. Morphology and oxidative phosphorylation capacity of mitochondria and derived particles from baker’s yeastCrossref | GoogleScholarGoogle Scholar | 13781661PubMed |

Vitols, E., North, R. J., and Linnane, A. W. (1961) Studies on the oxidative metabolism of Saccharomyces cerevisiae. I. Observations on the fine structure of the yeast cell, The Journal of Biophysical and Biochemical Cytology, 9, 689–699.
Studies on the oxidative metabolism of Saccharomyces cerevisiae. I. Observations on the fine structure of the yeast cellCrossref | GoogleScholarGoogle Scholar | 13781662PubMed |

Wallace, P. G., and Linnane, A. W. (1964) Oxygen-induced synthesis of yeast mitochondria, Nature, 201, 1191–1194.
Oxygen-induced synthesis of yeast mitochondriaCrossref | GoogleScholarGoogle Scholar | 14151364PubMed |

Watson, K., Haslam, J. M., Veitch, B., and Linnane, A. W. (1971). ‘Mitochondrial precursors in anaerobically grown yeast’, in Autonomy and Biogenesis of Mitochondria and Chloroplasts, eds N. K. Boardman, A. W. Linnane, and R. M. Smillie, Amsterdam, pp. 162–174.

Wilkie, D., Saunders, G., and Linnane, A. W. (1967) Inhibition of respiratory enzyme synthesis in yeast by chloramphenicol: relationship between chloramphenicol tolerance and resistance to other antibacterial antibiotics, Genetical Research, 10, 199–203.
Inhibition of respiratory enzyme synthesis in yeast by chloramphenicol: relationship between chloramphenicol tolerance and resistance to other antibacterial antibioticsCrossref | GoogleScholarGoogle Scholar | 6064107PubMed |

Wolvetang, E. J., Johnson, K. L., Krauer, K., Ralph, S. J., and Linnane, A. W. (1994) Mitochondrial respiratory chain inhibitors induce apoptosis, FEBS Letters, 339, 40–44.
Mitochondrial respiratory chain inhibitors induce apoptosisCrossref | GoogleScholarGoogle Scholar | 8313978PubMed |

Zhang, C., Baumer, A., Maxwell, R. J., Linnane, A. W., and Nagley, P. (1992) Multiple mitochondrial DNA deletions in an elderly human individual, FEBS Letters, 297, 34–38.
Multiple mitochondrial DNA deletions in an elderly human individualCrossref | GoogleScholarGoogle Scholar | 1551433PubMed |

Zhang, C., Linnane, A. W., and Nagley, P. (1993) Occurrence of a particular base substitution (3243 A to G) in mitochondrial DNA of tissues of ageing humans, Biochemical and Biophysical Research Communications, 195, 1104–1110.
Occurrence of a particular base substitution (3243 A to G) in mitochondrial DNA of tissues of ageing humansCrossref | GoogleScholarGoogle Scholar | 8373389PubMed |

Ziegler, D. M., Linnane, A. W., Green, D. E., Dass, C. M., and Ris, H. (1958) Studies on the electron transport system. XI. Correlation of the morphology and enzymic properties of mitochondrial and sub-mitochondrial particles, Biochimica et Biophysica Acta, 28, 524–538.
Studies on the electron transport system. XI. Correlation of the morphology and enzymic properties of mitochondrial and sub-mitochondrial particlesCrossref | GoogleScholarGoogle Scholar | 13560403PubMed |